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Abstract: In this paper, the classical Poisson-Nernst-Planck (PNP) model describing ion transport
through a membrane channel is used to study the effects of small permanent charges and the structures
of ion channels on ionic flows. The model under study includes two oppositely charged ion species,
and the permanent charge in this model is a piecewise constant function with two nonzero regions.
By rescaling, the classical PNP model can be viewed as a singularly perturbed differential equation
system. Therefore, the geometric singular perturbation theory is employed to get a singular orbit.
Assuming that the permanent charge density is small, a regular perturbation expansion is used to obtain
the first-order approximation of the individual flux, which acts as a basis for our analysis. Then, the
effects of small permanent charges on the fluxes and the current-voltage relation, which not only depend
on the boundary conditions, but also depend on the structures of ion channels and the ratio between two
nonzero permanent charge densities, are analyzed in this paper. Particularly, our results indicate that the
geometric structures of three-dimensional ion channels have a short and narrow cross-section, which
is explained in [1]. Also, our results indicate that the ratio between two nonzero permanent charge
densities can change the position of a short and narrow cross-section in ion channels.
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1. Introduction

Ion channels are a class of proteins observed in cell membranes. These proteins form pores and
accessory structures in the cell membrane, allowing specific ions to pass through while maintaining
cellular homeostasis. They play important roles in cellular activity via controlling the flow of ions, and
are fundamental elements in many basic biological processes from excitation and signaling to secretion
and absorption. Therefore, ion channels are crucial to cell survival and function.

To understand the complex behavior of ion channels, molecular dynamics model is used, in which
ion, water, and protein dynamics are described in atomic detail by making use of classical force
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fields to describe molecular motions. To improve the computational efficiency in molecular dynamics
simulations, Brownian dynamics and the Monte Carlo approach are developed; the former is based on
the stochastic equation of the motions of ions, which describes some effective potential effects, and the
latter computes the probability of the movement of a selected set of ion species by assuming that the
ions are undergoing a random walk on a discrete mesh [2-6].

One of the most widely used models to describe ionic transport and electrostatic interactions in ion
channels is the Poisson-Nernst-Planck (PNP) model which couples the Poisson equation for the electric
potential with the Nernst—Planck equations that describe the fluxes of ionic species under the influence
of both electrical and concentration gradients [7—15]. As a mean field continuum theory, the ion species
involved in the PNP model are represented by macroscopic ion concentrations instead of microscopic
discrete particles. Also, the PNP model can be derived from the Langevin-Poisson system [12, 16-20],
the Maxwell-Boltzmann equations [5, 13, 18,21], and the energy variational analysis [22-25]. Recently,
researchers have employed coupled PNP and the Navier-Stokes equations to model ion channels, which
provide a more detailed description of the ionic distribution [22,26-29].

In this paper, the following one-dimensional version of the steady-state PNP type model [30, 31]
is studied:

1 d dd 2
i (sr(x)aoh(x)a) = —¢ (]Z zjcj(0) + Q(X)], .
aJi . o _ 1 = P
E - 09 \7—1 - kBTDl(x)h(x)cl(x) dx s 1= 1’2, ,n,

where x € [0, 1] is the coordinate along the axis of the channel that is normalized to [0, 1], e is the
elementary charge, kg the Boltzmann constant, T the absolute temperature, @ is the electric potential,
Q(x) is the permanent charge of the channel, €,(x) is the relative dielectric coefficient, & is the vacuum
permittivity, and /(x) is the area of the cross-section of the channel over the point x. For the ith ion
species, ¢; is the concentration, z; the valence (the number of charges per particle), y; the electrochemical
potential, J; the flux density, and D;(x) the diffusion coefficient. The boundary conditions are, for
i=1,2,---,n,

DO) =V, ¢;0)=L >0, ®1)=0, c;(1)=R; > 0. (1.2)

An important characteristic for ion channels is the I-V (current-voltage) relation. Given a solution of
the boundary value problem (1.1) and (1.2), the current 1 is

I = iz,ﬂ}. (1.3)
i=1

If boundary concentrations L;’s and R;’s are fixed, then J;’s depend on V only and Eq (1.3) provides a
dependence of the current 7 on the voltage V.

The electrochemical potential w;(x) in (1.1) for the ith ion is decomposed into the ideal component
,ufd(x) and the excess component p;*(x), where

1 (x) = zieg(x) + kT In @ (1.4)

0
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with some characteristic number density c.

The classical PNP model only includes the ideal component p;:d (x) but does not take the excess
component u{*(x) into consideration, which means that ions are treated as volumeless point charges,
and water molecules are also treated as a dielectric medium without volumes. In the classical PNP
model, the ideal component ,ufd (x) reflects the collision between ion particles and the water molecules,
but ion-ion and ion-water interactions are ignored. There are a great deal of works related to study the
classical PNP model by numerical simulations [2,7,11,12,18,31-34] and theoretical analysis [1,35-50].

When ions are crowded in a highly narrow ion channel, the ion size effects must be included in
describing ion transport. The excess component p¢*(x) accounts for ion sizes, which are also relevant to
the selectivity of ion channels. To include ion size effects, some modifications have been developed to
improve the classical PNP model [24,51-53], and a lot of research has been done to understand the
effects of ion sizes on the dynamics of the PNP model [12,22-25,52,54-58].

The classical PNP model incorporates the permanent charge description of ion channel proteins into
the Poisson equation. In [1], the authors take the classical PNP model with two oppositely charged ion
species to analyze the permanent charge effects on ionic flows under the assumption that the permanent
charge Q(x) is given by the following form:

0, O<x<a,

O(x) =% Qp, a<x<b, (1.5)
0, b<x<l,

where Q is a constant. For large |Qy|, the existence of multiple solutions of the classical PNP model
1s justified in [37,40] by using the geometric singular perturbation theory [59,60]. However, explicit
expressions for the fluxes are not available due to the computational complexity. For a small |Q|, let

Ti=To+TuQo+0(Q5), I=Io+I0p+0Qp),i=1,2, (1.6)
and
A _H(a) , H®b)
H(x) = fo h(s)ds, a = HQ1) B = HQ) (1.7)

Using a regular perturbation expansion, the authors in [1] obtain explicit expressions for the first-order
approximation J;;, which is then used to show that small |Qy| strengthens or reduces the individual
flux, and examine the signs of the first-order approximation 7, under some conditions. Furthermore,
they analyze the maximum of J;; with respect to the channel geometry («, 8) by fixing the boundary
conditions, and the results in [1] support the structures of the ion channels.

