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Abstract: Acidosis in tumors arises from reprogrammed metabolism and compromised vasculature,
creating a harsh, acidic microenvironment that drives the evolutionary selection of acid-resistant cell
phenotypes. A mathematical model was proposed to integrate phenotypic evolution, microenviron-
mental acidification, and tumor density dynamics. Three key mechanisms were incorporated in it:
frequency-dependent selection favoring acid-resistant cells below a critical pH, stress-induced pheno-
typic switching, and a positive feedback loop where resistant cells produce excess acid that intensifies
selection pressure. The well-posedness of the model was established. Through numerical simulations
across biologically relevant parameter regimes, we identified two therapeutically targetable parameters:
the baseline acid clearance rate (a proxy for vascular perfusion) and a protection factor (representing
acid-resistance “machinery” effectiveness) as critical bifurcation parameters for resistance evolution.
The model exhibits qualitatively distinct dynamics depending on phenotypic plasticity levels. In low-
plasticity tumors, both parameters exhibit sharp bifurcations with strong parameter interactions: clear-
ance and protection effects are context-dependent, with therapeutic interventions effective only within
specific parameter ranges. In high-plasticity tumors, both parameters produce continuous, monotonic
responses with independent, additive effects. These regime-dependent dynamics suggest that treat-
ment strategies should adapt to tumor plasticity: in the former, targeting perfusion alone is typically
sufficient, though sequential therapy may be required if the perfusion rate approaches or exceeds the
bifurcation threshold, whereas in the latter, treatment might benefit from combination therapies ad-
dressing both parameters simultaneously. These findings suggest that a low-dimensional model can
identify therapeutically targetable parameters governing resistance evolution, suggesting interventions
that may prevent or reverse the harmful effect of acid-resistant phenotypes, which are associated with
chemotherapy failure, immune evasion, and metastatic progression.
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1. Introduction

Tumors thrive in a complex microenvironment, distinguishing them from regular tissue through
multiple physiological changes. One of the most common features is extracellular acidosis, as tumor
pH values usually range from 6.5 to 7.0, while normal tissue maintains a pH of 7.4 [1]. This phe-
nomenon is the result of two related processes: increased glycolytic metabolism in cancer cells, which
is known as the Warburg effect [2], and irregular tumor vasculature that inhibits the clearance of waste
products, including protons (H+ ions) [3]. This acid-resistant phenotype has been documented across
multiple cancer types, including colorectal cancer, where acidosis promotes DNA damage responses
and genomic instability [4], and lung cancer, where it facilitates metastatic colonization through extra-
cellular matrix remodeling [5]. Clinically, acidosis-driven resistance has been implicated in treatment
failure across multiple modalities: acidic extracellular pH reduces uptake of weakly basic chemother-
apeutics such as doxorubicin [6], impairs T-cell cytotoxicity and checkpoint inhibitor efficacy [7], and
promotes survival of radioresistant cell populations [8].

The acidic tumor microenvironment is not just a byproduct of cancer metabolism; it plays a key
role in tumor development. Acidic conditions promote invasion and metastasis by activating matrix-
degrading enzymes, facilitating stromal remodeling, and suppressing immune responses [9, 10]. Fur-
thermore, the harsh acidic environment triggers and selects for acid-resistant phenotypes [11]. These
acid-resistant cells are typically characterized by upregulated proton exporters, including monocar-
boxylate transporters (MCTs), sodium-hydrogen exchangers (NHE1), and carbonic anhydrase IX
(CAIX), allowing them to maintain a close to neutral intracellular pH while the extracellular envi-
ronment remains acidic [12, 13].

Beyond natural selection, evidence suggests that plasticity, which is the ability of cells to reversibly
change phenotypes in response to stimuli without altering their genetic code, is a significant driver of
adaptation in cancer [14, 15]. Phenotypic switching can be accelerated by stress, causing rapid adapta-
tion to environmental changes through epigenetic modifications, altered transcriptional programs, and
metabolic reprogramming [16, 17]. This phenomenon could play a significant role in the context of
acidic stress, where cells are exposed to environmental pressure that favors quick adaptive responses
[10].

Several mathematical frameworks have addressed some components of this problem. Game-
theoretic models have captured frequency-dependent selection among tumor phenotypes: Archetti [18]
framed glycolysis as a collective action problem where acid production serves as a public good, while
Kaznatcheev et al. [19] extended this to a “double goods” game incorporating both acidification and
vascularization, demonstrating how polyclonal equilibria emerge from replicator dynamics. More re-
cently, Fiandaca et al. [20] developed a partial integro-differential equation model coupling continuous
phenotypic evolution with oxygen and lactate dynamics, showing how spatial gradients drive selection
for acid-resistant traits. However, these models treat phenotypes as either fixed strategies or contin-
uously evolving traits, omitting stress-induced phenotypic switching, the rapid, reversible transitions
triggered by environmental stress. Furthermore, none incorporate a positive feedback loop where acid-
resistant cells, through upregulated glycolysis associated with proton export machinery, produce excess
acid that intensifies the very selection pressure favoring resistance. Our model addresses this gap by
integrating frequency-dependent selection, stress-induced plasticity, and resistance-driven acidification
within a unified ODE framework.
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These observations naturally led us to our central question: Can a low-dimensional ODE model
identify therapeutically targetable parameters that govern resistance evolution, and thereby suggest
interventions capable of preventing or reversing the development of acid-resistance in tumors? To
address this, we develop a three-dimensional ODE model that unifies frequency-dependent selec-
tion, stress-induced phenotypic switching, and resistance-driven acidification. This model allows
us to examine how two key parameters—baseline acid clearance and acid-resistance “machinery”
effectiveness—affect resistance evolution. Through bifurcation analysis across different levels of phe-
notypic plasticity, we identify regime-dependent therapeutic strategies and suggest plasticity as a criti-
cal determinant of treatment response in acidic tumor microenvironments.

2. Model formulation

2.1. State variables

The model is based on three primary state variables that capture the evolutionary, micro-
environmental, and population-level dynamics of the tumor system. These are defined as follows:

x(t) = Fraction of acid-resistant cells ∈ [0, 1], (2.1)

h(t) = Normalized proton concentration =
[H+]

[H+]physiological
, (2.2)

n(t) = Normalized tumor density =
N(t)
K
, (2.3)

where [H+]physiological = 10−7.4 M corresponds to a physiological pH of 7.4. Here, K denotes the carrying
capacity of the environment, and N(t) represents the total tumor cell population at time t. Note that,
because of our chosen binary phenotypical structure, 1 − x represents the fraction of acid-sensitive
tumor cells.

Interpretation of the pH normalization. The variable h(t) serves as a dimensionless measure of
extracellular acidity, normalized relative to physiological proton concentration. When h = 1, the local
environment corresponds to a normal physiological pH of 7.4. Values of h greater than one indicate an
increasingly acidic microenvironment (lower pH), while smaller values correspond to alkalosis, though
this is rarely observed in tumors. The relationship between h and pH can be expressed as

pH = 7.4 − log10(h).

Clinically relevant tumor pH values typically fall below physiological levels, reflecting varying de-
grees of acidosis. For instance, a mild decrease in pH to 7.2 corresponds to h ≈ 1.6, moderate acidosis
at pH 7.0 yields h ≈ 2.5, and more severe acidification at pH 6.8 and 6.5 correspond to h ≈ 4.0 and
h ≈ 7.9, respectively. These values delineate the physiological range over which the tumor microen-
vironment exerts selective pressure favoring acid-resistant phenotypes. While h is mathematically
defined for all positive values (as established in Theorem 1), biologically relevant tumor microenviron-
ments constrain h to approximately [1, 8], corresponding to the pH range [6.5, 7.4] [1]. Values beyond
this range represent extreme conditions: h < 1 corresponds to alkalosis (pH > 7.4), rarely observed in
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solid tumors, while h > 8 (pH < 6.5) induces extensive cell death that naturally limits further acidifica-
tion [21, 22]. Rather than explicitly modeling extracellular buffering capacity, our model incorporates
implicit saturation mechanisms that prevent unbounded acid accumulation: the glycolytic inhibition
factor G(h) reduces acid production as h increases, while the Hill function dS (h) causes population de-
cline through acid-induced mortality. These mechanisms, combined with density-dependent clearance
Γ(n), ensure h remains bounded within the physiologically relevant range in all simulations.

2.2. Governing equations

The model is given by the following 3-dimensional system of ODEs:

dx
dt
= x(1 − x)S (h) + µ(h)(1 − x) − νx,

dh
dt
= αn(1 + βx) ·G(h) − Γ(n)(h − 1),

dn
dt
= rn(1 − n) − D(h, x)n,

(2.4)

where the density-dependent rates and fractions are modeled as follows:

S (h) =
s0

1 + e−λ(h−hc) − c + φdS (h) (unit net selection differential rate), (2.5)

dS (h) =
dmaxhm

hm
50 + hm (unit acid-induced death rate), (2.6)

µ(h) = µ0hp, (unit stress-induced switching rate), (2.7)

G(h) =
Kg

Kg + h
(reduction factor from glycolytic inhibition), (2.8)

Γ(n) =
γ0

1 + ηn
(unit acid clearance rate), (2.9)

D(h, x) = (1 − φx)dS (h). (unit population death rate), (2.10)

2.3. Biological interpretation

2.3.1. Dynamics of acid resistant cell population

The resistant cell-population fraction, x, evolves through three processes:

1. Frequency-dependent selection, x(1 − x)S (h): The factor x(1 − x) represents the well known
replicator dynamic structure from evolutionary game theory [23], where selection is strongest when
both phenotypes coexist. The unit net selection differential rate, S (h), incorporates three drivers for
selection:

a. pH-dependent advantage: A logistic function that allows for resistant cells to only gain advan-
tage in acidic conditions when h exceeds a critical value hc ≈ 3.5 (corresponding to pH = 6.9, see
the discussion around (2.33)). The steepness parameter, λ, controls the sharpness of the selection
transition.

Mathematical Biosciences and Engineering Volume 23, Issue 3, 594–618.



598

b. Metabolic cost, c: Maintaining acid-resistance machinery (MCT1/4, NHE1, CAIX) requires
Adenosine triphosphate (ATP) expenditure [12], causing a fitness disadvantage for resistance.

c. Survival advantage, φdS (h): Resistant cells experience reduced acid-induced mortality, and this
term represents the fitness differential due to differences in mortality.

2. Stress-induced phenotypic switching, µ(h)(1 − x): Acidic stress promotes conversion through
Reactive Oxygen Species (ROS) damage, epigenetic changes, and stress pathways [14]. The functional
form µ(h) = µ0hp, with p > 1, models nonlinear responses to increasing acidity.

3. Phenotypic reversion, νx: Resistant cells may revert to sensitive through epigenetic modification
loss or metabolic reprogramming [14].

2.3.2. Microenvironmental acid dynamics

Acid production rate: αn(1 + βx) ·G(h) Tumor cells produce lactic acid through aerobic glycolysis
[2]. Resistant cells expressing acid-resistance machinery show enhanced acid production capacity, with
experimental evidence showing increases in lactate production under acidic stress conditions [24]. The
factor (1+βx) captures this enhanced production, where β quantifies the relative increase in acid output
by resistant cells.

The factor G(h) = Kg

Kg+h models product inhibition of glycolytic enzymes at severe acidosis [25],
where Kg indicates the normalized proton concentration at which glycolytic activity is reduced to 50%
of its maximum. As h → ∞ (severe acidosis), G(h) → 0, effectively shutting down glycolysis, while
at physiological pH (h ≈ 1), G(h) ≈ Kg/(Kg + 1) allows near-maximal acid production.

Acid clearance rate: Γ(n)(h − 1) Clearance decreases with increasing tumor density due to vascular
compression [3]. The factor (h − 1) drives pH toward physiological levels when clearance is effective.

2.3.3. Population dynamics

We modeled the dynamics of tumor density through logistic growth, rn(1 − n), and pH-dependent
mortality, D(h, x), using Hill kinetics. The unit death rate is reduced for resistant cells by a factor of
(1 − φx), reflecting their enhanced survival under acidic stress.

2.4. Mathematical well-posedness

Before analyzing the biological implications of the model, we establish that it is mathematically
well-posed and preserves biological constraints.

Theorem 2.1 (Existence, uniqueness, and invariance). For any initial condition (x0, h0, n0) ∈ [0, 1] ×
R>0×[0, 1] and positive parameter values, system (2.4) admits a unique solution (x(t), h(t), n(t)) defined
for all t ≥ 0 that remains in the biologically relevant domainD = [0, 1] × R>0 × [0, 1].

