Research article Special Issues

On the problem of minimizing the epidemic final size for SIR model by social distancing

  • Published: 27 January 2026
  • We revisit the problem of minimizing the epidemic final size in the SIR model through social distancing of a bounded intensity. In the existing literature, this problem was considered imposing a priori interval structure on the time period when interventions are enforced. We show that the support of the optimal control is still a single time interval when considering the more general class of controls with an $ L^1 $ constraint on the confinement effort that reduces the infection rate. There is thus no benefit in splitting interventions on several disjoint time periods. However, if the infection rate is known beforehand to change with time once from one value to another one, then we show that the optimal solution may consist in splitting the interventions in at most two disjoint time periods.

    Citation: Pierre-Alexandre Bliman, Anas Bouali, Patrice Loisel, Alain Rapaport, Arnaud Virelizier. On the problem of minimizing the epidemic final size for SIR model by social distancing[J]. Mathematical Biosciences and Engineering, 2026, 23(3): 567-593. doi: 10.3934/mbe.2026022

    Related Papers:

  • We revisit the problem of minimizing the epidemic final size in the SIR model through social distancing of a bounded intensity. In the existing literature, this problem was considered imposing a priori interval structure on the time period when interventions are enforced. We show that the support of the optimal control is still a single time interval when considering the more general class of controls with an $ L^1 $ constraint on the confinement effort that reduces the infection rate. There is thus no benefit in splitting interventions on several disjoint time periods. However, if the infection rate is known beforehand to change with time once from one value to another one, then we show that the optimal solution may consist in splitting the interventions in at most two disjoint time periods.