The shape of a typical ion channel is often approximated as a cylindrical-like domain with variable
cross-sectional areas along its axis. The spatial distribution of amino acid side chains within an ion
channel defines the permanent charge of the channel, with acidic side chains contributing negative
charges and basic side chains contributing positive charges. The ion channel shape and the permanent
charge within an ion channel are closely related to the functions of an ion channel, such as selectivity,
permeability and gating. As mentioned in [37,40], the permanent charge Q(x) is reasonably modeled by
a piecewise constant function with one nonzero region or multiple nonzero regions.
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In this paper, it is assumed that the permanent charge Q(x) takes the following form:

0, O<x<a,
Qi1, a; < x<by,
Q(x) =10, by <x<ay, (1.8)
0s, ar < x<by,
0, b <x<l,

where |Q;| and |Q,| are small relative to the boundary concentrations L;’s and R;’s. Obviously, letting
Q1 =0or Q, =0, then (1.8) is reduced to (1.5).
Denote
_H@) . _H®) _H@) , _Hb)
HO VT HQ) TP T O HD TR T HQY

a) (1.9
The boundary value problem (1.1) and (1.2) is treated as a standard singularly perturbed problem in
this paper. First, the geometric singular perturbation theory is employed to get a singular orbit solution
for (1.1) and (1.2), then a regular perturbation expansion with respect to the small permanent charge
is used to obtain explicit expressions for ;. Finally, the effects of small permanent charges on the
fluxes and the /-V relation, which not only depend on the boundary conditions, but also depend on

the structures of ion channels (a,8;, @», ;) and the ratio u = %, are analyzed. Particularly, our
1
results indicate that the geometric structures of three-dimensional ion channels have a short and narrow

cross-section, which is explained in [1]. Also, our results indicate that the ratio u = % can change the
1
position of a short and narrow cross-section in ion channels.

In comparison with the article [1], there are some difficult points to be solved.
1) Fixing the boundary conditions, J;; only depends on two variables (a, ) in [1], but in this paper
Ji1 depends on four variables (a, 81, @3, 8,) and the ratio u = %; it is this difference that gives rise to

1
the difficulty for our analysis.

2) Lemma 4.6 in Section 4 in this paper is a new result which does not appear in [1], and it is crucial
to analyze the effects of the permanent charge on the fluxes.

3) Fixing the boundary conditions, the maximum of the function 7;; in four variables (a1, 81, @2, 32)
in this paper is much more difficult to examine than that of the function J;; in two variables (@, 8) in [1].

The rest of the paper is organized as follows. In Section 2, the geometric singular perturbation
framework for the classical PNP model is described, and a singular orbit of the boundary value problem
of the PNP model is constructed. In Section 3, a regular perturbation expansion of a singular orbit with
respect to small permanent charge is carried out, and extremely important formulae for /;; are derived.
In Section 4, the effects of the permanent charge on the fluxes, the maximum of J;;, and the signs of
7, are analyzed. Some conclusions are contained in Section 5. A proof of Proposition 3.4 is given in
the Appendix.

2. Problem setup

For the boundary value problem (1.1) and (1.2), we make the following assumptions, which are
basically the same as that in [1,37]:
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(A1). We consider two ion species (n = 2) with z; > 0 and z, < 0.

(A2). For the permanent charge Q(x) in (1.8), we assume |Q4| and |Q,| are small relative to L;’s and R;’s.
(A3). For u;(x), we only include the ideal component ufd (x), asin (1.4).

(A4). We assume that ,.(x) = &, and D;(x) = D; are constants.

With rescaling, we get

e e &r&okpT Ji
= _(D7 V= _(V7 2 = s Ji = 7>
¢ kBT kBT € 62 D,‘

and the expression (1.4) for ,u,-(x):,uﬁd(x). The boundary value problem (1.1) and (1.2) becomes, for
i=1,2,

g d d
——— () 7=¢| = —z161 — 2202 + Q(X),
h(x) dx dx 1)
dC,' d¢ _ d.’l _ .
h(X) (a + Zicia) =-J; dx =0,
with the following boundary conditions:
¢(0) =V, ¢(0) =L ¢(1)=0, c(l) =R 2.2

We will assume & > 0 is small, and treat system (2.1) as a singularly perturbed system, and apply the
geometric singular perturbation framework from [37,40] for the boundary value problem (2.1) and (2.2).

d
Introduce u = ed—¢, 7 = x and denote the derivative with respect to x by dot. System (2.1) becomes,
X
fori=1,2,

h@
h(z) 2.3)

gp=u, ein=-zc-20-01)-¢

System (2.3) will be treated as a dynamical system of phase space R’ with state variables
(¢, u,cy1,ca2,J1,J2, 7). System (2.3) is the so-called slow system. The rescaling x = &¢ of the inde-
pendent variable x gives rise to the fast system, fori = 1, 2:

h(7)
h(r) (2.4)

¢ =u, u=-zic,-20-01)-¢

)
—J, J|=0, T=¢
h(‘[‘) i T €

/ —
C; = —giciu —

where prime denotes the derivative with respect to the variable &.
Let B; and By be the subsets of the phase space R’ defined by

B, ={((V,u,Ly,L,, J,,J»,0) € R’ : arbitrary u, J,, J},

2.5
Br ={(0,u,R,Ry,J1,J5,1) € R : arbitrary u, J,, J,}. 2.5)
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Then, the original boundary value problem (2.1) and (2.2) is equivalent to a connecting problem, namely,
finding a solution of (2.3) or (2.4) from B; to Bg.

As developed in [37,40], a common method to analyze this connecting problem of classical PNP
models is first to reduce it to the limiting slow system by letting € = 0 in (2.3) and to the limiting fast
system by letting € = 0 in (2.4), then a singular orbit for the connecting problem is constructed by
matching slow orbits of the limiting slow system and fast orbits of the limiting fast system. Finally,
exchange lemmas in [59,60] can be used to show that there is a unique solution of the boundary value
problem (2.1) and (2.2) for small € > 0 in the vicinity of the singular orbit.

We now summarize the construction of a singular orbit derived in [37,40].

Note that the permanent charge Q(x) in (1.8) is discontinuous at x = a, x = by, x = a,, and x = b,.
It is natural that the interval [0, 1] is split into five subintervals: [0, a;], [a;, b1], [b1, a2], [az, D3], b2, 1],
and on each subinterval a singular orbit is constructed. Therefore, we preassign unknown values of ¢, ¢
and ¢, at x = a;, x = by, x = ap, and x = b, as follows:

d(a) =¢™, ci(ar) = ', ealar) = &5 ¢(br) = ¢, er(by) = &', ea(by) = B

(2.6)
$(a2) =9, c1(@) = ¢, 0c2(@r) = ¢ ¢(by) = ¢, c1(ba) = ¢, ca(by) = .

