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Abstract: Seasonal infectious diseases like influenza pose a recurrent challenge to public health. While
compartmental models, such as the susceptible-infectious-recovered-susceptible (SIRS) framework, are
standard tools, representing the time-varying transmission rate, 3(¢), in an interpretable yet effective
manner remains a key challenge. Existing established alternative methods for modeling seasonality
use sinusoidal forcing functions, flexible splines, etc. In this paper, we propose and apply a modular
approach where S(¢) is defined using distinct, epidemiologically intuitive seasonal rates, with smooth
transitions between them. To begin, we develop this framework as a theoretical tool, demonstrating
its capacity to generate realistic, recurring seasonal outbreaks under plausible parameter assumptions.
We then calibrate and assess this model against real-world, monthly laboratory-confirmed influenza
surveillance data from Ontario, Canada, for the pre-pandemic period of 2014-2019. A systematic
optimization using a coarse grid search followed by stochastic refinement calibrates the model to the
observed data. The calibrated model, featuring a mean immunity duration of approximately 235 days,
achieves a strong fit with the historical case data (Pearson correlation » = 0.80). Our results demonstrate
that this modular arithmetic-based framework is a practical and effective tool for modeling real-world
influenza dynamics, successfully bridging the gap between theory and empirical surveillance.

Keywords: modular arithmetic; seasonality; influenza; SIRS model; parameter estimation;
model calibration

1. Introduction

We all know that illnesses like the common cold and influenza (the flu) tend to show up more often
during certain times of the year. For many places, that means flu season hits hard in the fall and winter
and then seems to almost disappear in the summer. This regular pattern, happening year after year, is
what we call “seasonality” [1]. Understanding why this happens and being able to predict these peaks is
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really important for hospitals, doctors, and public health officials. It helps them prepare for busy times,
decide when to run vaccination campaigns, and give timely advice to the public.

Influenza is a perfect example of a seasonal disease. It causes millions of illnesses worldwide each
year, leading to hospitalizations and, unfortunately, deaths [2]. Because it comes back reliably each
year, but its intensity can vary, having good models to predict its spread is crucial.

For decades, scientists have used mathematical models to understand how diseases spread. A
common starting point is the susceptible-infectious-recovered (SIR) or
susceptible-infectious-recovered-susceptible (SIRS) model [3,4]. These models divide the population
into groups: susceptible (people who can get sick), infectious (people who are sick and spreading it),
and recovered (people who are immune, at least for a while). The ‘S’ at the end of SIRS means that
recovered individuals can eventually become susceptible again. This process of waning immunity is
critical for modeling recurrent diseases like influenza, as the constant return of individuals to the
susceptible state is what allows for repeated seasonal outbreaks rather than a single epidemic that
confers lasting immunity [5].

While these models are useful basic tools, they often have a big limitation: they usually assume the
disease spreads at the same rate all year long. They use a constant number, often called S (beta), to
represent how easily the disease jumps from an infected person to a susceptible one. But for the flu, we
know this is not true. Something about winter makes it spread more easily than summer, maybe it is
the weather, maybe it is because we spend more time indoors, or maybe kids are back in school [6, 7].
Whatever the exact reasons (and it is likely a mix), the transmission rate 5 definitely changes with the
seasons. Ignoring this makes simple SIR/SIRS models unable to predict those yearly peaks and troughs.

1.1. How researchers usually handle seasonality

Scientists know about this problem, of course, and have tried different ways to add seasonality into
their models, including the following:

Smooth waves (sine functions): A standard approach is to use a sine wave to let 8 oscillate over the
year [6,8]. While mathematically simple, these models assume that transmission changes slowly, which
often fails to capture the sharp shifts seen when schools reopen [9].

Contact structure and behavior: Other models focus on human behavior by using age-structured
contact matrices. These can simulate how transmission slows during school holidays and increases
during term time [10]. These are biologically detailed but require extensive data on mixing patterns that
are not always available. More advanced approaches determine expected changes in contact patterns
using kinetic models and optimal control theory, offering rigorous methods for defining transmission
policies [11-13].

Complex functions or data: Some models link transmission directly to climate variables, such as
absolute humidity [14,15]. A popular and intuitive way to explain influenza’s seasonality is by linking
it to the weather. Many models make the transmission rate, 5(¢), a direct function of temperature or
humidity, based on strong evidence that the virus survives and spreads more effectively in cold and dry
air [7, 14, 16]. While this approach is biologically appealing, it faces several practical challenges that
can limit its use.

