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Abstract: Given the complexity, unknown causes, and lack of effective treatments for Alzheimer’s
disease (AD), mathematical modeling offers a valuable approach to its understanding. Models, once
validated, offer a powerful tool to test medical hypotheses that are otherwise difficult to directly verify.
Here, our focus is to elucidate the spread of misfolded τ protein, a critical hallmark of AD alongside Aβ
protein, while taking the synergistic interaction between the two proteins into account. We consider
distinct modeling choices, all employing network frameworks for protein evolution, differentiated by
their network architecture and diffusion operators. By carefully comparing these models against clinical
τ concentration data, gathered through advanced multimodal analysis techniques, we show that certain
models replicate better the protein’s dynamics. This investigation underscores a crucial insight: when
modeling complex pathologies, the precision with which the mathematical framework is chosen is
crucial, especially when validation against clinical data is considered decisive.
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1. Introduction

Alzheimer’s disease (AD) is an irreversible and incurable neurodegenerative disorder, progressively
eroding memory and cognitive function in over 50 million people worldwide, a number projected to surge
in the coming years (World Alzheimer Report 2025) [1]. While AD’s exact causes remain elusive, two
proteins, namely amyloid-beta (Aβ) and tau (τ), are central to its emergence and development. Though
naturally present in the brain, in AD, they abnormally aggregate into Aβ plaques and neurofibrillary
tangles (NFTs), respectively, which are hallmarks of the disease [2–6]. These pathological proteins
don’t uniformly spread; instead, they follow distinct spatiotemporal patterns [7, 8]. NFTs typically
emerge in the entorhinal cortex before spreading throughout the brain, while Aβ plaques initially form
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in the temporal and frontal areas [9, 10]. Recent mathematical research highlights the crucial interplay
between Aβ and τ, thereby emphasizing its consideration for effective therapies [11–13].

When it comes to modeling the spread of proteins in the brain, a very convenient setting is represented
by networks. Indeed, different brain regions are “connected” from a structural point of view by bundles
of fibers, and this structure can be very naturally modeled by means of brain networks. A quite
commonly used network nowdays is represented by a connectome [14–17]. From a mathematical point
of view, a connectome is a weighted graph, in which the vertices represent parcellated regions of gray
matter formed by clusters of neurons, which share similarities in cytoarchitecture, functional activity,
and structural connections to other regions, while edges represent the connectivity between the regions,
which can differ according to the weights. For an updated review on mathematical models, we refer the
interested reader to [18,19], and in particular to [20,21] for connectome-based models. In [22], we used
the Budapest Reference Connectome, v3.0, [23] as a basic connectome: it is a weighted graph that was
obtained by averaging the tractography of diffusion tensor images of 477 healthy subjects of the Human
Connectome Project [14].

We stress that the vertices of such a graph do not have associated coordinates that determine their
position in space, since it is precisely an averaged graph. This will have consequences when we talk
about “distances”, which must be understood in an intrinsic sense and not in the classical Euclidean
metric sense. We use this structural connectome to build new connectomes, with the aim of best
reproducing some key features of the phenomena we were interested in describing. More precisely,
in [22], we introduced two “new” connectomes for the spread of the Aβ and τ proteins. Since the Aβ
protein is known to travel on short distances in the extracellular space [24], we constructed what we
called the “intrinsic proximity graph”, as follows. Given two vertices on the graph, we only connect
them if they are close in an intrinsic sense (i.e., only if there already exists an edge connecting them,
shorter than a chosen threshold). There is no “vicinity” in an Euclidean metric sense, since the vertices
of the graph do not have associated spatial coordinates. Then, we assign weights to the edges that are
stronger for intrinsically close vertices. We believe that this modeling choice is reliable, thus also in this
work, the Aβ protein will spread along this graph by means of the graph Laplacian operator associated
to it.