Let

B, ={(¢“,u, ], 5, J1, o, a;) € R : arbitrary u, Jy, Jo),
By, ={(#",u, ' Y, 1, o b)) € R7 - arbitrary u, Ji, Lo}, i = 1,2.

Using these twelve unknowns, a singular orbit can be constructed on each subinterval from the
following:

(i) The singular orbit on [0, a;] consists of two boundary layers (fast orbits) I’ at x = 0, 1";“ at
X = a,, and one regular layer (slow orbit) A, over (0, a,), which connects from B, to B,,. In particular,
given (¢“, c{', c}'), the scaled flux densities J?"” , Jg"” over (0, a;) and the value u;,(a,) are uniquely
determined.

(ii) The singular orbit on [ay, b;] consists of two boundary layers (fast orbits) I'Y' at x = a, l“lb1
at x = b; and one regular layer (slow orbit) A,, 5, over (ai, b;), which connects from B,, to By,. In
particular, given (¢“, c{',c}') and O cg‘ ), the scaled flux densities Jf"bl , Jg“’b' over (ap, by) and
the values u,(a;) and u;(b,) are uniquely determined.

(iii) The singular orbit on [by, a;] consists of two boundary layers (fast orbits) Ffl at x = by, l"l“2
at x = a, and one regular layer (slow orbit) A;, ,, over (b, a), which connects from By, to B,,. In
particular, given (¢, cll’1 , cgl) and (¢, c*, ¢5*), the scaled flux densities Jf ez Jé”’”z over (b, a,) and
the values u,(b;) and u;(a,) are uniquely determined.

(iv) The singular orbit on [a,, b,] consists of two boundary layers (fast orbits) I'}* at x = a,, Flbz
at x = b, and one regular layer (slow orbit) A,, 5, over (ay, b,), which connects from B,, to Bp,. In
particular, given (¢®, ¢{*,¢}’) and (>, cll’z, cgz), the scaled flux densities sz’bz, J;z’b 2 over (a,, by) and
the values u,(a,) and u;(b,) are uniquely determined.

(v) The singular orbit on [b,, 1] consists of two boundary layers (fast orbits) F},’2 at x = by, I'!
at x = 1 and one regular layer (slow orbit) A;,; over (b, 1), which connects from Bj,, to Bg. In
particular, given (9™, cll’z, clz’z), the scaled flux densities sz’l, Jé’z’l over (b,, 1) and the value u,(b,) are
uniquely determined.
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To obtain a singular orbit on [0, 1], one requires the following matching conditions:

0,a1 _ yai,b1 _ gybr,ax _ gyar,br _ ybo,1,

Jl _Jll _Jll 2_J12 z_le :

Jg,al :J;l’b‘ — ng,az — ng,bz — ng,l; (27)
uar) =u(a,), u(by) = u,(by), ufay) = u(az), u(by) = u,(by).

Note that the number of twelve conditions in (2.7) is exactly equal to that of twelve unknowns
preassigned in (2.6). Just as shown in [1,37], the matching conditions in (2.7) can reduce the singular
connecting problem to the system (43) in [37], which can be recast below fori = 1, 2:

2 cllli F1 (i) 2 Cgi 2P0 0; =0,
: bi _ gbisl . bi_ gbid
Z]C[f'ez'(q) P 4 chg’eZ2(¢ o) 4 0; =0,

Z2 - Z] i,l i aj _ paisT" i i _ hajsT i i
ctll — ctll e @P=¢NT) C; RPN Oi(¢™ — ¢,

22
27 = (g @ L g @ g (gh - g,
22
ay,l a by,r r
J; = cr—¢f [1 + zi(¢" - ¢ "l)] o= [1 + (@™ _¢R)]
= =
H(ay) Inck —Incd! H(1) - H(b) Inc? —1Inck
_ lel,r _ Clllz,l . Zl(¢b1,r _ ¢az,l) ]
H(ay) — H(by) Inc?"”" —1In ! (2.8)
ap,l by,r r
b:é—%'P+mwhwmq: &6 P*QWM_MH
H(ay) Inck —Inc"'l H() - H(b,) Inc?” —1Inck
_ C1271,r _ ng’l N Zz((ﬁbl’r _ ¢a2,l> ]
H(ay) — H(Dy) Inch” —In 'l

" = ¢ — (2101 + 222y,

il = ganWi+hy air _ —Qijl [1 — 2122(11+Jz)yi]
1 1
z1(J1 + J2)

(21 = 2)(c = ) + 220, — Pl
2[H(b;) — H(a;)] ’

b

J1+J2:—

where y; > 0 are also unknowns, and related symbols are collected in Table 1.

Remark 2.1. The symbol ¢“*" denotes the unique solution for the first equality in (2.8), which dose not
have an explicit formula. Similarly, the symbol ¢ denotes the unique solution for the second equality
in (2.8), which does not have an explicit formula.

It can be seen that a solution for (2.8) can determine a singular orbit (I'° U Nog U F;") uTHu

Ay UTPY U@ U Apy gy UTP)U (T2 U Ay, UTP) U (T2 U Ay, UTY), which connects By, and Bg;
see Figure 1 for an illustration.
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Table 1. Symbols.

Column 1 Column 2
L _ 1 —22Lp R _ _ 1 —2R
¢ =V 2122 1Ly ¢ T - ln 1Ry
L_ 1 = S L 1 2 Ty
cf = (@l (=22l)12 oy = —(nl) 2 (=22ly)72
| = s " | . s
1 = @RI (=R) T o = (iR (=Ry) 1
a; bi
ail _ pa;i 1 —26 bior — abi _ 1 )
¢ = g% 21-22 In zicf ¢ =¢" 21-22 In Zlc’l’i
¢ = @) TR ()T G = - o) (—zd) e
bi, 1 by bint—= b, 1 biy iy
Clzr — Z(Zlclz)~1 2 (_Z2C2[)~1 ) sz r_ _Z(Zlclt)@l 2 (_chzt)&l 2

Célli’r = gu(@i—¢"") CCI”'

Clln,l - ez1(¢bi—¢bi’1)clln

zZ,¢ + Z,C,

SR b L el Dl ol bl

Figure 1. A singular orbit connecting B; to Bg, where I', | A Ffl, I, | A Ffz, e,
I'! are limiting fast orbits and Noays Nay by s Nbyays Nas by and Ay, are limiting slow orbits.

Moreover, once a singular orbit is constructed, then as shown in [37,40], under some transversality
conditions, it can verified that there is a unique solution of the boundary value problem (2.1) and (2.2)
for small € > 0 in the vicinity of the singular orbit by using exchange lemmas [59, 60].

In this paper, due to the assumption (A2) that the constants |Q;| and |Q,| are small, then explicit
expansions of a singular orbit with respect to Q; and Q, can be obtained in the next section.

For convenience, denote Q; = Q and Q, = uQ, where the constant Q is small.

Mathematical Biosciences and Engineering
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3. Expansion of singular solutions in small |Q|

In this section, it is assumed that the constant |Q| is small. Therefore, we expand all unknown
quantities in systems (2.8) in Q; namely, fori = 1,2, let

; ; ; A2 b _ b ; A2

B =Gy FIO+ I+, =g IO+
h=cli+ el Q+ 0+, =0+ 0+,
bi b b; b A2 bi _ b b; bi 2
cl—clo+c“Q+cle +ee, cz—c20+c21Q+c22Q +--e,

2 2

Yi=Yio+yanQ+ypQ +---, Ji=Jio+JnQ+JpQ +---,
i Qi i it )2 Bl ail

U = U+ T+ IO+, G =+ O+ 0T (3.1
ol eail il A2 bil

¢ =Py + O+ O+, (] —c10+c“Q+c '+
o ail bid _ abil | abil il A2

et =g +c”Q+c 0% +. P =y + PO+ GO+,
b;,r b;,r T N2

¢ :Clo +C11Q+C Q+ c, :C20 +C21Q+C o+,

¢ = I+ O+ QP + - ¢”"’r:¢’3i”+¢?"”Q+¢Z"”Q2+-~

Then, by substituting (3.1) into (2.8), expanding the identities in Q, and comparing the terms of
like-powers in Q, we can obtain the zeroth-order solution and the first-order solution of (2.8), which
will be uesd to analyze effects of the permanent charge on ionic flows.

Remark 3.1. For small Q and small € > 0, the existence of a unique solution for (2.8) is proved
in [37,40] in the vicinity of a singular orbit. For our purpose, unknown quantities in (3.1) are only
expanded and calculated up to the first order.

3.1. Zeroth-order solution in |Q| of (2.8)

Actually, the zeroth-order solution of (2.8) has been solved in [37,39]. We summarize the results
below.

Proposition 3.2. The zeroth-order solution in Q of (2.8) is given by, fori = 1,2,

ai _ L R L a; a;
Clo = ¢f T ai(c] —¢p), 216y = —22Cy,
by _ L R L bi _ bi
Clb - Cl +Bi(cl - 61)7 Zlclto - _ZQCzé),

In c1 In c10 L In c10 Inc
= + s
0 Inc® —1Inck Inc® —1Inck
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R _ bi bi _ L
b In c] lncl0 . lncl0 Inc] R

% = Inck —Inct Inck —Inct ’

_ H(1) 1 (1 —ﬁi)ClL +ﬁiclf
Yo = 2z — )= b (1 —a)ct + aic®
Tio = r _Lclf —(V+InL —InRy),
H(1)(Incy —Incy)
ck— &
J2 (z2V+InL, —InR»).

~ H(1)(Inck —nck)

Corollary 3.3. Under electroneutrality boundary conditions 7Ly = —z,L, = L and z;R; = —23R, = R,
one has cf = Ll,cé = Lz,clf = Rl,cge =Ry, ¢t = V,¢R =0, and, fori=1,2,

zicly = L+ ai(R — L), zic]y = =265,
M= L+Bi(R-L), u1cl = —zch
Zlcl() - +ﬁi( - )’ Zlcl() - _Z2c209

_InR-In[L + (R - L)]

%o InR-1InL v
o = InR - In[L +BR-L1),
0o~ InR-1InL ’
H(1) (1 -B)L+BR
Yio = In ;
(z1—22)R-L) (1-a)L+aR
L-R
Jio = V+InL-InR),
0= DML Ry &Y TInE IR
L-R
Joo = (zuV+1InL —1InR).

" H()(nL—-1nR)

3.2. First-order solution in |Q| of (2.8)

Substituting (3.1) into (2.8), the first-order solution of (2.8) can be obtained by lengthy calculations.
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Proposition 3.4. First-order terms of the solution in Q of (2.8) are given by

a _ 22 g b a1l by
CH_Z_%(i DR Gl PR vt
b 22(B1 b Zzﬁl/l by

= = ———— (¢ —#) + - (¢ ¢0)+—2(Z2_Z1),

u

a Zz(az ) 2 2,U
C121 = (¢ - Ol)+ 2(Z2—Z1)’

ﬁ:@% 2 -+ = ey

22— 22— 2z - Zl)’

@ — o) +

aj a _
ac t o6 =735

Ko b by
Tyacn Z2621

(1 + 21 D)1 + 22)(cy = )(ln

b
z1(z1 — 2)cfpcp(In ek —Inck)

L L+ a0 + o —cp)(nck - Inc{hHu

b
Zl(Zl ZZ)C?%) 16(1ncl In CI]?)

1 0/1(‘150 0 )22 al(¢gz — ¢y )22 Au
ay + aj + aj
2Z1(Z1 - ZZ)CIO (Zl - ZZ)Clo (Zl - ZZ)Clo
b L+ 2.0+ 2)(cf) - ncf —Incy)

21(z1 — zz)ci’(‘)cll’(l)(ln cl—Inck) (3.2)

L (L2 + 20 —cp)(Inct —Incihu

1

1 —
L2ic) + 2265 = DX
a a /’t
Z1C121 + chzi = )
2
L a
o cy— lnclo
=

b
21(z — Zz)CC]% ron C1 In CR)

1 (51—1)(¢ 00224 ﬁ1(¢o Py )22

221 (Zl - ZZ)CI() (Z ZZ)CIO (Z ZZ)CI()
(1 + 201 + 2 — ) ek - Inc®

b
21(z1 — ) (In et — Incf)

O+a@ﬂ+@@@ —2)(Inck —In ¢

b
ZI(ZI ZZ)C(l% 16(111 Cl In C?)

1 +mrn% g%M+mw—wmw
2z1(z1 — 22)cip (21 — 22)cf (21 — 22)cf
b (L4200 + 2 — Inef —Inc

b
21(z1 — 22)cfyc) (1)(ln ci—Inc®)

U+m@ﬂ+@@@ )(Inf — In )
21(z = 2)cfch(n el — Inck)

7 _g&—nw“— 2l (B2 — D@ — ¢z

b
2ZI(Z1 - Z2)Cl(2) (Zl - ZZ)Cl() (Zl - Z2)ClO

_l_

az _
=

+
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and
; (81 = Dk — ancflgg — ¢ L _Bi— i@ - G
1=
21z — 2 o + o) 7z - Zl)Cloclo(Jlo + J20)
(z1d20 + 22J10)(cSh = 4 N o= g+ (B — B c
222(20 — Zl)C?(')C'f})(Jlo + Ja0)? Zl(Zz - Zl)(Cl — (10 + J20) iy
—C Dek = axckl(o ¢§2>ﬂ (B2 — an)cR(gg — py)
21 =
21(z2 — Zl)CmClo(Jlo + J20) Zl(Zz 20t (J1o + Ja0)
(2120 + 22J10)(€S3 = 2 N o 01 +(gy — P In B
22(z2 — 21)C] 610(110 + 20?2  2i(z2 =2k = Yo + )
J= A1 + (1 = B)zAl(1 +z14) N As[1 + (1 = By)z2oAl(1 + 21 D
" (z1 — 2)H(1) (z1 — z2)H(1) ’
I = A1 + (1 = Bz Al(1 + 224) N As[1 + (1 = By)zg AI(1 + 20 D)
2 (z2 — zDH(1) (z2 — z)H(1) ’
where

o — ¢t _ (= eer =)

= —’ 1 - b
Inck —Inck e (In ek —Inck)

€10%10
b b R
- Inc}y — Incf _ cipcio(In ck—Inc )(lnc —1Incf
- - b
Ay (e = (et = cfy

(cbz — ) (ck = e

b b
ciacpncl —Inck)

Inc? —Incfy  c2cdnct —Incf)(Incf —Inc?

, = -
A2 (CIO - ClO)(Cl - le)

Proof. The proof is given in the appendix.

(3.3)

3.4)

Remark 3.5. It can be seen that as Q1 = 0 or Q, = 0 in (1.8), the formulae for Ji, and Jy in

Proposition 3.4 are the same as those in [1].

4. Effects of permanent charge and channel geometry

In this section, we study effects of permanent charges and channel geometry on individual flux and

on [ — V relations under electroneutrality conditions:

ZlLl = —Z2L2 = L, and ZIRI = —Zsz = R.

4.1
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For small |Q|, the flux J; of the ith ion species and the current 7 are

Ji=DiJip+D;J;0 + O(Qz)» I=Iy+1,0+ O(Qz),i =1,2, 4.2)
where
To=z1D1Jyo +22D2Jy and I} = z: D Jy) + 20D2J. 4.3)

The quantities J;; and J,; will be used to analyze the dominating effects of permanent charges and
channel geometry on the ionic flow.

4.1. A comparison between zeroth-order and first-order in Q

For the ith ion species, i = 1,2, denote the difference of its electrochemical potentials at the two
boundaries by

,U? = ,U?(V, Li,R) = pi(0) — pi(1) = kpT(z;V + InL; — InR;). 4.4)

Under the electroneutrality condition (4.1), from Corollary 3.3,

I L-R uo Ly - R, K
07 2 HD(nL —InR)kgT  H()(nL, — InR,) kgT’ is
4.5)
o R-L uo L, - R M
07 LH()(nL—InR) kyT  H()(nLy, — InRy) kT’
Also, it follows from Proposition 3.4 that
I = (Al[(l — B))zV +InL — InR]
"=\ —2)HD(n L — In Ry
As[(1 = By)z,V +1InL — lnR],u) us
(z1 —22)H(D(InL —InR? JkgT’
(4.6)

_ (Al[(l —B)z1V+InL - InR]
"\ (@ —z)H)(In L - InR)?

As[(1 = By)ziV +1InL - lIlR],u) u
(z2—z)H)(nL —1InR)?> JkgT’

where a1, as, 81,5, are defined in (1.9), and Ay, A,, B}, B, defined in (3.4) become
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(B —a)(L—R)*

A{(L,R) = - |
[(1 — )L+ e RI[(1 — B1)L + BiR](In L — InR)
B(L.R) = In[(1 -81)L +,31R]; In[(1 - a))L + ole]’
| 2 (4.7)
Ay(L,R) = — (B> — ay)(L—R) |
[(1 — ar)L + a»R1[(1 — B2)L + B>R](In L — In R)
By(L.R) = In[(1 = B>)L + BoR] — In[(1 — a»)L + azR].

Ay

Lemma 4.1. The quantities A; = A{(L,R), By = B;(L,R),A; = A>(L,R), B, = B,(L,R), and ,uf(V; L,R)
scale invariantly in (L,R); that is, for any s > 0,
AI(SL’ SR) = AI(L’ R)a BI(SLa SR) = Bl(La R)’ AZ(SL’ SR) = AZ(L’ R)9
By(sL, sR) = By(L,R) and pi(V; sL, sR) = 12 (V; L, R).
Lemma 4.2. The quantities Jio(V; L,R) and 1,(V; L, R) scale linearly in (L,R), and J;;(V; L, R) and
I,(V; L,R) scale invariantly in (L,R); that is, for any s > 0,
Jio(V; sL, sR) = sJio(V; L,R), Lo(V;sL,sR) = sIy(V;L,R),

Ja(V;sL, sR) = Ju(V;L,R), 1,(V;sL,sR)=1,(V;L,R).

For convenience, the following function is introduced in [1] and is useful below. For 7 > 0, Let

tlnt—t+1 1
)= ———fort# land y(1) = =. 4.8
y(@©) (—Dnr o # landy(l) = 5 (4.8)

The following lemma was established in [1].

Lemma 4.3. For 1> 0,0 < y(1) < 1,y'() > 0.limy(1) = 0, lim y() = 1.
— t—+00

4.2. Dependence of the signs of Ji1 and J,; on channel geometry

In this section, the signs of Jy1Jjp and J5;J59 will be determined by the channel geometry
(1,1, @z, B2) and the boundary condition (V, L, R).

Lemma 4.4. Assume z; > 0 > 2. Then, Ay, A,, and R — L have the same sign.

Proof. This follows from the formulae for A; and A, in (4.7).
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Due to the fact that 0 < @; < 5; < 1, and i = 1, 2, the following lemma was established in [1].

L
Lemma 4.5. Lett = R and let y(t) be as in (4.8). Then, B; > 0 and linllBl- =1.
—

For t > 1, the following hold:
(i) If a; < y(t), then there exists a unique 3} € (a;, 1) such that

1-B;<0, forBi € (a;,B;)and 1 — B; >0 for B; € (B, 1).

(ii) If a; = y(t), then 1 — B; > Q.
Fort < 1, the following hold:

1
(iii) If 1 = B; < y(;), then there exists a unique «; € (0, ;) such that
1-B;<0, fora;e(a;,p;)and 1 —B; >0 for a; € (0,a;).

1
(iv)If1-6;> 'y(?), then 1 — B; > 0.

From (1.9), it can be seen that 0 < a; < 81 < a; < B, < 1; thus, the following result can
be established.

L
Lemma 4.6. Lett = R Then, By — B, > O fort> 1, and By — B, < 0 fort < 1.