These models require detailed weather data that is not always available or complete for every location,
which complicates their application on a global scale [17]. Furthermore, the specific relationship between
climate and influenza can vary dramatically by latitude; a model built for a temperate city, for instance,
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may not work in a tropical one [7]. This complexity can also make the models themselves difficult to
interpret. When several weather factors are included, it can be hard to identify which ones are truly
driving transmission, a challenge highlighted by recent model analyses [18]. Finally, a model based
on weather cannot account for sudden changes in human behavior, such as school holidays, which are
known to significantly reduce contact rates and slow an outbreak [9].

1.2. Our approach: Using modular arithmetic for clear seasons

We therefore sought a modeling approach for seasonality that was both epidemiologically
interpretable and straightforward to implement within standard compartmental frameworks. Our idea
was to use modular arithmetic, the math of remainders, like telling time on a clock. We treat the year
as a cycle (say, m = 365 days). By looking at the day number within the year using the modulo operator
(t (mod m)), we can instantly know which part of the cycle we are in.

We then define the transmission rate S as a piecewise function based on this underlying principle:

e If ¢ (mod m) falls within the “winter” range, use Byinter-
e If ¢ (mod m) falls within the “spring” range, use Bpring-
e And so on for summer and fall.

This creates a transmission rate that changes in steps, staying constant within each defined season but
changing clearly between them. While sharp steps might not be perfectly realistic (so we smooth the
transitions slightly in our final implementation for better numerical behavior and realism), the underlying
principle is that modular arithmetic provides a clear, structured way to tell the model “it is winter now,
spread rate is high” or “it is summer now, spread rate is low”. This seems less common in the literature
than smooth sine waves, especially as the primary defining mechanism for seasonality. We believe
this approach is highly interpretable and the 8 values directly correspond to the average transmission
potential during epidemiologically relevant periods.

Our analysis first establishes the theoretical capacity of the modular SIRS framework to generate
seasonal dynamics and respond to interventions. We then calibrate the model’s key parameters, the
seasonal transmission rates, and the duration of waning immunity, by fitting the model to monthly
influenza surveillance data from Ontario (2014-2019).

The predictable seasonality of influenza and the role of waning immunity make it an ideal test case
for this modeling approach. In this paper, we do the following:

1) Describe the SIRS model incorporating a seasonal transmission rate, 5(¢), defined by modular
arithmetic principles, and demonstrate its theoretical capacity to generate realistic, recurring
outbreak patterns.

2) Calibrate the model’s key parameters, specifically the seasonal transmission rates and the duration
of waning immunity, by fitting the model to public health surveillance data from Ontario for the
years 2014-2019.

3) Evaluate the performance of the calibrated model by quantifying its goodness-of-fit to the observed
historical data.

4) Use the theoretical framework and the insights from the calibrated model to analyze the impact
of factors like immunity duration and to explore the potential effectiveness of seasonally-timed
public health interventions.
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By doing this, we aim to demonstrate that modular arithmetic offers a valuable, clear, and effective
tool for modeling seasonal infectious diseases like influenza. The rest of this paper details our methods,
presents the simulation results, and discusses their implications.

2. Methods

This section describes the mathematical model, the specific implementation of seasonal transmission
using modular arithmetic principles, the parameters chosen to represent influenza dynamics, and the
numerical methods used for simulation.

2.1. The SIRS model structure

We adapt the SIRS compartmental model. This framework is appropriate for diseases like influenza,
where individuals recover, but immunity is not permanent and can wane over time. The population is
divided into three compartments:

e S(#): The proportion of the population susceptible to infection at time .
e [(t): The proportion of the population currently infectious at time z.
e R(?): The proportion of the population recovered and temporarily immune at time ¢.

The total population proportion is constant, S (¢) + I(¢) + R(¢) = 1. The dynamics of these compartments
over time are described by the following system of ordinary differential equations (ODEs):

‘;—‘j = —B(H)SI + wR (2.1)
dl

7 BOST -yl (2.2)
% =yl — wR 2.3)

Here:

e A(#) is our model’s time-varying transmission rate (units: day '), which changes throughout the
year to capture seasonal effects. We build this function by first assigning a distinct base rate to
each of the four seasons. The final, continuous f(7) is then generated using a Gaussian-weighted
smoothing method that blends these base rates, as detailed in Section 2.2.

e vy is the recovery rate. The average duration of infectiousness is 1/y.

e w is the rate at which recovered individuals lose their immunity and return to the susceptible
compartment. The average duration of immunity is 1/w.

The inclusion of the waning immunity term, wR is what fundamentally characterizes this framework
as a model for a seasonally endemic disease, as opposed to a self-limiting epidemic. In theoretical
epidemiology, endemic persistence requires a continuous replenishment of the susceptible population.
In our model, the wR term fulfills this role. This serves a similar function to the demographic processes
of birth (A) and death (d,S) found in the classic epidemic models, which also ensure the susceptible
pool does not become permanently depleted. Preventing the disease from ‘burning out’, this mechanism
makes it possible for seasonal changes in the transmission rate, 3(f), to drive the recurrent annual
epidemics we observe with influenza.
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2.2. Defining seasonal transmission [(t) using modular arithmetic principles

To formalize the seasonal forcing, we first introduce a piecewise constant function, By, (f), which
represents the unsmoothed seasonal transmission rate. Let m = 365 days be the length of the
epidemiological year and L = m/4 ~ 91.25 days be the length of one season. The base transmission
rate is given by:
ﬁspringa 0<d< L,

ﬁsummer, L<d< 2L,
Bat, 2L <d < 3L,
ﬁwimer, 3L<d<m,

ﬁbase(t) =

where d = t mod m (with ¢t = 0 corresponding to day 1), and the coefficients on the right-hand side are
the constant transmission rates for each season.

To ensure that 8(¢) is continuous and avoid unrealistic jumps, we implement a smoothing method.
For the theoretical analysis, we utilized linear interpolation over a 10-day transition window. For the
data-driven Ontario calibration, we utilized Gaussian kernel smoothing on a monthly scale. Specifically,
for any month m € {1, ..., 12}, 5(¢) is calculated as the weighted sum of the four seasonal base rates S;:

dist(m,uy)?
Zsﬁs - €Xp (_%)

dist(m,u)? ’
Zs eXp (_ = (zrg-él) )

B() =

(2.4)

where p; is the center month of each season (e.g., January for winter), and dist(m, u;) is the circular
distance on a 12-month cycle. In the calibration, we set o = 0.8 months to ensure that the model captures
the distinct transmission potential of each season while maintaining continuity at the boundaries, as
established in kernel smoothing theory [19].

While the modular arithmetic defines the base seasonal rates, instantaneous jumps in Sy (?) at
seasonal boundaries are epidemiologically unrealistic and can introduce numerical stiffness into the
differential equations. To create a smooth, continuous transmission rate 5(¢), we implemented a blending
method based on Gaussian weights. This technique is a form of nonparametric kernel smoothing, a
well-established statistical method for creating smooth functions from discrete data points, which we
have adapted for the circular nature of the annual cycle [19]. The explicit mathematical definition of
this smoothing is provided in Eq (2.4). For any given day, the final transmission rate, 5(¢), is calculated
as a weighted average of the four base seasonal rates. The weights are determined by the proximity
of that day to the center of each season on a 365-day circular calendar, with the width of the Gaussian
smoothing controlled by a tunable parameter, o nonms. This approach, analogous in principle to other
flexible methods like splines used in modern epidemiology [20,21], ensures that 3(¢) varies smoothly
while preserving the distinct average transmission levels characteristic of each season (Figure 1).
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(a) Theoretical Baseline Parameters

B(t) (day~1)
o
w
w

= Smoothed B(t)

0.25 Buinter =0.50
Bran = 0.40

0.20 ==+ Bspring=0.30
—lOB0

0.15 y

0.40 (b) Calibrated Ontario Parameters (2014-2019)

0.35

B(t) (day~1)

= Smoothed B(t)
Bran=0.339
Buinter =0.308
=== Bspring =0.248
Bsummer = 0.200

0.20 -

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Day of Year

Figure 1. The smoothed seasonal transmission rate 5(¢) over a 365-day cycle. (a) Theoretical
baseline parameters with seasonal R, values ranging from 1.0 (summer) to 2.5 (winter).
(b) Calibrated parameters from fitting to Ontario surveillance data (2014-2019), showing a
higher fall transmission (B¢ = 0.339) than winter (Byiner = 0.308). Shaded regions indicate
meteorological seasons. Dashed horizontal lines show the underlying seasonal base rates. The
smooth transitions are achieved using Gaussian-weighted blending with o = 0.8 months.

For simplicity, our model partitions the year into four equal seasons of about 91 days each. We
recognize that astronomical seasons are not perfectly equal in length, but this approximation is a
common and practical choice in quarterly SIRS models, having a negligible impact on the year-scale
dynamics we are interested in [15,22]. It is also worth noting that our framework is flexible; Season
lengths, L, could easily be replaced with calendar-aligned values to achieve finer detail without changing
the underlying smoothing method.

2.3. Theoretical model parameters

For the initial theoretical simulations, parameters were chosen to reflect established epidemiological
characteristics of seasonal influenza in a temperate climate.