Proof. Part 1: Local existence and uniqueness
The right-hand side functions of system (2.4) are compositions of smooth functions. Specifically:

• S (h) is C∞ on (0,∞) (exponential and rational functions)
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• µ(h) = µ0hp is C∞ on (0,∞)
• dS (h) = dmaxhm/(hm

50 + hm) is C∞ on (0,∞)
• G(h) = Kg/(Kg + h) is C∞ on (0,∞)
• Γ(n) = γ0/(1 + ηn) is C∞ on [0, 1]
• D(h, x) = (1 − φx)dS (h) is C∞ on [0, 1] × (0,∞)

Therefore, the vector field F(x, h, n) = (ẋ, ḣ, ṅ)T is continuously differentiable on D, hence locally
Lipschitz continuous. By the Picard-Lindelöf theorem [26], there exists a unique local solution for any
initial condition inD.

Part 2: Invariance of [0, 1] for x(t)
We show that [0, 1] is positively invariant for x(t).
At x = 0:

dx
dt

∣∣∣∣∣
x=0
= 0 · (1 − 0) · S (h) + µ(h)(1 − 0) − ν · 0 = µ(h) = µ0hp > 0, (2.11)

for all h > 0, µ0 > 0, and p > 0. Thus, the vector field points to the interior of D at x = 0, and x(t)
cannot become negative.

At x = 1:
dx
dt

∣∣∣∣∣
x=1
= 1 · 0 · S (h) + µ(h) · 0 − ν = −ν < 0, (2.12)

since ν > 0. Thus, the vector field points to the interior ofD at x = 1, and x(t) cannot exceed 1.
By the continuous dependence of solutions, x(t) ∈ [0, 1] for all t ≥ 0 whenever x0 ∈ [0, 1].
Part 3: Positivity of h(t)
We establish that h(t) > 0 for all t ≥ 0 if h0 > 0. The h-dynamics are given by:

dh
dt
= αn(1 + βx)G(h) − Γ(n)(h − 1). (2.13)

At h = 0+ (0 approached from the right):

dh
dt

∣∣∣∣∣
h→0+
= αn(1 + βx) ·

Kg

Kg + 0
− Γ(n)(0 − 1) = αn(1 + βx) + Γ(n) > 0, (2.14)

since α, β,Kg, n, x ≥ 0 and Γ(n) = γ0/(1 + ηn) > 0. The factor αn(1 + βx) ≥ 0 in the production term
and factor Γ(n) > 0 in the clearance term ensure the right-hand side is strictly positive at h = 0.

Therefore, if h(t) were to reach 0 from above, the derivative would be positive, forcing h to increase.
This prevents h(t) from becoming non-positive, and thus h(t) > 0 for all t ≥ 0 if h0 > 0.

Part 4: Invariance of [0, 1] for n(t)
We show that [0, 1] is positively invariant for n(t).
At n = 0:

dn
dt

∣∣∣∣∣
n=0
= r · 0 · (1 − 0) − D(h, x) · 0 = 0. (2.15)

Thus, n = 0 is invariant. If the population is extinct (n = 0), it remains extinct.
At n = 1:

dn
dt

∣∣∣∣∣
n=1
= r · 1 · (1 − 1) − D(h, x) · 1 = −D(h, x) ≤ 0, (2.16)
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where D(h, x) = (1 − φx)dS (h) ≥ 0 for all (h, x) ∈ (0,∞) × [0, 1] since φ ∈ [0, 1] and dS (h) ≥ 0. The
inequality is strict (i.e., dn/dt < 0) when h is sufficiently large that dS (h) > 0, because φx < 1. Thus,
the vector field points to the interior ofD at n = 1, preventing N from exceeding carrying capacity.

For n ∈ (0, 1), the logistic growth structure ensures n remains bounded within (0, 1] for any positive
initial density n0 ∈ (0, 1].

Part 5: Global existence
Having established that D = [0, 1] × R>0 × [0, 1] is positively invariant, solutions starting in D

remain bounded for all t ≥ 0. Bounded solutions cannot exhibit finite-time blow-up. Therefore, the
local solution extends to a global solution defined for all t ≥ 0.

Combining Parts 1-5, we conclude that system (2.4) admits a unique global solution in D for all
t ≥ 0. □

This result ensures that the model respects biological constraints and produces well-defined dynam-
ics for any biologically reasonable initial condition.

2.5. Equilibrium points

Let us denote E = (x∗, h∗, n∗) a generic equilibrium point of the system (2.4).
We see that the second and third equations in (2.4) admit the trivial equilibrium E0 = (x∗, 1, 0),

where x∗ is determined by the first equation in (2.4) with h = 1 as:

x∗ =

√(
µ0 + ν

S (1)
− 1

)2

+ 4
µ0

S (1)
−

(
µ0 + ν

S (1)
− 1

)
2

, (2.17)

and it is easy to check that 0 < x∗ < 1 is thus uniquely determined. This is the extinction equilibrium
where the tumor is totally reabsorbed, as the pH approaches its physiological value and the fraction of
resistant cells hovers around the value given in (2.17), while their number necessarily approaches 0.

Note that, for h ≡ 1 and x ≡ x∗, we can solve the equation for the total cell population density, n, in
(2.4) explicitly, using the notation D∗ = D(1, x∗):

n(t) =
D∗ − r(

r + D∗−r
n(0)

)
e(D∗−r)T − r

, (2.18)

whereby

lim
t→∞

n(t) =


0, if

r
D∗
< 1,

1 −
1

r/D∗
, if

r
D∗
> 1.

(2.19)

We can see in (2.19) that
R0 =

r
D∗
. (2.20)

is the basic reproduction number of the total cell population of the tumor at acidity level h = 1 and
fraction of resistant cells x = x∗. Concerning the stability of E0, we have the following result based on
this basic reproduction number.
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Theorem 2.2. The equilibrium E0 is locally asymptotically stable if R0 < 1 and it is unstable if R0 > 1.