Unlike Aβ, τ is believed to travel over long distances in the intracellular space [25, 26]. To take
this feature into account, in [22], we introduced what we called the “cumulative connectome”. This
connectome is constructed by connecting two vertices of the structural connectome if there is at least one
path between them that is shorter than a fixed threshold. The weight of the edge between the two vertices
is determined by the sum of the lengths of all paths that connect them. This aggregation of path lengths
is what gives the connectome its ‘cumulative’ nature. In [22], we explored several approaches to model τ
spreading and compared the resulting τ concentration values with clinical data. The comparison focused
on significant brain regions, where “significant” referred to regions we identified through a statistical
analysis of clinical data, thus highlighting differences in τ aggregation between normal and AD brains.
Usually, diffusion is modeled either via a Laplacian (in our case a graph Laplacian) or via a convolution
operator, especially when long distances are concerned. While for the diffusion of the Aβ protein we
simply used the graph Laplacian operator associated to the intrinsic proximity graph, we compared
different modeling choices for the spreading of τ. Unsurprisingly, the results in [22] showed that the
choice of both the graph on which diffusion takes place and of the mathematical operator used to model
it is crucial to achieve a good match with clinical data. The most satisfactory modeling choice turned out
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to be the one based on the graph Laplacian associated with the cumulative connectome. This suggests
that the cumulative nature of the cumulative connectome is best suited to describe τ diffusion, thereby
reflecting, in some sense, the “intrinsic” geometry of the brain. In the wake of this consideration, in
this paper, we consider a convolution operator with a kernel built using cumulative paths between brain
regions. This choice proves to be decisive to obtain results improved with respect to the ones obtained
in [22], where a different choice for the kernel was made. In addition to the introduction of a new kernel,
in this paper, we increase the number of significant regions, thereby obtaining satisfactory results.

In summary, the main purpose of this work is to show that both the topology of the graph over which
the τ protein spreads and the operator chosen for diffusion are crucial ingredients for a mathematical
model that produces a good match with clinical data. The topology of the graph captures the intrinsic
geometry of the phenomenon described; therefore, this must be taken into account in the construction of
the operator that models the spread, which somehow becomes an operator “intrinsic” to the geometry
itself. The paper is organized as follows: in Section 2, we describe the mathematical model, thereby
presenting the equations in a quite general form, that is, without explicitly specifying the form of the
operators adopted for diffusion or of the graph considered, but carefully explaining all the terms that
appear in the equations; in Section 3, we describe the different connectomes (i.e., weighted graphs),
and we explicit the form of the different diffusion operators we consider; in Section 4, the procedures
adopted to obtain reliable clinical data are explained; in Section 5, we present the results obtained by
numerical simulations. By comparisons with clinical data we show the crucial role of the cumulative
kernel, and the improvement we obtain here with respect to paper [22]; finally, Section 6 concludes the
paper with a discussion and directions for future research.

2. The mathematical model

We are interested in modeling the dynamics of the two proteins, namely Aβ and τ, which are mainly
in toxic conformations at least for what concerns τ on a macroscopic scale, that is, when the whole
brain is considered. In particular, we would like to understand to what extent the (possibly different)
strength of the connections between different brain regions could influence the spread of the proteins in
the brain, and more specifically, in brain networks.

The physical concept of brain network finds its ideal mathematical correspondence in the concept
of graphs. In this setting, the strength of the connections in the network is represented by the weights
associated to the edges of the graph and the structure of the network itself by the connectivity matrix
associated with the graph. In AD, τ and Aβ proteins have different biological mechanisms of propagation:
Aβ can spread over short distances across brain tissue [24], while τ propagates via a prion-like, neuron-
to-neuron mechanism. Moreover, their spreading follows different patterns: τ primarily spreads through
neuronal connections, and Aβ initially accumulates in specific cortical regions. Therefore, in our model,
we assume that the world in which proteins live, that is, interact and travel, is represented by two
different graphs: one for τ and one for Aβ. These graphs have the same vertices, which correspond to
specific regions of the brain, but different edges, which correspond to different connections between
regions. Mathematically, a graph is a pair G = (V, E), where V is a set of vertices and E ⊂ V × V is a
set of the edges. The graph G is called weighted if each edge (i, j), which connects vertices i and j, is
assigned a weight w(i, j). A weighted graph can be represented through the adjacency matrix A whose
entries Ai, j represent the weights of the edge (i, j). Let N = |V | be the number of vertices in G; then,
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A ∈ RN×N is defined as follows:

Ai, j =

{
w(i, j) if (i, j) ∈ E;
0 otherwise.

There are several possible definitions for the Laplacian associated to a given graph. Given the adjacency
matrix A ∈ RN×N of G, following [27], we define the graph Laplacian L as L = D − A, where D is the
weighted degree matrix whose jth diagonal element D j, j is given by the following:

D j, j =

N∑
i=1

Ai, j.

In the following, we will denote the Laplacian of the graph for Aβ by LAβ and the Laplacian of the graph
for τ by Lτ.

The full system of equations we are going to study is the one considered in [22], to which we refer
for a detailed description, given by the following (all the constants, i.e., greek letters, are positive and ⊙
denotes the Hadamard product between vectors):

ϵ
du1(t)

dt
= −γ1LAβu1(t) +Cu1 − αu1(t) ⊙

3∑
j=1

u j(t) − σ1u1(t),

ϵ
du2(t)

dt
= −γ2LAβu2(t) +

α

2
u1(t) ⊙ u1(t) − αu2(t) ⊙

3∑
j=1

u j(t) − σ2u2(t),

ϵ
du3(t)

dt
=
α

2

∑
3≤ j+k<6

u j(t) ⊙ uk(t) − σ3u3(t),

dw(t)
dt
= γ3K[w] +Cw

(
u2(t) − Uw

)+
+ sw(t) − σ4w(t).