Proof. We will justify that B — B, > 0 for t > 1. The statement that B; — B, < 0 for < 1 can be
justified in a similar way. Let

96 = (1 = @)+ @)((1 = By 4 o) Ineln PP g

(1 -t + ay

(A —avr+an)(( = por+ ) nen SN PL y

(1 - CZ])I +

Then, we have

8(B2)
(B2 — a@)(B1 — ay)(t = 1)*
Obviously, B; — B, has the same sign as that of g(5,). Note that ﬂlim g(B») = 0. By calculation, one has
2 a2

BI—BZZ

B = ((1 o+ @)1 = lnsin P23 P2p s

(1-ayt+ay
+(( = @)t + @) Int- (1 - DB — )

(A =Br+p

(1 —al)t+a1’

- ((1 —a)r + a’l)((l - Bt +,31)1nt1n
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_ (1 —ap)t+ an

_— f— 2 . f—
= a —ﬁZ)t+ﬁ2 (I-=0t"Int (ﬁl ay).

gll (ﬁz)

Therefore, for ¢ > 1, the function g(8,) is concave upward. Let

FB) = (1 —at+a)Int- (1= 0B — )

— (= ant+a)((1 =Byt +Bi)IntIn %
Then lim g'B2) = fB).
Note that lim f(81) = 0. By calculation, one has
FB) = (@ —a)nt-(1-1)7?
— (1 —at+a)d -nintln 8__@%
1B = —%(1 — It

Therefore, for ¢ > 1, the function f(8;) is concave downward. Additionally, it can be verified that

lim f(8,) >0 andﬁlim f(B) =(aa—a)Int-(1-1>*>0, fort > 1.

Br—az

It follows that Blim g (B>) = f(B1) = 0. Hence, we have g(B,) > 0 for ¢t > 1, that is, B; — B, > 0 for
2 =2
> 1.

Theorem 4.7. Assume B, = 1 and By = 1, where B, and B, are in (4.7).

L A

Fort = R #landpu < —A—l, then JioJ11 > 0 and JyoJ < 0y
2
L A

fort = R # landpu > o then JipJ11 < 0 and JryJr > 0.
2

L A L
Equivalently, for t = R #1land u < —A—l, a small positive Q strengthens |J,|; for t = ® # 1 and
2

A A
u> —A—l, a small positive Q reduces |J,|; fort = R # landu > —A—l, a small positive Q strengthens
2 2

A
|J2|; and fort = R #landpu < —le, a small positive Q reduces |J;|.
2
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Proof. As By = 1 and B, = 1, (4.6) reduces to

;o A+ Ayp(nL—InR) 4
"7 (@~ 2)H)(In L - InR)? kT’

(4.9)
g A+ Ayp(nL—InR) 45
T (G —z)H(W)(nL — InR? ksT
From (4.5), it follows that
o (L~ R)(A; + Ayp)())?
O @ - HMPAn L — InR)2(kT)?’

(4.10)

(R — L)(A; + Aop)(ud)?

JaJo1 =

22(z2 — zD)[H(DP(In L — In R)*(kpT)*

From (4.10), the result follows.

Theorem 4.8. Assume B, = 1 and B, # 1, where B, and B are in (4.7). Let V(} and V{f be as follows:

(A, + Asp)(InL — InR)

b

1 _ yl —
V)= VILR) =

2A1(1 - By)
s - (4.11)
+Ay)(InL —InR
V2=VXLR) =12
¢ = VqL.R) 2A(1—B)

ForAi(1 =B))>0andV < V! then J;pJy; > 0;
for Ay(1 = By) >0andV > V,, then JyoJ,; <0;
for A\(1 = B)) <0andV < V!, then JyoJi; <0;
for Aj(1 = B)) <0andV > V!, then J,oJ,; > 0;
for Ai(1 = By) > 0and V < V2, then JyJ > 0;
for A\(1 — By) > 0and V > V2, then JxJo; < 0;
for A\(1 = B)) < 0and V < V2, then JyJy < 0;
for A\(1 = B)) < 0and V > V2, then JyJo > 0.

Equivalently, for A\(1 — B)) > 0and V < V,, or A{(1 = B)) < 0 and V > V,, a small positive Q
strengthens |J,|; for Ay(1 — By) > 0and V > V;, orAi(1 —=By)) <0andV < V;, a small positive
Q reduces |Jy|; for Ay(1 — By) > 0and V < V,f, or Ai(1 = B)) < 0and V > V2, a small positive Q
strengthens |J,|; and for A;(1 — B)) > 0and V > V2, or A|(1 — By) < 0and V < V2, a small positive Q
reduces |J|.
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Proof. As B, = 1 and B # 1, (4.6) reduces to

A1 - BV + (A + Ayw(InL—1nR) 4

11 —

(z1 —22)H(1)(In L — In R)* kgT’ L1n
(4.12)
52 A= BouV + (A +Ayn(InL—InR) Iz
2o (2 — z)H()(In L — InR)? kT
From (4.5), it follows that
; _(L=RIA( - BV + (A + Ay)(In L - In R)| (1))
e 21z — 22)[H(P(n L — In R (ks T)? ’ @iz
I (R — D[A(1 = B))z1V + (A; + Ayu)(In L — In R)](15)* '
o 2(z2 — 2)[H(P(n L - In R (ksT)?
From (4.13), the result follows.
Remark 4.9. The signs of A\(1 — By) can be determined by Lemmas 4.4 and 4.5.
Lemma 4.10. Assume B, # 1, where B; is in (4.7).
A(1-B
For1-B,>0,t> 1,,u < —u, then A1(1 — By) + Ay(1 — Bz),l,t > 0;
;‘42(11 —gz)
for1 =B, >0,t>1,u> —u, then A{(1 — By) + Ax(1 — By)u < 0y
ﬁz(i - gz)
for1 =B, >0,t<1,u> —u, then A;(1 — By) + A>(1 — By)u > 0;
iz(i - gz)
for1 =B, >0,t< 1l,u< —u, then A{(1 — By) + Ax(1 — By)u < 0;
iz(i - gz)
for1 =B, <0,t>1,u> —u, then A|(1 — By) + Ax(1 — By)u > 0;
iz(% - gz)
for1 =B, <0,t>1,u< —1(—_1), then Aj(1 — By) + Ay(1 = By)u < 0;
212(% - gz)
for1 =B, <0,t<1l,u< —M, then A|(1 — By) + Ax(1 — By)u > 0;
iz(i - gz)
for1 =B, <0,1<1,u> —M, then A1(1 — By) + Ax(1 = By)u < 0.
Ax(1 - By)
Proof. For 1 — B, > 0,t > 1, it follows from Lemma 4.4 that A, < 0 and A,(1 — B;) < 0. Therefore, as
Ai(1-B
—Iﬁ, then A|(1 — By) + A>(1 — By)u > 0. Other cases can be similarly verified.
2l = b5y

Remark 4.11. The signs of 1 — B, can be determined by Lemma 4.5.
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Theorem 4.12. Assume B, # 1, where B, is in (4.7) and A1(1 — By) + Ax(1 — By)u # 0. Let V; and V;‘
be given by

(A; + Ayp)(In L — InR)
2[A1(1 = B)) + Ay(1 = Bo)ul’
(A, + Asp)(In L — InR)
z21[A1(1 = B) + Ay(1 = Byl

3_ 3 —
V=V, (LR = -
(4.14)

4 _ 4 _
Vi=VILR) = -

FOI’A[(l — Bl) +A2(1 - B2),u >0andV < V3, then JioJi1 > 0;
for Ay(1 = By)+Ax(1 = By)u>0andV > Vg, then JioJ11 <0;
for Ai(1 = B) + Ay(1 - Bu < 0and V <V, then JyoJ1; <0;
for Ay(1 = By)+A(1 -=B)u<0andV > V;, then JioJ1 > 0;
fOl"Al(l - B]) + A2(1 — BQ),U >0andV < V4, then Jy9Jo; > 0;
for A{(1 — B)) + Ay(1 = Bo)u > 0and V > V¥, then JyJa < 0;
for Ai(1 = B)) + Ay(1 = Bo)u < 0and V < V*, then JyJo; > 0;
for A/(1 = B)) + Ax(1 = By)u < 0and V > V* then JyyJ» < 0.

Equivalently, for Aj(1 — B)) + Ay(1 = B))u > 0and V < V3, or A((1 — B)) + Ay(1 = By)u < 0
and V > V;, a small positive Q strengthens |J,|; for A\(1 — By) + Ay(1 — By)u > 0and V > V;, or
Ai(1-B)+A,(1-By)u < 0and V < V3, a small positive Q reduces |J,|; for A{(1—B;)+A>(1-By)u > 0
and 'V < V;‘, orA1(1 —B) +A(1 - By)u<0andV < Vg, a small positive Q strengthens |J,|; and
for Ay(1 = B)) + Ay(1 = B)u>0andV > V4, or Aj(1 = B)) + Ax(1 = B)u < 0 and V > V2, a small
positive Q reduces |J5)|.

Proof. As B, # 1, based on (4.5) and (4.6), we have

(L- R)(/ff)z([Al(l By + As(1 - ByulzaV + (A; + Ay)(In L — In R))
21— DHD P L — n R} (kT

JlO-Ill =

b

(R - L>w§>2([A1<1 “ B+ As(1 = BulaV + (Ay + As(In L In R))
2(z — z2D[H()*(In L — In R)3(kpT)?

Jodo1 =

Therefore, the result follows.

Theorem 4.13. Assume B, # 1, where B, is in (4.7) and A1(1 — By) + A>(1 — By)u = 0, that is,
Ai(1 - By)

Ay(1 = By)
Fort>1and 1 - B, >0, then JioJ11 <0,
fort>1and 1 — B, <0, then JyoJ11 > 0;
fort<1land 1 — By >0, then JyoJ1; > 0;
fort<land1— B, <0, then JyoJ11 <0;
fort>1land 1 — B, >0, then Jy0J; > 0O;
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fort>1and 1 — B, <O, then Jy0J,; <O0;
fort<land1— B, >0, then JyJ2 <0;
fort <land1 - B, <0, then JogJ>; > 0.

Equivalently, fort > 1 and 1 — B, <0, ort < 1 and 1 — B, > 0, a small positive Q strengthens
|Jil; fort > 1and 1 — B, > 0, ort < 1 and 1 — B, < 0, a small positive Q reduces |J,|; fort > 1 and
1-B,>0,0rt<1land]1 - B, <0, asmall positive Q strengthens |J,|; and fort > 1 and 1 — B, <0,
ort<landl1 — B, >0, a small positive Q reduces |J,|.

A(1-B
Proof. As B, # 1 and u = —H, (4.6) reduces to
g 1 1 Ai(B) — By)
N G —z)HWUnL—nR) ksT 1-B,
(4.15)
- ! K Ai(Bi — By)
2T G —z)H()(nL—R) kT 1-B,
From (4.5), it follows that
I (L= B’ Ai(B) - By)
o = G = ) [HP(n L — nR2(ksT):  1—-B,
(4.16)
(R — L)(u)* A(B; - By)
J20J21 = .

2(z2 —z)[HP(An L - InRy*(kpT)* 1= B,

From (4.16) and Lemma 4.6, the result follows.

Remark 4.14. Analytically, the effects of a small permanent charge Q on an individual flux are proved
in Theorems 4.7, 4.8, 4.12, and 4.13, that is, a small positive Q can strengthens or reduce the individual
Slux |J1] or |J].

Proposition 4.15. The potentials V)(L,R), V;(L,R), V}(L,R), and V;(L,R) scale invariantly in (L, R).

Proof. It can be seen from Lemma 4.1 that A, A,, By, and B, scale invariantly in (L, R). Then, based on
the formulae for V (L, R), V_(L, R) in (4.8) and V] (L, R), V; (L, R) in (4.14), Proposition 4.15 is proved.

4.3. Dependence of magnitudes of Ji, and J,, on channel geometry

We now analyze how the magnitudes of J;; and J,; depend on the channel geometry (e, S, @2,52),
and the boundary condition (V, L, R).
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Recall that (Q],B],Qz,ﬂz) eQ= {0 < Sﬁ] <an Sﬂz < 1}, and

Jii = pl(al’ﬁl,al,ﬁ2) . /J(ls(va L’ R)
n ez —z)HW)(nL —InR? kgl
(4.17)
b = p2(ay, B, a2, 32) 5(ViL.R)
AT G —z)H)(nL—IR? kT
where
_ (@1 —=B)(L - R*(zV +InL—InR)
P @B = o T G RI = L + BiRI(n L — I R)
(1 —,81)L +ﬂ1R
— Vi T T iR
( (@2 — Bo)(L — R)?*(zV +InL—1nR)
[(1 — a2)L + &R - B)L + BRI(In L — InR)
(1 —ﬁz)L +ﬂ2R
_vaa—agL+%R)’
(4.18)

(@) —B1)(L-R*z;V+InL-InR)
[(1 —ay)L+ aR][(1 —B))L+ B1R](InL — InR)

n (1 -B1)L+pBiR
(1 —a;)L+aR

palay, B, @2, B2) =

—Zl‘/l

( (@ —Bo)(L-R)*(z;V+InL—InR)
[(1 —ap)L + a,R][(1 — B)L + BoR](In L — InR)

(I -p2)L +ﬁzR)
(1 —ay)L + R

—Z1V1n

L 1
Lemma 4.16. Assume y; = y(]—e) Ty € (0, 1) where y(t) € (0, 1) is defined in (4.8).
22

(I11). For 0 < u < 1, |pi(ay, B, az, B2)| attains its maximum at either (¥}, 1,1, 1), or (0,y7, B2, B2), where
)/T <pB, <L

(12). For u > 1, |pi(ay,B1, @z, B2)| attains its maximum at either (0,0,0,y)), or (ay,ay,y], 1), where
0<a <vj.

