Acidosis in tumors arises from reprogrammed metabolism and compromised vasculature, creating a harsh, acidic microenvironment that drives the evolutionary selection of acid-resistant cell phenotypes. A mathematical model was proposed to integrate phenotypic evolution, microenvironmental acidification, and tumor density dynamics. Three key mechanisms were incorporated in it: frequency-dependent selection favoring acid-resistant cells below a critical pH, stress-induced phenotypic switching, and a positive feedback loop where resistant cells produce excess acid that intensifies selection pressure. The well-posedness of the model was established. Through numerical simulations across biologically relevant parameter regimes, we identified two therapeutically targetable parameters: the baseline acid clearance rate (a proxy for vascular perfusion) and a protection factor (representing acid-resistance "machinery" effectiveness) as critical bifurcation parameters for resistance evolution. The model exhibits qualitatively distinct dynamics depending on phenotypic plasticity levels. In low-plasticity tumors, both parameters exhibit sharp bifurcations with strong parameter interactions: clearance and protection effects are context-dependent, with therapeutic interventions effective only within specific parameter ranges. In high-plasticity tumors, both parameters produce continuous, monotonic responses with independent, additive effects. These regime-dependent dynamics suggest that treatment strategies should adapt to tumor plasticity: in the former, targeting perfusion alone is typically sufficient, though sequential therapy may be required if the perfusion rate approaches or exceeds the bifurcation threshold, whereas in the latter, treatment might benefit from combination therapies addressing both parameters simultaneously. These findings suggest that a low-dimensional model can identify therapeutically targetable parameters governing resistance evolution, suggesting interventions that may prevent or reverse the harmful effect of acid-resistant phenotypes, which are associated with chemotherapy failure, immune evasion, and metastatic progression.
Citation: Prithvi Anickode, Fabio Augusto Milner. Evolutionary dynamics of acid resistance in tumors: A mathematical model[J]. Mathematical Biosciences and Engineering, 2026, 23(3): 594-618. doi: 10.3934/mbe.2026023
Acidosis in tumors arises from reprogrammed metabolism and compromised vasculature, creating a harsh, acidic microenvironment that drives the evolutionary selection of acid-resistant cell phenotypes. A mathematical model was proposed to integrate phenotypic evolution, microenvironmental acidification, and tumor density dynamics. Three key mechanisms were incorporated in it: frequency-dependent selection favoring acid-resistant cells below a critical pH, stress-induced phenotypic switching, and a positive feedback loop where resistant cells produce excess acid that intensifies selection pressure. The well-posedness of the model was established. Through numerical simulations across biologically relevant parameter regimes, we identified two therapeutically targetable parameters: the baseline acid clearance rate (a proxy for vascular perfusion) and a protection factor (representing acid-resistance "machinery" effectiveness) as critical bifurcation parameters for resistance evolution. The model exhibits qualitatively distinct dynamics depending on phenotypic plasticity levels. In low-plasticity tumors, both parameters exhibit sharp bifurcations with strong parameter interactions: clearance and protection effects are context-dependent, with therapeutic interventions effective only within specific parameter ranges. In high-plasticity tumors, both parameters produce continuous, monotonic responses with independent, additive effects. These regime-dependent dynamics suggest that treatment strategies should adapt to tumor plasticity: in the former, targeting perfusion alone is typically sufficient, though sequential therapy may be required if the perfusion rate approaches or exceeds the bifurcation threshold, whereas in the latter, treatment might benefit from combination therapies addressing both parameters simultaneously. These findings suggest that a low-dimensional model can identify therapeutically targetable parameters governing resistance evolution, suggesting interventions that may prevent or reverse the harmful effect of acid-resistant phenotypes, which are associated with chemotherapy failure, immune evasion, and metastatic progression.