(2.1a)

(2.1b)

(2.1c)

(2.1d)

The vectors u1,u2, and u3 represent the molar concentrations of Aβ monomers, dimers, and plaques,
respectively, in each node. The ϵ parameter in front of their evolution equations stands for fast dynam-
ics [24]. Monomers and dimers of amyloid-beta do diffuse on short distances in the extra-cellular space,
while plaques don’t, and this is modeled by the graph Laplacian operator LAβ, which is not present in the
equation for plaques. All the terms with σi, i = 1, . . . , 3 represent clearance, while the remaining terms
model aggregation phenomena, and Cu1 is a source term for Aβ monomers. Notice that the factor α2 in
Eqs (2.1b) and (2.1c) is there for statistical reasons, to avoid double counting the same term. In the first
three equations, relative to the Aβ protein, there is no interaction with τ. The last equation describes
the evolution, with slow dynamics, of toxic τ in each node represented by the vector w. The last two
terms in the equation model a time dependent source and a clearance (with coefficient σ4), respectively.
As we will see later, the source of toxic τ protein will be localized in the enthorinal cortex [28]. The
second term in (2.1d) encapsulates the interaction between the two proteins: a concentration of toxic Aβ
above a certain threshold acts as a source for τ. The first term in (2.1d) is crucial in this paper, as it was
in [22]. In a possible prion-like mechanism of τ spreading, the misfolded τ protein acts as a template for
the healthy one, which in turn misfolds [11]. These phenomena essentially occur in the intracellular
space, along axon bundles, and over long distances between non-adjacent brain regions. In order to
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understand the temporal pattern of τ spreading, we consider two possible spreading mechanisms on
graphs: diffusion and convolution.

When the spreading of τ is modeled via diffusion, by choosing an appropriate graph, we have
the following:

K[w] = Lτw, (2.2)

where Lτ is the graph Laplacian defined as above via the adjacency and degree matrices of the graph.
When convolution is used to model τ spreading, as is often customary for interactions over long

distances, by choosing an appropriate graph, the K operator is defined as follows:

K[w] = U
(
k̂τ ⊙ ŵ

)
, k̂τ = U∗kτ, ŵ = U∗w, (2.3)

where kτ is a kernel defined on the graph, U is a matrix whose columns are the eigenvectors of the graph
Laplacian Lτ and U∗ is the adjoint matrix. We recall that the operator U is used to define the graph
Fourier transform [29]; therefore, k̂τ and ŵ are the graph Fourier transform of kτ and w, respectively,
and the convolution operator (2.3) is defined as the inverse graph Fourier transform of the element-
wise product between k̂τ and ŵ. We refer the reader to [22, 30] for a deeper discussion on the graph
convolution operator.

The results in [22] showed that the choice of the graph on which the mathematical operators (2.2)
and (2.3) are defined is crucial to appropriately reproduce the clinical data. A key contribution of this
work consists of having devised a particular graph and defined an appropriate convolution kernel through
which we have shown a better matching with clinical data with respect to more standard and commonly
used graphs.

3. Proteins spreading through brain’s connectomes

As the spreading mechanisms of the τ and Aβ proteins are different, they require distinct structures
to be accurately described. Therefore, as already mentioned in Section 2, we use two different graphs:
one for Eqs (2.1a)–(2.1c) and one for Eq (2.1d), which are both based on the human “connectome”.

The human connectome, which is a map of brain structural networks, is crucial to understand brain
diseases. Representing the brain as a graph allows us to assess information processing and transfers.
This representation effectively explains two fundamental brain properties: integration and segregation,
which balance specialized processing with global coordination. In the graph model, brain regions are
vertices connected by edges that represent biological connections. The weights of the edges represent
the intensity of the connection between brain regions. The Budapest Reference Connectome, v3.0, [4]
is a parameterizable consensus brain graph widely used in the literature. It was derived from the
connectomes of 477 people, each computed from MRI datasets of the Human Connectome Project.
At the website https://pitgroup.org/connectome/, a high-resolution version with 1015 vertices can be
downloaded; the connections between brain regions can be weighted by different factors such as the
ratio between the number and the length of fiber tracts that link the vertices or the length of these fiber
tracts (the choice of the preferred weight is up to the user). We will refer to this connectome as the
structural connectome since it was reconstructed using diffusion tensor images.