Baseline transmission and recovery. We take the mean infectious period to be 1/y = 5 days, so
y = 0.20 day~!, following [23]. Those same guidelines, together with large multi-country reviews, place
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the basic reproduction number in the range of Ry = 1.3-2.0 [24]. Our chosen parameters align with
these estimates.

Our chosen parameters, resulting in a seasonal R, range of 1.0 to 2.5, were selected to create a clear
and strong seasonal signal for the purpose of exploring the model’s theoretical behavior and its response
to interventions.

¢ Seasonal modulation of 8. Models based on absolute humidity levels reproduce U.S. mortality
curves only when S(¢) varies by 40-90% between winter and summer [15]. Guided by that, we
therefore set our seasonal values as:

,Bwinter = 0.50, ﬁfall = 0.40, ,Bspring = 0.30, ﬁsummer =0.20 day_1~

This represents a 60% swing that keeps Ry between ~2.5 in winter and ~ 1.0 in summer. These
values seed the model with realistic seasonal dynamics capable of driving pronounced winter
outbreaks.

e Waning immunity rate (w): We primarily used w = 1/365 day~!, corresponding to an average
duration of immunity of one year (365 days) for the baseline scenario. We also explored the impact
of varying this duration (90, 180, and 730 days, and permanent immunity where w = 0) in specific
analyses.

e Cycle length (m): m = 365 days.

e Smoothing of 5(¢) transitions: The transitions between seasonal 8 values were smoothed using
the Gaussian-weighted method described in Section 2.2, with a characteristic smoothing width of
O months = 0.8 months.

These parameters result in seasonal R, values of approximately 2.50 (winter), 2.00 (fall), 1.50 (spring),
and 1.00 (summer), which fluctuate around the epidemic threshold (R, = 1), driving the seasonal
outbreaks observed.

2.4. Numerical simulation

The system of ODEs (Eqs (2.1)—(2.3)) was solved numerically using Python. For the theoretical
explorations and scenario analyses, we used the high-level adaptive step-size Runge-Kutta (RK45)
integrator provided by the scipy.integrate.solve_ivp function, with outputs evaluated at daily
intervals. For the computationally intensive model calibration process, a more efficient daily-step
explicit Euler integration scheme was implemented. In both cases, daily incidence was calculated and
then aggregated to monthly totals for analysis and plotting. To ensure that the rapid seasonal transitions
did not introduce numerical instability, we cross-validated our results using implicit solvers suitable
for stiff equations (backward differentiation formula and Radau methods); the resulting dynamics were
identical, confirming that the sharp oscillations in R.g are structural features of the seasonal forcing
rather than integration artifacts.

Initial conditions for the theoretical simulations were set to S(0) = 0.999, I(0) = 0.001, and
R(0) = 0.0. For the data calibration, the initial infectious fraction, I, was treated as a free parameter to
be estimated, with S(0) = 1 — I, and R(0) = 0.
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2.5. Analysis metrics and intervention modeling

In addition to tracking the proportions S (7), I(t), R(t), we calculated several key metrics to evaluate
the disease dynamics and the impact of public health measures:

e Daily new cases: As a primary measure of disease incidence, we tracked the rate of new infections
occurring each day, calculated as B(¢)S (1)I(z).

o Effective reproduction number (R.q(7)): This represents the average number of secondary
infections caused by a single infectious individual at time #, given the current susceptible population
and transmission rate. It was calculated as:

Ry = FOS®
Y

An R.4(¢) > 1 indicates that the system is above the epidemic threshold, favoring growth, while
R.i(t) < 1 indicates that infections will recede. The oscillation of R.q(f) driven by our seasonal
B(2) is the direct mechanism for the recurrent outbreaks in our model.

¢ Intervention modeling: To evaluate the potential impact of seasonally targeted strategies, we
modeled five scenarios by reducing the transmission rate 8 starting from the second year of
simulation. The intervention transmission rate is defined as Binervention = Bseason X (1 — ), where r is
the reduction factor. The strategies included the following:

— No Intervention: The baseline scenario (r = 0).

— Winter-Only: A 30% reduction applied only to Byiner-

— Fall-Winter: A 30% reduction applied to both B¢, and Byinter-

— All-Season (Weighted): A risk-proportional strategy with reductions of 10% in spring, 10%
in summer, 30% in fall, and 40% in winter.

— Intensive Winter: An aggressive 50% reduction applied specifically to Byinter-

For each scenario, the total disease burden was quantified by summing the daily new infections
within each season over the simulation period, allowing for a direct comparison of how the timing of
interventions alters the cumulative case count.