Proof. The Jacobian matrix of the system (2.4) at the equilibrium E0 is given as

J(E0) =


−

√
(µ0 + ν − S (1))2 + 4µ0S (1) ∗ ∗ ∗ ∗ ∗ ∗

0 −γ0 α(1 + βx∗)
Kg

Kg + 1
0 0 r − D(1, x∗)

 . (2.21)

This matrix is upper triangular with the first two diagonal coefficients negative. The theorem follows
from the observation that the last coefficient of the matrix is negative if, and only if, R0 < 1 and it is
positive if, and only if, R0 > 1. □

This theorem suggests that R0 acts as a bifurcation parameter and, at R0 = 1. we have a forward
bifurcation from the local stability of E0 for R0 < 1 to its loss of stability for R0 > 1, when another
(positive) equilibrium appears and inherits the local stability.

The only equilibrium with n∗ = 0 is E0, so that we now seek other steady-states with n∗ > 0.
Note that the first equation in (2.4) together with (2.7) imply that, if x∗ = 0, then h∗ = 0, which
is impossible (this corresponds to infinite pH). Therefore, there is no equilibrium without a positive
fraction of resistant cells.

However, an equilibrium without sensitive cells is possible: if x∗ = 1, then necessarily ν = 0, which
would necessitate the removal of the assumption that resistant cells can revert to sensitive. In that case,
the equilibrium

E1 = (1, h∗, n∗) (2.22)

is determined by the last two equations of (2.4). The last one, together with (2.6) and (2.10), imply that

1 − n∗ = (1 − φ)
(h∗)m

(h50)m + (h∗)m

dmax

r
.

For this equation to have positive solutions, we need R∗0 =
r

dmax
> 1. In that case,

n∗ = 1 − (1 − φ)
(h∗)m

(h50)m + (h∗)m

dmax

r
∈ (0, 1). (2.23)

The second equation in (2.4) implies that

α(1 + β)Kg n∗(1 − n∗) = γ0(h∗ − 1)(Kg + h∗), (2.24)

and we see that n∗ > 0 ⇐⇒ h∗ > 1. Substituting n∗ from (2.23) into (2.24), we obtain an equation for
the equilibrium acidity level, h∗:

α(1 + β)Kg

(
1 − (1 − φ)

(h∗)m

(h50)m + (h∗)m

dmax

r

) (
(1 − φ)

(h∗)m

(h50)m + (h∗)m

dmax

r

)
= γ0(h∗ − 1)(Kg + h∗).

(2.25)
We are seeking the roots of a polynomial of degree 2m + 2, and we will use m = 2 in our simulations.
This means we need the roots of polynomial of degree 6, which cannot be expressed in closed form in
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terms of the coefficients. However, comparing the signs of the left-hand side and the right-hand side
of (2.25), we see that any positive root must satisfy h∗ > 1. Moreover, as h increases from 1 to +∞,
the left-hand side of the equation is always positive and bounded, increasing to a maximum and then
decreasing towards a horizontal asymptote, while the right-hand side grows monotonically from 0 to
+∞. Hence, there is a unique root h∗ > 1, and the corresponding n∗ given by (2.23) lies in the interval
(0, 1).

We have established the following result.

Theorem 2.3. Let R∗0 =
r

dmax
> 1 and assume ν = 0. Then there is a unique positive equilibrium of

(2.4) with x∗ = 1, E1 = (1, h∗, n∗) ∈ D.

We were unable to prove stability results for this equilibrium, and we were also unable to find an
explicit formula for the positive equilibria with ν > 0, corresponding to 0 < x∗ < 1.

2.6. Parameter estimation

Model parameters are estimated through a phenomenological approach, choosing values that pro-
duce biologically plausible dynamics while exploring qualitatively different model behaviors. Ranges
are constrained by general biological knowledge and dimensional consistency, with specific values
selected through numerical exploration to identify parameter regimes yielding distinct evolutionary
outcomes.

2.6.1. Population dynamics parameters

Intrinsic growth rate (r) The normalized tumor density n(t) = N(t)/K evolves according to logistic
growth, where r controls the rate of approach to carrying capacity:

r ∈ [0.01, 0.05] day−1 (2.26)

This range spans slow-growing tumors reaching half-capacity in 140 days (r = 0.01) to aggressive
tumors reaching half-capacity in 28 days (r = 0.05). Baseline r = 0.03 day−1 represents moderately
aggressive growth.

Acid-induced death parameters (dmax, h50, m) Experimental studies demonstrate that acidic extra-
cellular pH induces apoptosis in cancer cells, with significant cell death observed at pH 6.5–6.8 within
24–48 hours [21, 22]. We adopt ranges that capture varying sensitivity to acidosis across tumor types:

dmax ∈ [0.05, 0.15] day−1 (maximum death rate) (2.27)
h50 ∈ [3.5, 6.5] (half-maximal effect at pH 6.5–7.0) (2.28)
m ∈ [2, 4] (Hill coefficient for cooperativity) (2.29)

Higher h50 values indicate cells that maintain viability at more severe acidosis levels before death
rates become substantial. Baseline values are dmax = 0.08 day−1, h50 = 4.5, and m = 2.5.
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2.6.2. Selection and fitness parameters

Maximum selection advantage rate (s0) The maximum selection advantage determines how
strongly acidosis favors resistant phenotypes:

s0 ∈ [0.10, 0.30] day−1 (2.30)

These values enable selection to significantly influence evolutionary dynamics on timescales com-
parable to population growth. Baseline s0 = 0.20 day−1.

Metabolic cost (c) Maintaining proton exporters (MCT1/4, NHE1, CAIX) requires ATP expenditure,
imposing a constitutive fitness cost:

c ∈ [0.01, 0.04] day−1 (2.31)

This range reflects varying metabolic burdens depending on expression levels and activity of acid-
resistance machinery. Baseline c = 0.02 day−1.

Protection factor (φ) Represents fractional reduction in acid-induced mortality for resistant cells:

φ ∈ [0.60, 0.95] (60–95% protection) (2.32)

Higher values model cells with highly effective acid-resistance mechanisms that nearly eliminate
acid-induced mortality. Baseline φ = 0.75.

Critical threshold (hc) The critical threshold represents the normalized proton concentration at
which acid-resistant phenotypes begin gaining selective advantage. Experimental evidence indicates
normal cells show impaired function below pH 7.0 (h ≈ 2.5), while acid-resistant cells expressing
MCT1/4, NHE1, and CAIX maintain viability at lower pH [12, 13]:

hc ∈ [2.5, 4.5] (pH 7.0–6.8) (2.33)

Lower values indicate resistance becomes advantageous at milder acidosis, while higher values
require more severe conditions. Baseline hc = 3.5 (pH 6.9).