| [1] |
A. Anemone, L. Consolino, F. Arena, M. Capozza, D. L. Longo, Imaging tumor acidosis: A survey of the available techniques for mapping in vivo tumor pH, Cancer Metastasis Rev., 38 (2019), 25–49. https://doi.org/10.1007/s10555-019-09782-9 doi: 10.1007/s10555-019-09782-9
|
| [2] |
M. G. Vander Heiden, L. C. Cantley, C. B. Thompson, Understanding the Warburg effect: The metabolic requirements of cell proliferation, Science, 324 (2009), 1029–1033. https://doi.org/10.1126/science.1160809 doi: 10.1126/science.1160809
|
| [3] |
H. F. Dvorak, Why are tumor blood vessels abnormal and why is it important to know?, Br. J. Cancer, 100 (2009), 865–869. https://doi.org/10.1038/sj.bjc.6604967 doi: 10.1038/sj.bjc.6604967
|
| [4] |
L. Aubert, N. Nandagopal, Z. Steinhart, C. Guilbaud, K. Özkan, D. Brusa, et al., Tumor acidosis-induced DNA damage response and tetraploidy enhance sensitivity to ATM and ATR inhibitors, EMBO Rep., 25 (2024), 1469–1489. https://doi.org/10.1038/s44319-024-00089-7 doi: 10.1038/s44319-024-00089-7
|
| [5] |
W.-Y. Shie, Y.-H. Chu, Y.-F. Chen, H.-W. Chen, M.-T. Lin, X.-J. Su, et al., Acidosis promotes the metastatic colonization of lung cancer via remodeling of the extracellular matrix and vasculogenic mimicry, Int. J. Oncol., 63 (2023), 136. https://doi.org/10.3892/ijo.2023.5584 doi: 10.3892/ijo.2023.5584
|
| [6] |
N. Raghunand, R. Martinez-Zaguilan, S. H. Wright, R. J. Gillies, pH and drug resistance. Ⅱ. Turnover of acidic vesicles and resistance to weakly basic chemotherapeutic drugs, Biochem. Pharmacol., 57 (1999), 1047–1058. https://doi.org/10.1016/S0006-2952(99)00021-0 doi: 10.1016/S0006-2952(99)00021-0
|
| [7] |
S. R. Pilon-Thomas, K. N. Kodumudi, A. E. El-Kenawi, S. Russell, A. M. Weber, K. Luddy, et al., Neutralization of tumor acidity improves antitumor responses to immunotherapy, Cancer Res., 76 (2016), 1381–1390. https://doi.org/10.1158/0008-5472.CAN-15-1743 doi: 10.1158/0008-5472.CAN-15-1743
|
| [8] |
C. Corbet, O. Feron, Tumour acidosis: From the passenger to the driver's seat, Nat. Rev. Cancer, 17 (2017), 577–593. https://doi.org/10.1038/nrc.2017.77 doi: 10.1038/nrc.2017.77
|
| [9] |
V. Estrella, T. Chen, M. Lloyd, J. Wojtkowiak, H. H. Cornnell, A. Ibrahim-Hashim, et al., Acidity generated by the tumor microenvironment drives local invasion, Cancer Res., 73 (2013), 1524–1535. https://doi.org/10.1158/0008-5472.CAN-12-2796 doi: 10.1158/0008-5472.CAN-12-2796
|
| [10] |
E. Boedtkjer, S. F. Pedersen, The acidic tumor microenvironment as a driver of cancer, Annu. Rev. Physiol., 82 (2020), 103–126. https://doi.org/10.1146/annurev-physiol-021119-034627 doi: 10.1146/annurev-physiol-021119-034627
|
| [11] | M. Greaves, C. C. Maley, Clonal evolution in cancer, Nature, 481 (2012), 306–313. https://doi.org/10.1038/nature10762 |
| [12] |
S. Liao, G. Wu, Z. Xie, X. Y. Lei, X. Y. Yang, S. Huang, et al., pH regulators and their inhibitors in tumor microenvironment, Eur. J. Med. Chem., 267 (2024), 116170. https://doi.org/10.1016/j.ejmech.2024.116170 doi: 10.1016/j.ejmech.2024.116170
|
| [13] |
S. R. Pillai, M. Damaghi, Y. Marunaka, E. P. Spugnini, S. Fais, R. J. Gillies, Causes, consequences, and therapy of tumors acidosis, Cancer Metast. Rev., 38 (2019), 205–222. https://doi.org/10.1007/s10555-019-09792-7 doi: 10.1007/s10555-019-09792-7
|
| [14] |
S. Yuan, R. J. Norgard, B. Z. Stanger, Cellular plasticity in cancer, Cancer Discov., 9 (2019), 837–851. https://doi.org/10.1158/2159-8290.CD-19-0015 doi: 10.1158/2159-8290.CD-19-0015
|
| [15] |
C. E. Meacham, S. J. Morrison, Tumour heterogeneity and cancer cell plasticity, Nature, 501 (2013), 328–337. https://doi.org/10.1038/nature12624 doi: 10.1038/nature12624
|
| [16] |
Z.-D. Shi, K. Pang, Z.-X. Wu, Y. Dong, L. Hao, J.-X. Qin, et al., Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies, Signal Transduct. Target. Ther., 8 (2023), 113. https://doi.org/10.1038/s41392-023-01383-x doi: 10.1038/s41392-023-01383-x
|
| [17] |
K. S. Hoek, C. R. Goding, Phenotype switching: Tumor cell plasticity as a resistance mechanism and target for therapy, Cancer Res., 74 (2014), 5937–5941. https://doi.org/10.1158/0008-5472.CAN-14-1174 doi: 10.1158/0008-5472.CAN-14-1174
|
| [18] |