2.6. Model calibration against surveillance data

In order to assess the performance of our theoretical model in reality, we performed a calibration
process using real-world surveillance data, as implemented in our data-fitting notebook.

Data source and simulation span. We obtained monthly laboratory-confirmed influenza case counts
for Ontario, Canada, for the pre-pandemic period of January 2014 to December 2019. The model was
simulated over this exact window to generate monthly case totals for comparison. For figures, the final
fitted trajectory was extended for visualization purposes, but these forecast months were excluded from
the fitting process.

Optimization process. We conducted a systematic, two-stage optimization to find the parameters
that best fit the observed data. The parameters estimated were the four seasonal transmission rates,
collectively denoted as Sgeason, the waning immunity rate (w), and the initial proportion of infectious
individuals (/y). The process was as follows:
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1) Coarse grid search: To begin, we conducted a broad search over a pre-defined grid of plausible
values for all six key parameters.

2) Stochastic local search: The best parameter set from the grid search was then used as the starting
point for a fine-tuning process. This involved a stochastic local search with a decaying step size,
where small, normally distributed perturbations were made to the parameters over 180 iterations.
A new parameter set was accepted only if it resulted in a lower objective function value, allowing
the model to converge on a precise local optimum. The proposal step size was annealed by a factor
of 0.985 at each iteration to focus the search as it approached the optimum.

The grid for the coarse search spanned plausible ranges for each parameter, including three to four
values for each season; g for example, Byiner € {0.32,0.38, 0.44}, three values for the mean immunity
duration (180, 240, and 365 days) and four values for I, (2x 107 to 1 x 1073). The stochastic refinement
consisted of 180 iterations with a normally distributed proposal step, where the step size was normalized
by a factor of 0.985 at each iteration. All simulations were seeded for reproducibility.

Objective function and scaling. We measured the goodness-of-fit using a winter-weighted RMSE.
To prioritize accuracy during the months of highest clinical burden, we assigned a weight wy, = 1.25
to winter observations (December through February) and w; = 1.0 for the remainder of the year. The
objective function J is defined as:

1 N
7= |5 2o WiConi = kCiimi P + AP(O), (2.5)
k=1

where Copsx 1 the observed case count, Cgin x 18 the simulated monthly incidence, and « is a scale factor
re-estimated via least squares. To guide the optimization toward an epidemiologically sensible hierarchy
(Bwinter = Prait = Popring = Bsummer), We included a soft monotonicity penalty P(f) with a weight of
A = 200. This penalty is calculated as the sum of squared differences for any seasonal rates that violate
this hierarchical order. The final performance is reported via RMSE and the Pearson correlation r.

During the calibration process, the Gaussian parameters, specifically the smoothing width (o = 0.8
months) and the seasonal midpoints (u,) were held constant. The centers were fixed to align with
the meteorological peaks of each season (January, April, July, and October). We treated o as a fixed
hyperparameter to ensure the structural identifiability of the seasonal transmission rates. By fixing
the transition width, we prevent the optimization from confounding the duration of a season with its
intensity, allowing for a unique and stable estimation of the average transmission potential (3) for
each quarter.

3. Results

Our analysis is presented in two parts. To begin, we detail the results from the theoretical SIRS
model, demonstrating its capability to generate and explore seasonal disease dynamics under various
assumptions. We then present the results from the calibration of this model against historical influenza
data from Ontario, thereby demonstrating its practical applicability.
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3.1. Theoretical model dynamics and scenario analysis

The theoretical SIRS model, defined by the modular arithmetic framework with smoothed transitions,
was simulated to establish its baseline behavior and sensitivity. Parameters were chosen to reflect
plausible influenza dynamics, including seasonal basic reproduction numbers (R,) ranging from 1.00 in
summer to 2.50 in winter, and a baseline average immunity duration of 365 days (see Section 2).

Baseline seasonal pattern generation. The model successfully generated recurrent, seasonal
outbreaks consistent with influenza patterns. As illustrated in Figure 2, the system settles into a
repeating pattern of distinct seasonal outbreaks following an initial large epidemic. The proportion of
infected individuals (/, top panel) peaks during the winter months, while the effective reproduction
number (R.¢(f), bottom panel) oscillates across the epidemic threshold (R = 1), driving the seasonal rise
and fall of infections.

The concentration of disease burden in the fall and winter months is clearly visible in the incidence
peaks and the elevated effective reproduction number shown in Figure 2. Throughout the simulated
years, R.¢(f) remains consistently above the epidemic threshold during these high-transmission periods,
confirming the model’s capacity to produce a robust and predictable seasonal signal without the need
for additional data-driven forcing.