Mathematically, the structural connectome is a weighted graph G = (V, E) with N = 1015 vertices
and weights given by

wnl(i, j) =
ni j

ℓi j
(3.1)
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or by
wl(i, j) = ℓi j, (3.2)

where ni j is the mean number of fibers connecting vertices i and j, and ℓi j is the mean length of such
fibers, that we will call fiber length. We denote the structural connectomes with edge’s weights wl, and
wnl, by Gl and Gnl, respectively. Both graphs share the same set of vertices and edges, which correspond
to those of the original connectome G; only the weights of the edges differ. We define the convolution
operator on the structural connectomes Gnl and Gl by using their respective Laplacians to construct the
operator U, which defines the graph Fourier transform. We emphasize that, in the following, distances
are to be intended in an intrinsic sense (i.e., referring to fiber lengths and not in a geometric sense (i.e.,
referring to the euclidean distance between two vertices). This choice is the only reasonable one, since
we do not know the exact position in space of the vertices of the graph, since the graph is obtained by
averaging data from different subjects.

Starting from the structural connectome, in [22], we introduced two new connectomes: the intrinsic
proximity connectome and the cumulative connectome. The intrinsic proximity connectome is a
weighted graph Gp obtained by connecting two nodes i and j of G if the fiber length ℓi j between them is
sufficiently small. For such a graph, we fix a threshold Rp and define the weights as follows:

wp(i, j) =
{

e−ℓ
2
i j/δp if ℓi j ≤ Rp

0 otherwise
,

where δp ∈ R+ is a fixed parameter. In this way, we only connect two vertices if they are close in an
intrinsic sense, instead of a “geometric” proximity measured with some Euclidean distance, and we
assign stronger weights to intrinsically closer vertices. Since the Aβ protein is known to spread over
short distances in the brain [24], we define Eqs (2.1a)–(2.1c) on the intrinsic proximity connectome and
take its Laplacian as operator LAβ.

The cumulative connectome, also introduced in [22], is a weighted graph Gc with the same vertices
as G. We recall that, in a weighted graph, the length of a path is obtained as the sum of the weights
of all edges along the path. Therefore, in the sequel, we will denote the length of a path p in Gl and
Gnl as ℓl(p) and ℓnl(p), respectively. Given a positive parameter Rc, the two vertices i and j are directly
connected in Gc if there is at least one path p in Gl between i and j whose length ℓl(p) is at most Rc.
We call such a path an admissible path. The weight wc(i, j) of the edge between i and j is given by the
sum of the lengths ℓnl of all the admissible paths between i and j:

wc(i, j) =
∑
p∈Ai j

ℓnl(p), Ai j =
{
p | p is a path in Gl from i to j and ℓl(p) ≤ Rc

}
.

We refer the reader to [22] for a deeper description of the cumulative connectome. The cumulative
connectome turned out to be the fundamental tool to model, via diffusion, the spreading of the τ protein,
which is known to move along long distances in the brain. In fact, an edge between two vertices exists
in Gc if the corresponding brain regions are joined by axonal paths with the length controlled by the
parameter Rc. The weights of the connections depend on how many and how long the axonal fibers are.
For this reason, in this paper, we use the cumulative connectome as the graph to define the operator
K when it models the spread via diffusion, and we choose the graph Laplacian of the cumulative
connectome for Lτ in (2.2) [22].
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The convolution operator (2.3) needs to select a proper kernel kτ. In [22], a kernel constructed using
the structural connectome with weights wl was considered and gave unsatisfactory results compared
to clinical data. In this work, we introduce a new kernel that takes the very nature of the cumulative
connectome into account. The cumulative connectome encodes all long-range anatomical connections
between brain regions, and the strength of these connections depends on the number and length of the
axonal fibers. This approach captures the overall strength of the structural connectivity between brain
regions. The cumulative nature of this connectome, which integrates all available pathways rather than
solely relying on direct connections, represents a novel feature of the model and has shown promising
results in aligning model predictions with clinical data [22]. Building on the concept of cumulative
connectivity, this work introduces a cumulative kernel that incorporates the full spectrum of connections
between brain regions. This cumulative kernel, which not only captures direct links but also indirect
pathways, provides a richer and more integrative representation of inter-regional interactions. In this
way, it offers a powerful tool to model the long-range spread of the τ protein across the brain through
graph convolution. Importantly, the convolution is performed in the structural connectomes Gl and
Gnl, using the eigenvectors of their graph Laplacians as the basis for the graph Fourier transform. This
formulation allows us to use the spectral properties of the structural connectome to model biologically
informed spatial patterns and to encode long-range propagation dynamics of τ protein into the kernel.
Let i be a vertex in Gl; we denote the set of vertices that are connected to i through an admissible path
byM(i), i.e.,

M(i) =
{
j ∈ Gl

∣∣∣ ∃ admissible path p from i to j
}
.

First, we define a vector d ∈ RN , where each component di quantifies the cumulative connectivity of
node i as follows:

di =
∑

j∈M(i)

∑
p∈Ai j

ℓl(p), Ai j =
{
p
∣∣∣ p is a path in Gl from i to j and ℓl(p) ≤ Rc

}
.

Based on this cumulative measure, we define the cumulative kernel kτ ∈ RN as a node-dependent
Gaussian-like weighting function as follows:

kτ(i) = e−d2
i /δk , i = 1, . . . ,N, (3.3)

where δk ∈ R+ is a fixed scaling parameter. Nodes with high cumulative connectivity (large di) are
assigned higher kernel values, while nodes with lower connectivity are given smaller weights.

4. Materials and methods

We aim to compare the model output with clinical data in brain regions that have undergone
significant changes due to AD. We used clinical imaging data to identify such brain regions and to
estimate the τ protein concentration values within them. The clinical imaging data for τ were obtained
from the ADNI Initiative (ADNI) database (https://adni.loni.usc.edu/). In this paragraph, we briefly
recall how the data were obtained, but we refer the reader to [22] for a more detailed description. Our
study included 261 participants from ADNI3: 238 cognitively normal (CN) subjects and 23 with AD.
All participants were selected based on the availability of both Positron Emission Tomography (PET)
scans using the [18F]-AV1451 tracer and the corresponding T1-weighted Magnetic Resonance (MR)
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images acquired with a 3T Siemens scanner (MPRAGE sequence), to reduce variability related to
scanner type and radiopharmaceutical. PET and Magnetic Resonance Imaging (MRI) acquisitions were
required to be within 3 months of each other to minimize the impact of disease progression between the
two acquisitions.

The MRI structural images were pre-processed, segmented, and parcellated with FreeSurfer 6.0
(http://surfer.nmr.mgh.harvard.edu/), to subdivide the brain volumes into a set of 83 anatomical cortical
and sub-cortical region of interest (ROIs). Since the nodes of the brain graphs are in correspondence with
the 83 ROIs, we were able to compare τ concentrations relative to the 83 ROIs in the PET images with
those estimated by the mathematical models. To assess differences in [18F]-AV1451 uptake by the brain
regions between AD and CN subjects, PET images were co-registered to each subject’s corresponding
structural MRI using PETSurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/PetSurfer). Then, the τ
concentration was computed in each ROI. For absolute quantification, regional τ values were normalized
to the cerebellum. Finally, a robust statistical approach, including normality assessment, non-parametric
testing, and correction for multiple comparisons, was used to identify ROIs with significantly different τ
concentrations between the CN and AD groups. Our statistical analysis revealed that the distribution of
18F-AV1451 uptake was significantly different between the AD and CN groups in 29 ROIs. Table 1 lists
the ten most significant ROIs along with their average τ concentrations. Moreover, for each ROI, the
table also indicates the corresponding functional network to which it belongs.

Table 1. p-value and τ concentration (mean ± st.dev.) in the AD and CN groups for the most
significant ten ROIs. The concentrations of τ are expressed as normalized ratios relative to the
concentration measured in the cerebellum.

ROI Network Significance AD τ conc. CN τ conc.
Fusiform region Occipital 8.3 · 10−9 1.6 ± 0.3 1.2 ± 0.1
Inferior temporal region Temporal 1.6 · 10−8 1.7 ± 0.5 1.2 ± 0.2
Middle temporal region Temporal 2.9 · 10−6 1.6 ± 0.5 1.2 ± 0.2
Lingual region Occipital 3.1 · 10−6 1.4 ± 0.3 1.1 ± 0.1
Lateral orbitofrontal region Limbic 5.4 · 10−6 1.5 ± 0.4 1.2 ± 0.2
Amygdala Limbic 6.5 · 10−6 1.4 ± 0.4 1.2 ± 0.1
Temporalpole region Temporal 1.3 · 10−5 1.4 ± 0.3 1.1 ± 0.2
Enthorinal region Limbic 2.1 · 10−5 1.4 ± 0.4 1.1 ± 0.2
Parsorbitalis region Frontal 2.6 · 10−5 1.5 ± 0.5 1.2 ± 0.3
Lateraloccipital region Occipital 2.7 · 10−5 1.5 ± 0.6 1.2 ± 0.2

5. Results

A series of numerical simulations was performed to determine whether the diffusion-based or
convolution-based formulation of the operator K provides a better representation of the clinical imaging
data. All simulations were conducted using Matlab R2021a on an Intel Core i5 processor with 2.50 GHZ
and a Windows operating system. The codes used for the current experiments can be made available
upon reasonable request to the authors.
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5.1. Experimental setting

We used the same experimental setting described in [22]. The differential system (2.1) was numeri-
cally solved using Matlab’s ode45, which implements the Dormand–Prince Runge–Kutta method with
adaptive time stepping [31]. The system was integrated from the initial time t0 = 0 to the final time
t f = 500, which was chosen to ensure the stabilization of the solutions. The source term for misfolded τ
was set in the enthorinal region, which is the brain region that exhibits the earliest τ deposits in AD; i.e.,

(sw(t)) j =

{
1 j ∈ entorhinal region
0 otherwise

, (5.1)

where (sw(t)) j denotes the jth component of sw(t). We assume that the clinical data used to fit the
numerical output correspond to a stage in which the disease is well established. Consequently, we
interpret this state as an asymptotic equilibrium point reached in the infinite time limit. From a
mathematical perspective, this implies that the protein concentrations no longer evolve over time but
remain constant. In the numerical simulations, when the output stabilizes at a constant value, we
consider the equilibrium point to have been reached. Naturally, the specific constant value depends on
the chosen parameter set; therefore, we regard those parameters that yield numerical solutions whose
limit values are consistent with the clinical data as optimal. These optimal values were heuristically
identified by performing extensive trials over wide grids of possible values. This approach allowed
us to identify values that yielded a stable equilibrium point for the dynamical system, thus ensuring
biologically plausible and mathematically consistent behaviors. According to the above strategy, in
our numerical simulations, we fixed the values of all parameters of system (2.1) as reported in Table 2,
except γ3 and Cw.

Table 2. Fixed parameter values for system (2.1).

γ1 γ2 α Cu1 Uw σ1 σ2 σ3 σ4

0.001 0.001 0.1 0.05 0.01 0.1 0.1 0.1 0.11

As described in Section 3, we modeled the spreading of the Aβ protein on the intrinsic proximity
connectome Gp, where the values Rp = 25 and δp = 1.5 · 102 were fixed. When the spreading of the τ
protein was modeled through a diffusion operator, the underlying network structure was represented
by the cumulative connectome Gc with Rc = 30. Finally, when employing a convolution operator to
model the spreading of τ protein, we used the structural connectome G and compared the two different
weighting schemes: one based on fiber lengths, and the other on the ratio between the number of fibers
and their lengths. This led us to define two distinct Fourier transform operators: Unl, which corresponds
to the structural graph with weights wnl; and Ul, which corresponds to the graph with weights wl. These
operators encode different spectral properties of the connectome and are used to analyze the τ protein
dynamics under convolution. In both cases, the kernel kτ is defined by (3.3) with δk = 10−4.

5.2. Clinical deterioration pattern and model evaluation

In this work, we adopted the same methodology used in our previous paper [22] to evaluate the
agreement between model predictions and clinical data. This approach is based on comparing the
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clinical deterioration pattern, which is derived from τ concentrations in significative brain regions (as
identified in Section 4), with the pattern predicted by the mathematical model. While in our previous
study we only considered six ROIs, selected according to a statistical threshold with p-values up to
the order of 10−6, in the present work we extended the analysis to ten ROIs, thereby including regions
with p-values up to the order of 10−5. The ten ROIs considered are listed in Table 1, along with the
functional networks to which they belong. Moreover, to assess the models’ ability to distinguish affected
from unaffected regions, we also considered the τ concentration in the sensorimotor network, including
the paracentral, postcentral, precentral, and superior frontal regions, which is typically unaffected in
AD pathology.

Figure 1. Mean τ concentration values w(∗)
T , w(∗)

O , w(∗)
L , w(∗)

F in the temporal, occipital, limbic
and frontal networks as listed in Table 1. The colorbar reflects the ordering of τ values, from
high (dark red) to low (yellow). A: 3D view of the brain and the corresponding sagittal plane.
B: 3D view of the brain and the corresponding sagittal plane. C: corresponding axial and
coronal view.