Transition steepness (λ) Controls sharpness of the sigmoidal selection transition:

λ ∈ [3, 6] (sharp to very steep transitions) (2.34)

Larger values create more switch-like transitions between selection regimes. Baseline λ = 4.5.

2.6.3. Phenotypic switching parameters

Stress-induced switching (µ0, p) Phenotypic plasticity involves stochastic transitions reflecting epi-
genetic flexibility:

µ0 ∈ [5 × 10−5, 1 × 10−3] day−1 (baseline unit switching rate) (2.35)
p ∈ [1.5, 3] (stress response nonlinearity parameter) (2.36)

Lower µ0 values model cells with strong epigenetic barriers to switching, while higher values al-
low more rapid phenotypic adaptation. The nonlinearity parameter of the stress response, p, controls
sensitivity to acidic stress. Baseline values µ0 = 2 × 10−4 day−1 and p = 2.0.
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Reversion rate (ν) Reversion from resistant to sensitive states:

ν ∈ [1 × 10−4, 5 × 10−4] day−1 (2.37)

Values are chosen to allow moderate reversibility, preventing complete fixation while maintaining
evolutionary responsiveness. Baseline ν = 3 × 10−4 day−1.

2.6.4. Acid production and clearance

Basal unit acid production rate (α) Enhanced glycolysis and lactate production in tumors occur on
faster time-scales than population growth:

α ∈ [0.07, 0.15] day−1 (2.38)

These values ensure pH changes occur rapidly relative to population dynamics, enabling micro-
environmental acidification to drive evolutionary selection. Baseline α = 0.10 day−1.

Percentual excess production by resistant cells (β) Acid-resistant phenotypes upregulate glycolysis
to fuel proton export. Experimental measurements in breast cancer cells show that expression of acid-
resistance machinery (CAIX) under acidic stress increases lactate production up to 60% [24]:

β ∈ [0.35, 0.65] (2.39)

Baseline β = 0.50 represents a 50% increase in acid production by resistant cells, consistent with
experimental observations.

Glycolytic inhibition (Kg) Product inhibition factor of glycolytic enzymes, particularly phospho-
fructokinase, becomes significant at pathological pH [25]:

Kg ∈ [2.0, 4.0] (2.40)

Lower values indicate earlier onset of glycolytic inhibition, while higher values allow glycolysis to
persist under more severe acidosis. Baseline Kg = 3.0.

Clearance parameters (γ0, η) Vascular clearance depends on perfusion, which degrades with tumor
density due to vascular compression and irregular structure:

γ0 ∈ [0.01, 0.06] day−1 (maximal unit clearance rate) (2.41)
η ∈ [0.15, 0.35] (perfusion reduction strength) (2.42)

These ranges reflect severely compromised vasculature characteristic of solid tumors, with clear-
ance occurring much slower than acid production. Baseline values γ0 = 0.03 day−1 and η = 0.25.
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2.7. Baseline parameter set

Table 1 summarizes baseline parameter values for numerical simulations. These represent a moder-
ately aggressive tumor with compromised vascular clearance.

Table 1. Model parameters: definitions, units, baseline values, and biologically plausible
ranges.

Symbol Definition Units Baseline Range

Population Dynamics

r Intrinsic unit tumor growth rate day−1 0.03 [0.01, 0.05]
dmax Maximal acid-induced unit death rate day−1 0.08 [0.05, 0.15]
h50 Normalized proton concentration at half-

maximal mortality
– 4.5 [3.5, 6.5]

m Hill coefficient for acid-induced mortality
cooperativity

– 2.5 [2, 4]

Selection and Fitness

s0 Maximum selection advantage rate of resis-
tant cells

day−1 0.20 [0.10, 0.30]

c Unit metabolic cost of maintaining resis-
tance machinery

day−1 0.02 [0.01, 0.04]

φ Protection factor (fractional reduction in
unit death rate)

– 0.75 [0.60, 0.95]

hc Critical proton concentration threshold for
selection

– 3.5 [2.5, 4.5]

λ Steepness of selection transition – 4.5 [3, 6]

Phenotypic Switching

µ0 maximal stress-induced unit switching rate day−1 2 × 10−4 [5 × 10−5, 10−3]
p Nonlinearity exponent for stress response – 2.0 [1.5, 3]
ν Unit reversion rate from resistant to sensi-

tive
day−1 3 × 10−4 [10−4, 5 × 10−4]

Acid Dynamics

α Basal acid production unit rate day−1 0.10 [0.07, 0.15]
β Relative excess acid production by resistant

cells
– 0.50 [0.35, 0.65]

Kg Glycolytic inhibition constant – 3.0 [2.0, 4.0]
γ0 Maximal vascular clearance unit rate day−1 0.03 [0.01, 0.06]
η Strength of density-dependent clearance re-

duction
– 0.25 [0.15, 0.35]

3. Numerical simulations

We perform numerical simulations to investigate the long-term evolutionary dynamics of the model
and identify the role of unit acid clearance rate (γ0) and protection factor (φ) as critical control param-
eters. Due to the presence of transcendental equations when solving for equilibrium points, analytical
characterization of bifurcations is intractable, which is why a computational approach was used.
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3.1. Methods

All simulations were performed using Python 3.11 with the scipy.integrate.odeint function
for numerical integration of system (2.4). We used adaptive time-stepping with relative tolerance 10−8

and absolute tolerance 10−10 to ensure accurate resolution of the coupled nonlinear dynamics.

Time-series analysis: For trajectory visualization, the system was integrated from t = 0 to t =
800 days from initial condition (x0, h0, n0) = (0.02, 1.0, 0.15), representing a small initial resistant
subpopulation at physiological pH and low tumor density.

Single-parameter bifurcation analysis: To characterize equilibrium dependence on individual pa-
rameters, we systematically varied one parameter across its biologically plausible range (Table 1) while
holding all others at baseline. At each parameter value, the system was integrated to t = 2500 days, and
equilibrium resistant fraction x∗ was recorded after verifying steady-state convergence (|dx/dt| < 10−6).

Parameter regimes: We explored two distinct parameter regimes, both biologically plausible but
differing in phenotypic plasticity and resistance effectiveness. The specific parameter values defining
these regimes were chosen phenomenologically to produce qualitatively distinct dynamics; empiri-
cal quantification of stress-induced switching rates in tumor cells under acidic conditions remains an
important area for future experimental work.