Impact of immunity duration and intervention strategies. The theoretical framework was then
employed to explore key epidemiological scenarios. An analysis of varying immunity durations
(Figure 3) demonstrates that shorter immunity periods for example, 90 and 180 days result in larger and
more regular annual outbreaks. This is because the susceptible pool replenishes more rapidly, providing
the necessary fuel for subsequent epidemics and highlighting the critical role of waning immunity in
sustaining seasonal disease patterns.

Furthermore, we simulated several seasonally-targeted intervention strategies to evaluate their
potential impact. The results, summarized in Figure 4, show how interventions alter the total disease
burden within each season over the 4-year simulation. For the “No Intervention” scenario, Winter is
the dominant contributor to the total case load. Interventions that specifically target high-transmission
seasons, such as the “Intensive Winter (50% reduction)” strategy, effectively reduce this seasonal burden.
The “All-Season (Weighted)” strategy demonstrates the largest overall reduction by lowering case counts
across all seasons, highlighting its epidemiological effectiveness.
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Figure 2. Baseline seasonal SIRS model dynamics simulated over a four-year period using
theoretical parameters. (Top) Temporal evolution of the population compartments: susceptible
(S, blue), infected (/, red), and recovered (R, green). (Middle) Daily incidence of new cases
over time. (Bottom) Comparison of the effective reproduction number (R.¢(?), blue solid line)
against the seasonal basic reproduction number (Ry(¢), green dashed line) and the epidemic
threshold (R = 1, red dashed line). The sharp transitions in R.g reflect the rapid seasonal
shifts defined by the modular transmission function and are not numerical artifacts. Shaded
background regions indicate the meteorological seasons, with corresponding R, values ranging
from 1.0 (summer) up to 2.5 (winter).
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Impact of Immunity Duration on Infection Dynamics
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Figure 3. Impact of different immunity durations on key model outputs over 4 years in the
theoretical model, showing: (Top) proportion infected, (Middle) proportion susceptible, and
(Bottom) effective reproduction number (R.g). Note: The rapid oscillations correspond to the
seasonal boundaries defined in the modular framework.
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Total Cases by Season and Strategy
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Figure 4. Total new cases aggregated by season and strategy over a 4-year simulation period.
The height of each bar represents the total cumulative cases occurring within that season under
a specific intervention strategy.

3.2. Model calibration with Ontario data

After establishing the model’s theoretical soundness, we calibrated it against monthly
laboratory-confirmed influenza case data from Ontario for the pre-pandemic period of 2014-2019. The
two-stage optimization process (see Section 2.6) identified a single set of parameters that best fit the
observed surveillance data.

The optimization revealed that the model best matched the historical data with a mean immunity
duration of 234.7 days (approximately 7.8 months). This empirically derived value is crucial, as it is
shorter than the one-year period often assumed and was necessary to accurately capture the inter-annual
dynamics in the Ontario data. The final calibrated transmission rates () were determined to be:

Buinter = 0.308 day ™, Bray = 0.339 day ™", Bopring = 0.248 day ™', and Bsymmer = 0.200 day .

These values correspond to seasonal Ry numbers of approximately 1.54, 1.69, 1.24, and 1.00, respectively,
providing a data-driven picture of influenza’s seasonality in this region.

The performance of the final, calibrated model is presented in Figure 5. The model’s simulated
monthly cases (blue line) show a strong correspondence with the observed counts (orange dots),
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achieving a Pearson correlation of r = 0.80. The framework successfully captures the timing and
relative magnitude of the seasonal peaks, demonstrating its effectiveness in replicating real-world
influenza patterns when calibrated with surveillance data.

Observed vs Fitted Monthly Influenza Cases (Ontario, 2014-2019)

6000 - - ® Observed
L4 —— Fitted (single-k)

5000 - .

Cases per month
w N
o o
o o
o o
o
(]

N
o
o
o

1000 -

Figure 5. Observed vs. Fitted monthly influenza cases for Ontario, 2014-2019. Orange dots
represent the actual surveillance data from Public Health Ontario. The blue line shows the
output of the calibrated SIRS model. The model’s fitted curve is extended for three years
post-observation to illustrate the projected dynamics under the calibrated parameters.

4. Discussion

In this study, we developed, analyzed, and calibrated an SIRS model that uses a modular arithmetic
framework to represent seasonal variations in disease transmission. Our primary objective was to create
a model that is both epidemiologically interpretable and capable of reproducing the recurrent outbreaks
characteristic of influenza. By first establishing the model’s theoretical capabilities and then grounding
it with real-world surveillance data, we have demonstrated the utility of this approach.