We denote the mean τ values averaged over the significant ROIs that belong respectively to the
temporal, occipital, limbic and frontal networks by w(∗)

T , w(∗)
O , w(∗)

L , w(∗)
F , respectively, as detailed in

Table 1. Each w(∗)
X represents the mean τ value across all significant ROIs within the corresponding

network X. Figure 1 represents the mean τ concentration values w(∗)
T , w(∗)

O , w(∗)
L , w(∗)

F in the four networks.
In addition, we denote the mean τ value in the sensorimotor netwok by w(∗)

S . The values
w(∗)

T , w(∗)
O , w(∗)

L , w(∗)
F ,w

(∗)
S form a reference profile derived from clinical data and ordered from high-

est to lowest τ concentration, which yield a string that we define as the clinical deterioration pattern.
This pattern reflects the spatial progression of neurodegeneration in AD, with higher τ levels indicating
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more severe deterioration. In [22], we considered six ROIs (grouped into three networks) and we
obtained the clinical deterioration pattern represented by the string TLOS since w(∗)

T > w(∗)
L > w(∗)

O > w(∗)
S .

In this work, with ten ROIs (grouped into four networks), the corresponding string becomes TFOLS.
We notice that when ten ROIs are considered, not only does a new network (the Frontal one) occur, but
additional regions also contribute to the values w(∗)

T ,w
(∗)
O ,w

(∗)
L ,w

(∗)
S .

To evaluate the ability of the mathematical model (2.1) to reproduce the clinical deterioration pattern,
we numerically solve the differential system and compute the average τ concentrations over the same
brain networks considered in the clinical analysis. This is possible since we precisely know to which
region each vertex belong to in the graph (the connectome). Then, these values are used to construct a
string based on the descending order of τ concentrations.

Then, we compare the model’s deterioration pattern to the clinical reference one using the Hamming
distance (HD), which counts the number of mismatches between the two strings. A lower HD indicates a
closer match to the clinical progression of the disease. This approach provides a quantitative framework
to assess how well the mathematical model captures the spatial dynamics of τ pathology in AD, both in
affected and preserved brain regions.

5.3. Numerical results

Here, we present the numerical results obtained by solving the differential system (2.1) for the
following choices of the operator K: diffusion on the cumulative connectome Gc and convolution on the
structural connectomes Gl and Gnl. Tables 3 and 4 show the string that corresponds to the minimal HDs
obtained for each configuration, together with the parameter values that allow the model to reproduce
it. Table 3 refers to the case with six ROIs and the deterioration string TLOS, while Table 4 refers to
the case with ten ROIs and the string TFOLS. The parameters Cw and γ3 were heuristically identified
in each case to minimize the HD between the clinical and simulated deterioration patterns. For each
parameter, we observed intervals of values that yield the same minimal HD; in the tables, we report one
representative value per parameter.

Table 3. Deterioration patterns and model parameters for different choices of the operator K,
using six ROIs.

Operator K String HD γ3 Cw

Clinical data TLOS – – –
Diffusion on Gc TLOS 0 0.002 1.58
Convolution on Gl TSOL 2 0.002 1.58
Convolution on Gnl TLOS 0 0.002 1.58

From Tables 3 and 4, we observe that the diffusion operator on the cumulative connectome Gc is
only able to reproduce the deterioration pattern TLOS, which corresponds to the configuration with
six ROIs. Similarly, the convolution operator on the structural connectome Gnl, where edge weights
are defined as the ratio between the number of fibers and their length, also only reproduces the TLOS
pattern. On the other hand, the convolution operator on the length-based graph Gl is the only one
capable of reproducing the deterioration pattern TFOLS, which is associated with the configuration
that involves ten ROIs. Comparing the results obtained with 6 ROIs with those obtained with 10 ROIs,
a sort of “complementarity” stands out: what works best in one case works worse in the other. This
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shows that selecting the graph is an integral part of the modeling process and should be carried out with
great attention.

Table 4. Deterioration patterns and model parameters for different choices of the operator K,
using ten ROIs.

Operator K String HD γ3 Cw

Clinical data TFOLS – – –
Diffusion on Gc FTOLS 2 0.001 50
Convolution on Gl TFOLS 0 0.009 50
Convolution on Gnl FTOSL 4 0.002 1.58

Table 5. Deterioration patterns and model parameters for different choices of the operator K,
using six ROIs.

Operator K String HD γ3 Cw

Clinical data TLOS – – –
Diffusion on Gl LTOS 2 0.001 0.5
Diffusion on Gnl LTOS 2 0.001 0.5
Convolution on Gl TOSL 3 50 0.5
Convolution on Gnl LSTO 4 150 0.5

Table 6. Deterioration patterns and model parameters for different choices of the operator K,
using ten ROIs.