    加载中


    [1] P.-A. Bliman, M. Duprez, Y. Privat, N. Vauchelet, Optimal immunity control and final size minimization by social distancing for the SIR epidemic model, J. Optimiz. Theory App, 189 (2021), 408–436. https://doi.org/10.1007/s10957-021-01830-1 doi: 10.1007/s10957-021-01830-1
    [2] D. I. Ketcheson, Optimal control of an SIR epidemic through finite-time non-pharmaceutical intervention, J. Math. Biol., 83 (2021), 1–21. https://doi.org/10.1007/s00285-021-01628-9 doi: 10.1007/s00285-021-01628-9
    [3] P.-A. Bliman, M. Duprez, How best can finite-time social distancing reduce epidemic final size?, J. Theor. Biol., 511 (2020), 110557. https://doi.org/10.1016/j.jtbi.2020.110557 doi: 10.1016/j.jtbi.2020.110557
    [4] R. Balderrama, J. Peressutti, J. P. Pinasco, F. Vazquez, C. S. de la Vega, Optimal control for a SIR epidemic model with limited quarantine, Sci. Rep., 12 (2022), 12583. https://doi.org/10.1038/s41598-022-16619-z doi: 10.1038/s41598-022-16619-z
    [5] T. Britton, L. Leskelä, Optimal intervention strategies for minimizing total incidence during an epidemic, SIAM J. App. Math., 83 (2023), 354–373. https://doi.org/10.1137/22M1504433 doi: 10.1137/22M1504433
    [6] P.-A. Bliman, A. Rapaport, On the problem of minimizing the epidemic final size for SIR model by social distancing, in: 22nd IFAC World Congress, IFAC-PapersOnLine, 56 (2023), 4049–4054. https://doi.org/10.1016/j.ifacol.2023.10.1726 doi: 10.1016/j.ifacol.2023.10.1726
    [7] F. Di Lauro, I. Z. Kiss, J. C. Miller, Optimal timing of one-shot interventions for epidemic control, PLoS Comput. Biol., 17 (2021), e1008763. https://doi.org/10.1371/journal.pcbi.1008763 doi: 10.1371/journal.pcbi.1008763
    [8] A. H. González, A. L. Anderson, A. Ferramosca, E. A. Hernandez-Vargas, Dynamic characterization of control SIR-type systems and optimal single-interval control, arXiv preprint arXiv: 2103.11179. https://doi.org/10.48550/arXiv.2103.11179
    [9] J. Sereno, A. Anderson, A. Ferramosca, E. A. Hernandez-Vargas, A. H. González, Minimizing the epidemic final size while containing the infected peak prevalence in SIR systems, Automatica, 144 (2022), 110496, https://doi.org/10.1016/j.automatica.2022.110496 doi: 10.1016/j.automatica.2022.110496
    [10] J. M. Greene, E. D. Sontag, Minimizing the infected peak utilizing a single lockdown: A technical result regarding equal peaks, in 2022 American Control Conference (ACC). IEEE, 2022, 3640–3647. https://doi.org/10.23919/ACC53348.2022.9867521
    [11] D. H. Morris, F. W. Rossine, J. B. Plotkin, S. A. Levin, Optimal, near-optimal, and robust epidemic control, Commun. Phys., 4 (2021), 1–8. https://doi.org/10.1038/s42005-021-00570-y
    [12] E. D. Sontag, An explicit formula for minimizing the infected peak in an SIR epidemic model when using a fixed number of complete lockdowns, Int. J. RobustNonlinear Control, (2021), 1–24. https://doi.org/10.1002/rnc.5701
    [13] E. Molina, A. Rapaport, An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint, Automatica, 146 (2022), 110596. https://doi.org/10.1016/j.automatica.2022.110596 doi: 10.1016/j.automatica.2022.110596
    [14] F. Avram, L. Freddi, D. Goreac, Optimal control of a SIR epidemic with ICU constraints and target objectives, Appl. Math. Comput., 418 (2022), 126816. https://doi.org/10.1016/j.amc.2021.126816 doi: 10.1016/j.amc.2021.126816
    [15] L. Miclo, D. Spiro, J. Weibull, Optimal epidemic suppression under an ICU constraint: An analytical solution, J. Math. Econom., (2022), 102669. https://doi.org/10.1016/j.jmateco.2022.102669
    [16] M. T. Angulo, F. Castaños, R. Moreno-Morton, J. X. Velasco-Hernández, J. A. Moreno, A simple criterion to design optimal non-pharmaceutical interventions for mitigating epidemic outbreaks, J. R. Soc. Interface, 18 (2021), 20200803. https://doi.org/10.1098/rsif.2020.0803 doi: 10.1098/rsif.2020.0803
    [17] A. Bressan, B. Piccoli, Introduction to the mathematical theory of control, vol. 2 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007. Available from: https://www.aimsciences.org/book/AM/volume/27
    [18] G. Dal Maso, An Introduction to $\Gamma$-Convergence, no. 8 in Progress in Nonlinear Differential Equations and Their Applications, Springer Science, New York, 1993. https://doi.org/10.1007/978-1-4612-0327-8
    [19] F. Clarke, Functional analysis, calculus of variations and optimal control, First edition edition, Graduate texts in mathematics, Springer, London, 2013. https://doi.org/10.1007/978-1-4471-4820-3
    [20] M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser Boston Inc., 1997, http://dx.doi.org/10.1007/978-0-8176-4755-1
    [21] J.-B. Caillau, O. Cots, J. Gergaud, P. Martinon, T. Cabel, E. Demairy, et al., OptimalControl. jl: A Julia package to model and solve optimal control problems with ODE's, 2024. Available from: https://github.com/control-toolbox/OptimalControl.jl
    [22] T. Bayen, A. Bouali, L. Bourdin, The hybrid maximum principle for optimal control problems with spatially heterogeneous dynamics is a consequence of a Pontryagin Maximum Principle for $\mathrm{L}^1_{\square}$-local solutions, SIAM J. Control Optimiz., 62 (2024), 2412–2432. https://doi.org/10.1137/23M155311X doi: 10.1137/23M155311X
    [23] T. Bayen, A. Bouali, L. Bourdin, O. Cots, Loss control regions in optimal control problems, J. Differ. Equat., 405 (2024), 359–397. https://doi.org/10.1016/j.jde.2024.06.016 doi: 10.1016/j.jde.2024.06.016
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(71) PDF downloads(11) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog