Seasonal infectious diseases like influenza pose a recurrent challenge to public health. While compartmental models, such as the susceptible-infectious-recovered-susceptible (SIRS) framework, are standard tools, representing the time-varying transmission rate, $ \beta(t) $, in an interpretable yet effective manner remains a key challenge. Existing established alternative methods for modeling seasonality use sinusoidal forcing functions, flexible splines, etc. In this paper, we propose and apply a modular approach where $ \beta(t) $ is defined using distinct, epidemiologically intuitive seasonal rates, with smooth transitions between them. To begin, we develop this framework as a theoretical tool, demonstrating its capacity to generate realistic, recurring seasonal outbreaks under plausible parameter assumptions. We then calibrate and assess this model against real-world, monthly laboratory-confirmed influenza surveillance data from Ontario, Canada, for the pre-pandemic period of 2014–2019. A systematic optimization using a coarse grid search followed by stochastic refinement calibrates the model to the observed data. The calibrated model, featuring a mean immunity duration of approximately 235 days, achieves a strong fit with the historical case data (Pearson correlation $ r = 0.80 $). Our results demonstrate that this modular arithmetic-based framework is a practical and effective tool for modeling real-world influenza dynamics, successfully bridging the gap between theory and empirical surveillance.
Citation: Woldegebriel Assefa Woldegerima, Nickson Golooba. Modular arithmetic as an alternative to model seasonal time-varying transmission rates: Influenza as a case study[J]. Mathematical Biosciences and Engineering, 2026, 23(3): 547-566. doi: 10.3934/mbe.2026021
Seasonal infectious diseases like influenza pose a recurrent challenge to public health. While compartmental models, such as the susceptible-infectious-recovered-susceptible (SIRS) framework, are standard tools, representing the time-varying transmission rate, $ \beta(t) $, in an interpretable yet effective manner remains a key challenge. Existing established alternative methods for modeling seasonality use sinusoidal forcing functions, flexible splines, etc. In this paper, we propose and apply a modular approach where $ \beta(t) $ is defined using distinct, epidemiologically intuitive seasonal rates, with smooth transitions between them. To begin, we develop this framework as a theoretical tool, demonstrating its capacity to generate realistic, recurring seasonal outbreaks under plausible parameter assumptions. We then calibrate and assess this model against real-world, monthly laboratory-confirmed influenza surveillance data from Ontario, Canada, for the pre-pandemic period of 2014–2019. A systematic optimization using a coarse grid search followed by stochastic refinement calibrates the model to the observed data. The calibrated model, featuring a mean immunity duration of approximately 235 days, achieves a strong fit with the historical case data (Pearson correlation $ r = 0.80 $). Our results demonstrate that this modular arithmetic-based framework is a practical and effective tool for modeling real-world influenza dynamics, successfully bridging the gap between theory and empirical surveillance.
| [1] |
S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, P. Rohani, Seasonality and the dynamics of infectious diseases, Ecol. Lett., 9 (2006), 467–484. https://doi.org/10.1111/j.1461-0248.2005.00879.x doi: 10.1111/j.1461-0248.2005.00879.x
|
| [2] |
A. D. Iuliano, K. M. Roguski, H. H. Chang, D. J. Muscatello, R. Palekar, S. Tempia, et al., Estimates of global seasonal influenza-associated respiratory mortality: A modelling study, The Lancet, 391 (2018), 1285–1300. https://doi.org/10.1016/S0140-6736(17)33293-2 doi: 10.1016/S0140-6736(17)33293-2
|
| [3] |
W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
|
| [4] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
|
| [5] |
J. Dushoff, J. B. Plotkin, S. A. Levin, D. J. Earn, Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 16915–16916. https://doi.org/10.1073/pnas.0407293101 doi: 10.1073/pnas.0407293101
|
| [6] |
E. Lofgren, N. H. Fefferman, Y. N. Naumov, J. Gorski, E. N. Naumova, Influenza seasonality: Underlying causes and modeling theories, J. Virol., 81 (2007), 5429–5436. https://doi.org/10.1128/JVI.01680-06 doi: 10.1128/JVI.01680-06
|
| [7] |
J. D. Tamerius, J. Shaman, W. J. Alonso, K. Bloom-Feshbach, C. K. Uejio, A. Comrie, et al., Environmental predictors of seasonal influenza epidemics across temperate and tropical climates, PLoS Pathog., 9 (2013), e1003194. https://doi.org/10.1371/journal.ppat.1003194 doi: 10.1371/journal.ppat.1003194