Operator K String HD γ3 Cw

Clinical data TFOLS – – –
Diffusion on Gl FTOSL 4 0.001 0.5
Diffusion on Gnl FTOLS 2 0.001 0.5
Convolution on Gl FOLTS 4 50 0.5
Convolution on Gnl FSTLO 4 150 0.5

To further highlight the importance of incorporating cumulative connectivity, we consider two
alternative approaches: diffusion on the structural connectomes Gnl and Gl, and convolution on Gnl and
Gl with a kernel that does not exploit cumulative information. In the latter case, the kernel ksp

τ ∈ R
N is

constructed using the shortest-path distances from each node to all others, which is defined as follows:

kspτ (i) =
∑
j∈Gl

eℓ
sp
i j /δ̃k , i = 1, . . . ,N, (5.2)

where ℓspi j denotes the length of the shortest admissible path between vertices i and j (we consider only
paths whose length is below the fixed threshold Rc), and δ̃k = 1. This formulation does not account for
the multiplicity of connections, and therefore lacks the cumulative nature that characterizes the current
approach. Tables 5 and 6 report the obtained results: none of these approaches successfully reproduced
the deterioration pattern observed in the clinical data, neither in the case of the six ROIs nor in the case
of the ten ROIs, thus further supporting the relevance of incorporating cumulative connectivity into
the model.
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Remark 1. Based on numerous numerical experiments, we observed that fairly wide intervals of param-
eter values exist, within which the obtained results are consistently reproduced, whereas outside these
ranges, the outcomes can significantly vary. In this sense, the model exhibits a degree of robustness, as
selecting parameter values within these intervals ensures reproducible results. While a more systematic
sensitivity analysis could provide further insights, the current study focused on demonstrating the
feasibility of the proposed approach rather than exhaustively exploring the parameter space.
Remark 2. For the sake of simplicity, we presented the parameters listed in Table 2 as fixed, while only
allowing the parameters γ3 and Cw to vary, as these appear in the equation that governs the evolution
of the τ protein. However, it is important to emphasise that an exhaustive numerical exploration was
performed in which all parameters were systematically varied. No alternative parameter values were
found that produced better results than those obtained with the values reported in Table 2.

6. Discussion and conclusions

This study pursued two primary goals: first, to compare various modeling approaches for τ protein
spread in the AD brain, thereby specifically considering the synergistic presence of Aβ protein; and
second, to assess the model’s validation by comparing generated numerical data with clinical data.
Indeed, we firmly believe that a comparison between the theoretical model results and clinical data
is necessary to establish the practical utility of mathematical models in AD research. To achieve
this, we developed models where both proteins evolved on specialized networks derived from human
connectomes and we introduced a new concept of deterioration pattern, which enabled us to make the
comparison mentioned above. The distinct physiological and biological characteristics of Aβ and τ
proteins necessitated different connectome structures. For Aβ, which propagates over short distances,
we utilized a novel intrinsic proximity connectome with a standard diffusion Laplacian. For the τ protein,
which is hypothesized to spread prion-like over longer distances, we investigated distinct mathematical
models across different networks: diffusion via Laplacian on a newly introduced cumulative connectome,
and spreading through a convolution operator on two structural connectomes. An important novelty of
this paper concerns the definition of a new convolution kernel, which takes the cumulative nature of the
connections between brain regions into account and appears to provide the best performance in terms of
a comparison with clinical data. Indeed the numerical results obtained show that each operator K was
able to reproduce only one of the two clinical deterioration patterns, but not both, even when the model
parameters were varied.

In particular, the diffusion operator on the cumulative connectome Gc successfully reproduced the
pattern TLOS, but failed to match TFOLS. Similarly, the convolution operator on the structural graph
Gnl also only reproduced TLOS. On the other hand, the convolution operator on the length-based
graph Gl was the only one capable of reproducing TFOLS. The fact that no operator could reproduce
both patterns, even with different parameter settings, suggests that the mathematical structure of the
model, including the underlying graph, must be carefully tailored to the specific phenomenon under
investigation.

It is worth noting that in our previous work, we also considered a convolution operator on the graph
Gnl, but with a different kernel. In that case, the model was not able to reproduce the TLOS pattern,
thus further confirming that the choice of both the graph and the convolution kernel plays a crucial role
in shaping the modeled dynamics.
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The proposed approach presents several limitations. First, the availability of medical data was
restricted, which constrained the robustness of the analysis. Furthermore, the connectome employed in
this study was derived from healthy brains, thus potentially limiting its applicability to pathological
conditions. Additionally, the fitting of the τ protein concentration was not performed on longitudinal
data, thus reducing the ability to capture the temporal dynamics. Finally, the comparative modeling
framework was not applied to the dynamics of the Aβ protein, which represents another important
pathological marker. As future work, we plan to construct a connectome based on diseased brains and
expand the medical dataset to enhance the reliability of the model. Moreover, we aim to apply the same
comparative approach used for τ to validate the model’s predictions for Aβ dynamics. This will allow
us to further assess the model’s ability to reproduce observed patterns of pathology and its consistency
with medical observations.
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