Regime A (Low Plasticity): Characterized by a low stress-induced switching rate (µ0 = 5 × 10−5

day−1) and moderate protection (φ = 0.70), representing tumors with limited phenotypic plasticity. All
other parameters are set to baseline values found in table 1.

Regime B (High Plasticity): Characterized by a high stress-induced switching rate (µ0 = 8 ×
10−4 day−1) and strong protection (φ = 0.95), representing highly adaptive tumors with robust acid-
resistance machinery. All other parameters are set to baseline values found in table 1.

Two-parameter phase space mapping: For Regime B, we computed equilibrium resistance on a
50 × 50 grid spanning clearance rate γ0 ∈ [0.018, 0.038] day−1 and protection factor φ ∈ [0.30, 0.98].
At each grid point, the system was integrated to steady state using the method above.

Global sensitivity analysis: To quantify parameter influence on equilibrium resistance while ac-
counting for parameter interactions, we performed global sensitivity analysis using Latin hypercube
sampling (LHS) with Partial rank correlation coefficients (PRCC) [27]. We generated N = 1000
samples across the 17-dimensional parameter space, with each parameter sampled uniformly from its
biologically plausible range (Table 1). For each sample, the system was integrated to equilibrium and
the resistant fraction x∗ recorded. PRCC values quantify the monotonic relationship between each
parameter and x∗ while controlling for all other parameters.

3.2. Regime A: Sharp bifurcations

3.2.1. Time-Series dynamics

In Regime A, the model exhibits threshold-dependent dynamics where a critical value of γ0 deter-
mines qualitatively distinct evolutionary outcomes (Figure 1).
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Figure 1. Regime A: Time-series dynamics in low-plasticity tumors. Time evolution of
resistant fraction, x(t), tumor pH, and tumor density, n(t), for low clearance (γ0 = 0.018
day−1, left) and high clearance (γ0 = 0.055 day−1, right). All other parameters identical.
Initial conditions: (x0, h0, n0) = (0.02, 1.0, 0.15). Parameter values shown in table.

Low clearance scenario (γ0 = 0.018 day−1): The tumor evolves toward a high-resistance state.
Starting from 2% resistant cells, the resistant fraction increases to 76.4% over 800 days. During the
same period, tumor pH equilibrates to 6.80, corresponding to severe acidosis (h ≈ 4.0) and tumor den-
sity equilibrates at 76.4%, below carrying capacity, due to acid-induced mortality. The system reaches
a stable equilibrium characterized by a predominantly resistant population maintaining a chronically
acidic microenvironment.

High clearance scenario (γ0 = 0.055 day−1): In contrast, enhanced vascular clearance leads to
suppression of resistance evolution. The resistant fraction remains low throughout the simulation,
equilibrating at approximately 5%. Tumor pH equilibrates at 7.09, representing only mild acidosis

Mathematical Biosciences and Engineering Volume 23, Issue 3, 594–618.



608

(h ≈ 1.9). Tumor density equilibrates at 81.5%, closer to carrying capacity, due to reduced acid stress.
The equilibrium corresponds to a predominantly sensitive population in a nearly physiological micro-
environment.

3.2.2. Bifurcation with respect to the clearance rate

To systematically characterize the dependence of equilibrium resistance on clearance rate, we com-
puted equilibrium values of x across a range of γ0 values (Figure 2). The bifurcation diagram reveals
a sharp transition: below γ0 ≈ 0.039 day−1, the system equilibrates to near-complete resistance, while
above this value, it transitions to near-complete sensitivity. It is important to note that complete re-
sistance and sensitivity cannot be achieved due to the model structure allowing constant switching
and reversion. The sharp switch in equilibrium resistance indicates a bifurcation, where two equilib-
rium points, one corresponding to resistant dominance and the other to sensitive dominance, exchange
stability at this critical value of γ0.

Figure 2. Regime A: Bifurcation with respect to clearance rate. Equilibrium resistant-cell
fraction, x∗, as a function of clearance rate, γ0, at a fixed protection factor φ = 0.70. Each
point represents the final state of a simulation integrated to equilibrium (2500 days). System
exhibits sharp transition at γ0 ≈ 0.039 day−1, separating high-resistance and low-resistance
regimes.

3.2.3. Bifurcation with respect to the protection factor

To examine whether acid-resistance machinery effectiveness exhibits similar threshold behavior, we
computed equilibrium resistance across a range of protection factor values at three different clearance
rates: below, at, and above the critical clearance threshold (Figure 3).
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Low clearance (γ0 = 0.025 day−1): At poor vascular perfusion, equilibrium resistance remains
high (x∗ > 0.99) across nearly the entire range of protection factors. Variations in φ produce mini-
mal changes in resistance, indicating that when acid clearance is insufficient, resistance evolution is
inevitable regardless of acid-resistance machinery effectiveness.

Critical clearance (γ0 = 0.039 day−1): At the critical clearance rate, protection factor produces
a sharp bifurcation. Above φ ≈ 0.58, the system equilibrates to high resistance (x∗ > 0.95), while
below this threshold, resistance is almost suppressed (x∗ < 0.1). This indicates that at marginal per-
fusion levels, acid-resistance machinery effectiveness becomes a critical determinant of evolutionary
outcomes.

High clearance (γ0 = 0.052 day−1): At good vascular perfusion, equilibrium resistance remains
low (x∗ < 0.01) across the entire range of protection factors. As with poor perfusion, variations in φ
produce minimal effect, indicating that sufficient acid clearance can maintain sensitivity even in the
presence of functional acid-resistance machinery.

Figure 3. Regime A: Context-dependent bifurcation with respect to the protection factor.
Equilibrium resistant fraction x∗ as a function of the protection factor, φ, at three clearance
rates: γ0 = 0.025 day−1 (below bifurcation threshold), γ0 = 0.039 day−1 (at bifurcation
threshold), and γ0 = 0.052 day−1 (above bifurcation threshold). The protection factor pro-
duces a sharp bifurcation only at intermediate clearance rates, demonstrating parameter inter-
action. At low clearance, resistance is inevitable regardless of φ; at high clearance, sensitivity
is maintained regardless of φ. This indicates that targeting acid-resistance machinery is only
effective within a specific range of vascular perfusion levels.

Interpretation: The context-dependent effect of protection factor reveals a critical parameter in-
teraction in low-plasticity tumors. The effectiveness of targeting acid-resistance machinery depends
strongly on baseline vascular perfusion: below a maximum unit clearance rate threshold, resistance
is inevitable; above it, resistance is suppressed; only at intermediate clearance rates does φ matter.
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This suggests a sequential therapeutic strategy: improve perfusion first to reach the critical clearance
threshold, then inhibit acid-resistance machinery to tip the system toward sensitivity.

3.3. Regime B: Continuous transitions

3.3.1. Time-Series dynamics

Regime B exhibits qualitatively different dynamics, showing gradual shifts in resistance as clearance
varies, allowing for intermediate equilibrium values of resistance where there is significant coexistence
of both acid-resistant and sensitive cell populations (Figure 4).

Figure 4. Regime B: Time-series dynamics in high-plasticity tumors. Time evolution of
resistant fraction x(t), tumor pH, and tumor density n(t) for low clearance (γ0 = 0.023 day−1,
left) and moderate clearance (γ0 = 0.032 day−1, right). All other parameters identical. Initial
conditions: (x0, h0, n0) = (0.02, 1.0, 0.15). Parameter values shown in table.
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Low clearance scenario (γ0 = 0.023 day−1): The tumor evolves to a moderately resistant state
with x = 0.523. Tumor pH equilibrates at 6.96, representing moderate acidosis (h ≈ 2.5). Density
equilibrates to n = 0.882.

High clearance scenario (γ0 = 0.032 day−1): With improved clearance, equilibrium resistance
decreases to x = 0.322. Tumor pH equilibrates to a higher ph at 7.04 (h ≈ 2.1). Density equilibrates to
n = 0.882.

3.3.2. Bifurcation with respect to the clearance rate

The bifurcation diagram for Regime B (Figure 5) shows markedly different behavior from Regime
A. Rather than a sharp transition, equilibrium resistance varies smoothly and monotonically with clear-
ance rate. As γ0 increases from 0.018 to 0.038 day−1, resistance decreases continuously with no thresh-
old behavior. This indicates the absence of a bifurcation but rather a single stable equilibrium whose
value depends smoothly on γ0.

Figure 5. Regime B: Continuous transition with respect to clearance rate. Equilibrium
resistant-cell fraction x∗ as a function of clearance rate γ0 at fixed protection factor φ = 0.95.
System exhibits smooth, monotonic dependence on clearance with no threshold behavior.
Resistance decreases continuously as clearance improves, indicating continuous adaptation
to environmental conditions without catastrophic transitions.

3.3.3. Combined effects of clearance and protection

To characterize the joint effects of vascular perfusion and acid-resistance machinery in high-
plasticity tumors, we computed the equilibrium resistant-cell fraction across the two-dimensional pa-
rameter space spanned by maximal unit clearance rate, γ0, and protection factor, φ (Figure 6).
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Figure 6. Regime B: Continuous response surface across parameter space. Equilibrium
resistant-cell fraction x∗ as a function of both clearance rate γ0 (vertical axis) and protection
factor φ (horizontal axis). Color indicates equilibrium resistance level, with contour lines
showing iso-resistance curves. The smooth, continuous gradients in both directions demon-
strate that clearance and protection have independent, additive effects. No threshold behav-
iors or sharp boundaries emerge anywhere in the parameter space. This indicates that in high-
plasticity tumors, incremental improvements in either vascular perfusion or acid-resistance
machinery inhibition produce proportional reductions in resistance, suggesting combination
therapy should produce additive benefits.

The resulting parameter landscape reveals smooth, continuous variation in equilibrium resistance
across the entire domain. Resistance decreases monotonically with an increasing clearance rate (ver-
tical gradient) and decreasing protection factor (horizontal gradient). The approximately diagonal
contour lines indicate that clearance and protection have independent, additive effects: reducing φ by
a given amount produces similar reductions in resistance regardless of γ0, and vice versa.

Notably, no sharp boundaries or threshold behaviors emerge anywhere in the parameter space. The
smooth gradients indicate that small improvements in either perfusion or machinery inhibition pro-
duce proportional reductions in resistance. This contrasts sharply with Regime A, where the same
parameters exhibit context-dependent threshold effects.

Interpretation: The continuous response surface demonstrates that in high-plasticity tumors, the
clearance rate and protection factor act as independent control parameters with additive effects. This
suggests a combination therapeutic strategy: simultaneously targeting vascular normalization and acid-
resistance machinery inhibition should produce additive benefits, with each intervention contributing
proportionally to resistance reduction regardless of the other’s effectiveness.
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3.4. Sensitivity analysis

Global sensitivity analysis identified the parameters with greatest influence on equilibrium resis-
tance (Figure 7).

Figure 7. Global sensitivity analysis of equilibrium resistance. Partial rank correlation co-
efficients (PRCC) quantifying parameter influence on equilibrium resistant fraction x∗, com-
puted from N = 1000 Latin hypercube samples. Positive values (red) indicate parameters
whose increase promotes resistance; negative values (blue) indicate suppression of resis-
tance; gray indicates no significant correlation (p > 0.05). The most influential parameters
are hc, µ0, γ0, c, α, and r. Model predictions are robust to β and η.

The six most influential parameters, ranked by |PRCC|, were: the critical acidity threshold hc

(PRCC = −0.66), stress-induced switching rate µ0 (PRCC = +0.47), vascular clearance rate γ0 (PRCC
= −0.47), metabolic cost c (PRCC = −0.45), acid production rate α (PRCC = +0.41), and intrinsic
growth rate r (PRCC = +0.40). Two parameters showed no significant correlation with x∗: excess
acid production by resistant cells β (p = 0.96) and clearance reduction strength η (p = 0.15), in-
dicating that model predictions are robust to uncertainty in these quantities. The PRCC signs align
with biological expectations: parameters that intensify microenvironmental acidosis (µ0, α, r) or lower
the threshold for resistance advantage (decreasing hc) promote resistance evolution, while parame-
ters that alleviate acidosis (γ0) or impose fitness costs (c) suppress it. Notably, the protection factor
φ exhibited modest influence (PRCC = +0.17), consistent with our bifurcation analysis showing its
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effect is context-dependent—φ matters primarily at intermediate clearance rates (Figure 3). From a
therapeutic standpoint, three of the six most influential parameters represent plausible intervention tar-
gets: the switching rate µ0, modifiable via hypomethylating agents; the clearance rate γ0, improvable
through vascular normalization; and, with weaker influence, the protection factor φ, targetable via acid-
resistance machinery inhibitors. The remaining influential parameters (hc, c, α, r) represent intrinsic
tumor characteristics that may serve as prognostic biomarkers but are not directly targetable.

4. Discussion and conclusions

We proposed and analyzed a model for the development of resistance to acidosis in a vascularized
tumor with fraction of resistant cells, normalized acidity, and total tumor density are used as state vari-
ables of a 3-dimensional dynamical system. We established the positive invariance and global existence
of solutions and proved the existence of a unique extinction equilibrium that is locally asymtotically
stable when the basic reproduction number of the population, R0, is below the threshold value of 1, and
unstable if R0 > 1. We also proved that, when there is no phenotypic reversion, there exists a unique
positive equilibrium with no sensitive cells, which we characterized explicitly.

Based on numerical simulations, we analyzed the evolution of resistance in the tumor under two
different regimes: a low plasticity tumor—characterized by low stress-induced switching rate (µ0 =

5×10−5 day−1) and moderate protection (φ = 0.70), and a high plasticity tumor—characterized by high
stress-induced unit switching rate (µ0 = 8 × 10−4 day−1) and strong protection (φ = 0.95), representing
highly adaptive tumors with robust acid-resistance machinery.

For low plasticity tumors, we found threshold-dependent dynamics, where a critical value γcrit
0 of

γ0 determines qualitatively distinct evolutionary outcomes. For γ0 < γ
crit
0 , the tumor evolves toward

a high-resistance state, with tumor pH corresponding to severe acidosis, and a relatively high tumor
density. The system reaches a stable equilibrium characterized by a predominantly resistant population
maintaining a chronically acidic microenvironment. In contrast, for γ0 > γ

crit
0 , the tumor evolves

toward a low-resistance state, with tumor pH corresponding to mild acidosis, and higher tumor density,
closer to carrying capacity due to reduced acid stress. The equilibrium corresponds to a predominantly
sensitive population in a nearly physiological microenvironment. There seems to be a sharp bifurcation
from one equilibrium being attractive to it becoming unstable while another one appears and inherits
its stability. On the other hand, the effect of the protection factor, φ, on the evolution of acidity in the
tumor is negligible when γ0 is not too close to γcrit

0 , and it becomes significant only when γ0 is close to
γcrit

0 .
The qualitative outcome is very different for high-plasticity tumors. Such tumors show gradual

shifts in resistance as clearance varies, allowing for intermediate equilibrium values of resistance where
there is significant coexistence of both acid-resistant and sensitive cell populations. Numerical simu-
lations in that regime suggest that no bifurcation occurs here but rather the one positive equilibrium
maintains stability as γ0 sweeps its range, showing only gradual shifts in resistance as clearance varies,
allowing for intermediate equilibrium values of resistance where there is significant coexistence. A
similar phenomenon is observed with respect to the protection factor, φ.

These regime-dependent dynamics suggest that distinct therapeutic strategies should be used ac-
cording to tumor plasticity levels. For low-plasticity tumors that exhibit bifurcation behavior, treat-
ment should focus primarily on improving vascular clearance γ0 to exceed the critical threshold γcrit

0 .
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Vascular normalization can be achieved through metronomic chemotherapy or controlled use of anti-
angiogenic agents that improve perfusion rather than destroying vessels [3, 28]. Physical interventions
including mild hyperthermia, exercise, or hyperbaric oxygen also have potential in adequately improv-
ing tumor perfusion [29, 30]. Since the protection factor ϕ has negligible effect except when γ0 is
near the bifurcation threshold, which is an unlikely clinical scenario requiring precise parameter align-
ment, targeting acid-resistance machinery would generally be ineffective in this regime. However, if
vascular function approaches but cannot exceed γcrit

0 , sequential therapy first improving perfusion and
then targeting ϕ through MCT1/4 inhibitors such as AZD3965 [31], carbonic anhydrase IX inhibitors
like SLC-0111 [32], or NHE1 inhibitors [33] may tip the system across the bifurcation. In contrast,
high-plasticity tumors benefit from immediate combination therapy targeting both parameters, as our
analysis demonstrates that incremental improvements in either vascular perfusion or acid-resistance
inhibition produce proportional, additive reductions in resistance without threshold constraints.

Several limitations of the present framework warrant discussion. First, the spatially homogeneous
assumption neglects pH gradients and localized selection pressures that arise in heterogeneous tumor
microenvironments; spatial extensions using reaction-diffusion formulations could capture these dy-
namics [34, 35]. Second, the binary phenotype classification simplifies a likely continuous spectrum
of acid resistance; partial differential equation models structured by resistance level represent a nat-
ural generalization [36]. Third, the model omits immune cell populations, whose function is known
to be impaired under acidic conditions [7, 10]; incorporating tumor-immune interactions could reveal
additional therapeutic opportunities. Fourth, vasculature is treated as static, whereas dynamic angio-
genesis and vascular remodeling influence both acid clearance and tumor growth [3, 28]; coupling with
angiogenesis models would enhance physiological realism. Finally, the absence of clinical or experi-
mental validation limits predictive confidence; fitting to longitudinal measurements of tumor pH and
resistance markers represents an essential next step [1].

Our model’s identification of plasticity as a critical determinant of treatment response emphasizes
the need for methods to assess tumor phenotypic plasticity. Unlike conventional biomarkers that cap-
ture the static tumor state at a single timepoint, plasticity is a dynamic property representing the rate
at which cells switch phenotypes under stress. Estimating the switching rate µ0 would require func-
tional assays that expose tumor cells to controlled acidic conditions and measure the rate of phenotypic
adaptation over time, for instance, by tracking the emergence of acid-resistant subpopulations via flow
cytometry or live-cell imaging [14, 15]. Developing such assays for clinical use represents a necessary
step toward implementing regime-dependent therapeutic strategies. This framework provides a foun-
dation for regime-dependent interventions where treatment strategies are tailored to the tumor’s evolu-
tionary capacity: perfusion-focused therapy for low-plasticity tumors versus combination approaches
for high-plasticity tumors.
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