4.1. Model performance: From theoretical patterns to empirical fit

The initial theoretical simulations successfully demonstrated that our modular framework is a sound
basis for modeling seasonal diseases. By defining distinct base transmission rates for each season
(Bseason) and smoothing the transitions, the model generated the expected dynamics: clear infection peaks
during high-transmission seasons (fall/winter) and troughs during low-transmission periods (summer),
as shown in Figure 2. While the resulting oscillations in the effective reproduction number (R.g) are
more abrupt than those produced by sinusoidal forcing, this accurately reflects our modular” hypothesis:
that transmission operates in distinct regimes driven by sharp behavioral or environmental shifts, rather
than continuous, gentle variation.

The calibration against Ontario influenza data (Figure 5) assesses the model’s goodness-of-fit against
empirical observations. We believe that achieving a Pearson correlation of » = 0.80 with observed

Mathematical Biosciences and Engineering Volume 23, Issue 3, 547-566.



561

cases from 2014-2019 demonstrates that a structured, piecewise definition of seasonality can effectively
replicate the complex patterns found in empirical data. Note that we utilize the Pearson correlation
here as a descriptive metric of trend alignment rather than for formal hypothesis testing, given the
auto-correlated nature of time-series data. This provides a compelling alternative to more abstract
methods like sinusoidal forcing functions, as our seasonal 8 values can be more directly interpreted as
the average transmission potential during distinct, epidemiologically relevant periods of the year.

An interesting and non-intuitive result from the calibration was the ordering of the fitted transmission
rates, with fall (B, = 0.339) having a slightly higher rate than winter (Byiner = 0.308). This finding,
which emerged despite a soft prior encouraging a monotonic decrease from winter to summer, suggests
a nuanced dynamic. While winter may have conditions most favorable for viral survival, the effective
spread in the fall could be amplified by behavioral factors, such as the return to school and increased
indoor mixing after the summer. Furthermore, the model’s dynamics are state-dependent; the large
number of new infections during the fall depletes the susceptible pool, meaning that even with a
high potential transmission rate in winter, the number of available susceptibles (S (¢)) is lower, thus
moderating the overall force of infection. This highlights the model’s ability to capture complex
interactions between seasonal forcing and population-level immunity.

Comparison with alternative forcing methods. Our modular approach offers a distinct alternative to
established methods like sinusoidal forcing, where 5(¢) oscillates symmetrically [8]. While sinusoidal
models are mathematically elegant, they often struggle to capture the sharp shifts in transmission linked
to school terms or sudden behavioral changes [9]. Climate-driven models, which use variables like
absolute humidity, provide strong mechanistic insights [7, 15] but require high-resolution meteorological
data that is not always available. More flexible statistical methods, such as periodic splines, can achieve
high accuracy but often sacrifice interpretability for fit [20]. Our framework occupies a middle ground: it
provides the interpretability of seasonal regimes without requiring external climate data, allowing public
health officials to discuss ‘average winter transmission’ in a way that maps directly to calendar-based
planning.

The role of model simplicity and demographics. It is important to note that our SIRS framework
is a closed-population model, meaning it does not include demographic processes such as births and
deaths. This was a deliberate choice to isolate and test the effectiveness of our novel modular seasonality
mechanism in its simplest form. However, the real-world Ontario data to which we calibrated the model
is from an open population where demographics, particularly the continuous influx of new susceptibles
via births, undoubtedly play a role in long-term disease dynamics.

We believe this simplification is a key reason for the nature of our calibrated fit. While the model with
its 235-day immunity period successfully captures the primary seasonal oscillations and inter-annual
variability, the absence of demographics likely contributes to some of the remaining discrepancies
between the fitted curve and the observed data points. The replenishment of the susceptible pool in
our model is driven solely by waning immunity (wR), whereas in reality, it is a combination of waning
immunity and new births. For future work, incorporating demographic terms into the model is a logical
next step. While this would add complexity, it would likely improve the model’s ability to capture the
finer details of long-term endemic persistence and could potentially yield an even more precise fit to the
surveillance data.
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4.2. The critical role of waning immunity: An empirical estimate

Our theoretical analysis of varying immunity durations (Figure 3) reinforces a fundamental principle
of endemic dynamics: replenishing the susceptible pool through waning immunity is essential for
enabling recurrent annual outbreaks. Shorter immunity periods led to more regular and pronounced
annual epidemics in our simulations, as the population’s overall susceptibility recovered more quickly.