|
| [8] | M. J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008. https://doi.org/10.1515/9781400841035 |
| [9] |
S. Cauchemez, A. J. Valleron, P. Y. Boelle, A. Flahault, N. M. Ferguson, Estimating the impact of school closure on influenza transmission from sentinel data, Nature, 452 (2008), 750–754. https://doi.org/10.1038/nature06732 doi: 10.1038/nature06732
|
| [10] |
J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, et al., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med., 5 (2008), e74. https://doi.org/10.1371/journal.pmed.0050074 doi: 10.1371/journal.pmed.0050074
|
| [11] |
G. Dimarco, B. Perthame, G. Toscani, M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, J. Math. Biol., 83 (2021), 4. https://doi.org/10.1007/s00285-021-01630-1 doi: 10.1007/s00285-021-01630-1
|
| [12] |
G. Dimarco, G. Toscani, M. Zanella, Optimal control of epidemic spreading in the presence of social heterogeneity, Philos. Trans. R. Soc. A, 380 (2022), 20210160. https://doi.org/10.1098/rsta.2021.0160 doi: 10.1098/rsta.2021.0160
|
| [13] |
A. Bondesan, G. Toscani, M. Zanella, Kinetic compartmental models driven by opinion dynamics: Vaccine hesitancy and social influence, Math. Models Methods Appl. Sci., 34 (2024), 1043–1076. https://doi.org/10.1142/S0218202524400062 doi: 10.1142/S0218202524400062
|
| [14] |
J. Shaman, M. Kohn, Absolute humidity modulates influenza survival, transmission, and seasonality, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 3243–3248. https://doi.org/10.1073/pnas.0806852106 doi: 10.1073/pnas.0806852106
|
| [15] |
J. Shaman, V. E. Pitzer, C. Viboud, B. T. Grenfell, M. Lipsitch, Absolute humidity and the seasonal onset of influenza in the continental united states, PLoS Biol., 8 (2010), e1000316. https://doi.org/10.1371/journal.pbio.1000316 doi: 10.1371/journal.pbio.1000316
|
| [16] |
A. C. Lowen, S. Mubareka, J. Steel, P. Palese, Influenza virus transmission is dependent on relative humidity and temperature, PLoS Pathog., 3 (2007), e151. https://doi.org/10.1371/journal.ppat.0030151 doi: 10.1371/journal.ppat.0030151
|
| [17] |
M. New, D. Lister, M. Hulme, I. Makin, A high-resolution data set of surface climate over global land areas, Clim. Res., 21 (2002), 1–25. https://doi.org/10.3354/cr021001 doi: 10.3354/cr021001
|
| [18] |
C. Zhang, X. Zhang, Y. Bai, E. H. Lau, S. Pei, The structural identifiability of a humidity-driven epidemiological model of influenza transmission, Viruses, 14 (2022), 2795. https://doi.org/10.3390/v14122795 doi: 10.3390/v14122795
|
| [19] | M. P. Wand, M. C. Jones, Kernel Smoothing, CRC Press, 1994. https://doi.org/10.1201/b14876 |
| [20] | S. N. Wood, Generalized Additive Models: An Introduction with R, Chapman and Hall/CRC, 2017. https://doi.org/10.1201/9781315370279 |
| [21] |
A. G. Kummer, J. Zhang, C. Jiang, M. Litvinova, P. C. Ventura, M. A. Garcia, et al., Evaluating seasonal variations in human contact patterns and their impact on the transmission of respiratory infectious diseases, Influenza Other Respir. Viruses, 18 (2024), e13301. https://doi.org/10.1111/irv.13301 doi: 10.1111/irv.13301
|
| [22] |
N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448–452. https://doi.org/10.1038/nature04795 doi: 10.1038/nature04795
|
| [23] | World Health Organization, Pandemic Influenza Preparedness and Response: A WHO Guidance Document, 2009. Available from: https://www.ncbi.nlm.nih.gov/books/NBK143060/. |
| [24] |
M. Biggerstaff, S. Cauchemez, C. Reed, M. Gambhir, L. Finelli, Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: A systematic review of the literature, BMC Infect. Dis., 14 (2014), 480. https://doi.org/10.1186/1471-2334-14-480 doi: 10.1186/1471-2334-14-480
|
| [25] |
S. Cobey, S. E. Hensley, Immune history and influenza virus susceptibility, Curr. Opin. Virol., 22 (2017), 105–111. https://doi.org/10.1016/j.coviro.2016.12.004 doi: 10.1016/j.coviro.2016.12.004
|
| [26] |
S. Ranjeva, R. Subramanian, V. J. Fang, G. M. Leung, D. K. Ip, R. A. Perera, et al., Age-specific differences in the dynamics of protective immunity to influenza, Nat. Commun., 10 (2019), 1660. https://doi.org/10.1038/s41467-019-09652-6 doi: 10.1038/s41467-019-09652-6
|
| [27] |
J. B. Plotkin, J. Dushoff, S. A. Levin, Hemagglutinin sequence clusters and the antigenic evolution of influenza a virus, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 6263–6268. https://doi.org/10.1073/pnas.082110799 doi: 10.1073/pnas.082110799
|
| [28] |
S. A. Levin, J. Dushoff, J. B. Plotkin, Evolution and persistence of influenza a and other diseases, Math. Biosci., 188 (2004), 17–28. https://doi.org/10.1016/j.mbs.2003.08.010 doi: 10.1016/j.mbs.2003.08.010
|