M. Archetti, Evolutionary dynamics of the Warburg effect: Glycolysis as a collective action problem among cancer cells, J. Theor. Biol., 341 (2014), 1–8. https://doi.org/10.1016/j.jtbi.2013.09.017 doi: 10.1016/j.jtbi.2013.09.017
|
| [19] |
A. Kaznatcheev, R. Vander Velde, J. G. Scott, D. Basanta, Cancer treatment scheduling and dynamic heterogeneity in social dilemmas of tumour acidity and vasculature, Br. J. Cancer, 116 (2017), 785–792. https://doi.org/10.1038/bjc.2017.5 doi: 10.1038/bjc.2017.5
|
| [20] |
G. Fiandaca, M. Delitala, T. Lorenzi, A mathematical study of the influence of hypoxia and acidity on the evolutionary dynamics of cancer, Bull. Math. Biol., 83 (2021), 83. https://doi.org/10.1007/s11538-021-00914-3 doi: 10.1007/s11538-021-00914-3
|
| [21] |
H. J. Park, J. C. Lyons, T. Ohtsubo, C. W. Song, Acidic environment causes apoptosis by increasing caspase activity, Br. J. Cancer, 80 (1999), 1892–1897. https://doi.org/10.1038/sj.bjc.6690617 doi: 10.1038/sj.bjc.6690617
|
| [22] |
C. M. Worsley, R. B. Veale, E. S. Mayne, Inducing apoptosis using chemical treatment and acidic pH, and detecting it using the Annexin V flow cytometric assay, PLoS ONE, 17 (2022), e0270599. https://doi.org/10.1371/journal.pone.0270599 doi: 10.1371/journal.pone.0270599
|
| [23] |
M. Salvioli, J. Dubbeldam, K. Staňková, J. S. Brown, The contribution of evolutionary game theory to understanding and treating cancer, Dyn. Games Appl., 12 (2022), 313–342. https://doi.org/10.1007/s13235-021-00397-w doi: 10.1007/s13235-021-00397-w
|
| [24] |
S. Jamali, M. Klier, S. Ames, L. F. Barros, R. McKenna, J. W. Deitmer, et al., Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function, Sci. Rep., 5 (2015), 13605. https://doi.org/10.1038/srep13605 doi: 10.1038/srep13605
|
| [25] |
E. M. England, S. K. Matarneh, T. L. Scheffler, C. Wachet, D. E. Gerrard, pH inactivation of phosphofructokinase arrests postmortem glycolysis, Meat Sci., 98 (2014), 850–857. https://doi.org/10.1016/j.meatsci.2014.07.019 doi: 10.1016/j.meatsci.2014.07.019
|
| [26] | L. Perko, Differential Equations and Dynamical Systems, 3rd edition, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0003-8 |
| [27] |
S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011
|
| [28] |
R. K. Jain, Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers, J. Clin. Oncol., 31 (2013), 2205–2218. https://doi.org/10.1200/JCO.2012.46.3653 doi: 10.1200/JCO.2012.46.3653
|
| [29] |
K. L. Schadler, N. J. Thomas, P. A. Galie, D. H. Bhang, K. C. Roby, P. Addai, et al., Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy, Oncotarget, 7 (2016), 65429–65440. https://doi.org/10.18632/oncotarget.11748 doi: 10.18632/oncotarget.11748
|
| [30] |
I. Moen, L. E. Stuhr, Hyperbaric oxygen therapy and cancer–a review, Target. Oncol., 7 (2012), 233–242. https://doi.org/10.1007/s11523-012-0233-x doi: 10.1007/s11523-012-0233-x
|
| [31] |
M. Beloueche-Babari, S. C. Galobart, T. Delgado-Goni, S. Wantuch, H. G. Parkes, D. Tandy, et al., Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration, Br. J. Cancer, 122 (2020), 895–903. https://doi.org/10.1038/s41416-019-0717-x doi: 10.1038/s41416-019-0717-x
|
| [32] |
P. C. McDonald, S. C. Chafe, W. S. Brown, S. Saberi, M. Swayampakula, G. Venkateswaran, et al., Regulation of pH by carbonic anhydrase 9 mediates survival of pancreatic cancer cells with activated KRAS in response to hypoxia, Gastroenterology, 157 (2020), 823–837. https://doi.org/10.1053/j.gastro.2019.05.004 doi: 10.1053/j.gastro.2019.05.004
|
| [33] |
S. R. Amith, L. Fliegel, Na+/H+ exchanger-mediated hydrogen ion extrusion as a carcinogenic signal in triple-negative breast cancer etiopathogenesis and prospects for its inhibition in therapeutics, Semin. Cancer Biol., 43 (2017), 35–41. https://doi.org/10.1016/j.semcancer.2017.01.004 doi: 10.1016/j.semcancer.2017.01.004
|
| [34] | R. A. Gatenby, E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745–5753. |
| [35] |
J. B. McGillen, E. A. Gaffney, N. K. Martin, P. K. Maini, A general reaction-diffusion model of acidity in cancer invasion, J. Math. Biol., 68 (2014), 1199–1224. https://doi.org/10.1007/s00285-013-0665-7 doi: 10.1007/s00285-013-0665-7
|
| [36] |
N. Beerenwinkel, R. F. Schwarz, M. Gerstung, F. Markowetz, Cancer evolution: Mathematical models and computational inference, Syst. Biol., 64 (2015), e1–e25. https://doi.org/10.1093/sysbio/syu081 doi: 10.1093/sysbio/syu081
|