Crucially, the data calibration process provided a specific, data-driven estimate for this parameter. The
optimization routine converged on a mean immunity duration of approximately 235 days. This finding
1s consistent with immunological studies suggesting that influenza protection can wane significantly
within a single year [25]. Our estimate also aligns with the theoretical work of Dushoff et al. [5], who
demonstrated that the interaction between rapid immunity loss and seasonal forcing is the primary driver
of annual periodicity. Furthermore, as noted by Ranjeva et al. [26], this rapid replenishment of the
susceptible pool is essential for explaining the recurrent peaks seen in longitudinal surveillance data.

This finding is significant for two reasons. First, it is shorter than the one-year duration often used as
a baseline in theoretical models, suggesting that the rate of immunity loss may be faster than commonly
assumed, at least in the context of capturing aggregate population dynamics. Second, this shorter
duration was essential for the model to accurately reproduce the observed inter-annual variability in
the Ontario data without producing overly large, biennial outbreaks. This result highlights that the
interaction between the period of immunity loss and the annual cycle of seasonal forcing is a key
determinant of real-world influenza patterns, and our model provides a framework for estimating this
interaction from surveillance data.

4.3. Implications for public health interventions

The theoretical model also served as a valuable tool for exploring the potential impact of
seasonally-targeted public health interventions. As summarized in Figure 4, the analysis of total cases
by season provides clear, quantitative insights for public health planning. The bar chart unequivocally
shows that, under baseline conditions, winter is the primary driver of the annual disease burden.
Consequently, interventions that reduce transmission during the high-risk fall and winter seasons have
the most significant impact. For instance, the “intensive winter (50% reduction)” strategy demonstrates
a marked decrease in the winter case load. This reinforces the importance of timing interventions, such
as vaccination campaigns and public health messaging, to coincide with these periods of highest risk.
Furthermore, the model allows for a direct comparison of strategies, showing that while a targeted
winter intervention is effective, a broader “all-season (weighted)” approach can yield an even greater
overall reduction in cases by mitigating transmission throughout the entire year.

Limitations and future directions: Although the model successfully integrates the theoretical
structure with empirical data, several limitations should be acknowledged. The model assumes
homogeneous mixing and does not include the age structure. Our seasonal S values are
phenomenological; they capture the effect of seasonality without explicitly modeling the underlying
drivers. Additionally, the model is deterministic and does not account for stochastic events that can
influence outbreaks. Crucially, the current framework lacks a probabilistic formulation to explicitly
account for the uncertainty inherent in aggregated surveillance data; incorporating such stochasticity,
for example, via stochastic differential equations, is a necessary next step. We also do not explicitly
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model the effects of viral evolution (antigenic drift) as a separate mechanism, but instead our waning
immunity parameter w phenomenologically captures the combined effect of intrinsic immune loss and
viral drift, a simplification consistent with other mathematical frameworks describing recurrent
epidemics [27,28].

These limitations define several promising avenues for future research. True external validation
would require testing the calibrated model on an independent dataset, for example, data from a different
time period or region, which represents a critical next step to establish the generalizability of the modular
approach. Applying this calibration framework to data from other geographical regions would also test
the robustness of the modular approach.

5. Conclusions

In this paper, we proposed and calibrated a seasonal SIRS model for influenza dynamics based on the
principle of modular arithmetic. Our primary contribution is the demonstration of a two-stage workflow
where this interpretable theoretical framework was developed and then successfully calibrated against
real-world public health surveillance data.

Our theoretical simulations confirmed that a modular definition of the transmission rate, 5(¢), is
sufficient to generate the recurrent, seasonal outbreaks characteristic of influenza. This framework also
proved to be a flexible tool for exploring the impact of key epidemiological parameters, such as
immunity duration, and for comparing the potential effectiveness of various seasonally-timed
intervention strategies.

Crucially, when applied to historical influenza case data from Ontario (2014-2019), the model
achieved a strong empirical fit (Pearson correlation r = 0.80). The calibration process yielded a
data-driven estimate of approximately 235 days for the average duration of immunity, a key parameter
that significantly influenced the model’s ability to replicate observed inter-annual dynamics. This
successful calibration elevates the model from a purely theoretical construct to a practical tool with
demonstrated relevance to real-world disease patterns.

While acknowledging the limitations inherent in compartmental models, our work establishes that a
modular arithmetic approach to seasonality offers a valuable, clear, and effective alternative to more
abstract functional forms. It provides a robust and interpretable framework for modeling seasonal
infectious diseases, successfully bridging the gap between epidemiological theory and empirical public
health data. This method holds promise for future applications in forecasting, scenario analysis, and the
ongoing effort to better predict and control seasonal epidemics.
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