(13). For =1 < u <0, |pi(ay, B, a2, B2)| attains its maximum at either (0,y7,v}, 1), or (y], 1,1, 1).

(I4). For u < —1, |pi(ai,B1, @z, B2)| attains its maximum at either (0,0,0,v7), or (0,y7, v}, D.
Assume yi € (0, 1).

(I5). For |u| > 1, then |p\(ay, B, @2, B2)| attains its maximum at (0,0, 0, 1).

(16). For |u| < 1, then |p\(ay,B1, @z, B2)| attains its maximum at (0, 1,1, 1).
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.. . L 1
Similarly, Assume y; = y(E) — Zl_V €(0,1).

(I11). For 0 < u < 1, |paay, Br, @z, B2)| attains its maximum at either (5,1, 1, 1), or (0,3, B2, 82), where
7; <pB, <L

(112). For u > 1, |pa(ay, Bi1, a2, B2)| attains its maximum at either (0,0,0,v5), or (a1, ay,;, 1), where
0<a <,

(113). For =1 < u <0, |pa(ay, B1, @2, B2)| attains its maximum at either (0,73, v5, 1), or (y5,1,1,1).

(I14). For u < =1, |p2(ay, B1, a2, B2)| attains its maximum at either (0,0,0,y3), or (0,5, v5, 1).
Assume y5 ¢ (0, 1).

(115). For |u| > 1, |p2(ay, B1, @2, B2)| attains its maximum at (0, 0,0, 1).

(116). For |u| < 1, |p2(ay, B, a2, B2)| attains its maximum at (0, 1,1, 1).

Proof. Note that

opi(@1,B1,@,8)  (L—R*(zV+InL-InR)

da; " [(1 —a))L+a;RPP(AnL —1nR)
+2V R-L
YA aDL+ R’
opi(ai,Br,axBs) _ (L=R*(zV+InL-InR)
B " [ =B)L+BRP(InL -InR)
R—L

~eV A TBL AR
4.19)

opi(a,Br, 2,8 ( (L-R)*(z2V +InL—1InR)
day “\[(1 =)L + @R]*(InL — InR)

+ 2V R-L )
2V AL+ ;R M

opi(ay,pr,a2,B2) _( (L-R)?*(zV+InL-1nR)
B> ~ \[(1=B)L+BR1*(InL - InR)

+2V R-L )
A =pL+ R

Based on (4.19), it can be verified that any critical point of p(a;, 81, @2, 5,) satisfies the equality
a; =f1 = ax = Bo.

Moreover, pi(ay,Bi,az,6,) = 0 at any critical point (ay,S;,@2,5,). Hence, the maximum of
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|p1(ay, B, @2, 5,)| on Q is attained on the boundary of €2, which consists of the following five parts:

;1 =0,0<B <<Vl =6,0<a<an < B < 1}
UBi=ar,0<a <ap, < B < 1}
Ulay =6, 0<a; B <Br < 1}

U{B,=1,0<a <pr<ap < 1}

By analyzing the maximum of |p; (a1, 81, @2, 82)| on each part of the boundary of Q, the result follows.

To illustrate some analytical results in Lemma 4.16, some numerical simulations on the maximum
value of the function |p;(a;, 81, @2, 3>)| are carried out in the following.

For u = 0, the function |p;(ay, 81, @2, 3>)| in (4.18) reduces to a function in two variables a;,3; of
the following form:

(a1 = B1)(L-R*zV+InL—-InR)
[(1 —ay)L+ aR][(1 —B1)L+B1R](InL — InR)

(I -B)L+BiR
(1 - all)L'i‘ alR’

piay, Bi, a2, B2) =
(4.20)

— ZQVll’l

where 0 < @ < 8; < 1, which is independent of a5, 3.

Actually, u = 0 corresponds to the case that the permanent charge Q(x) takes the form of (1.5), that
is, the permanent charge Q(x) with one nonzero region, which has been analyzed in [1]. Moreover, it
has been proved in [1] that

for y € (0, 1), |pi(a1,B1, @z, B2)| for u = 0 in (4.20) attains its maximum at either (0, y}) or (y}, 1),
and

for y} ¢ (0, 1), |pi(ai,B1, a2, B2)| for u = 0 in (4.20) attains its maximum at (0, 1).

It can be seen that these results are consistent with those of |p; (a4, 81, @2, 82)| for u = 0 in (I7) and
(16), which are described in Lemma 4.16.

Because |p;(a1,B1, a2, 8>)| for p = 0 in (4.20) is a function in two variables a1, 8, the graph of
the function |p;(a4, 1, @2,B2)| for u = 0 in (4.20) can be visualized in three dimensional space. The
graph of the function |p;(ay,B1, @2, B>)| for u = 0 in (4.20) is plotted in Figure 2, which supports these
analytical results. Specifically, from Figure 2, it can be seen that

for yj € (0, 1), |pi(ai, B1, @z, B2)| for u = 0 in (4.20) attains its maximum at either (0, y}), and

for v} ¢ (0, 1), |pi(ai,B1, a2, B2)| for u = 0 in (4.20) attains its maximum at (0, 1).

For u # 0, the domain of the function |p;(a4, 81, @2, 52)| in four variables, given in (4.18), is

Q:{Oﬁa’lﬁﬁlﬁazfﬁzél}.

Mathematical Biosciences and Engineering Volume 23, Issue 3, 636-677.



659

Therefore, to visualize the graph of the function |p;(a;, 81, @2, 5,)| in (4.18) in three dimensional space,
it is necessary to fix two variables, and a5, 8, are chosen to be fixed in our numerical simulations.

081 () ’ (®)

<106 g: 0.4
Sl S
Q‘L 0.4 - Q:
S'j 02 S_ 0.2
= =
0
1 > - 1 >__ >L
: P 1 0 ~ |
o 0.6 0.8 0.6
o «a B8
1 1
Figure 2. The parameters in image (a) are chosen as L = 6,R = 3,7, = -1,V = 10, and

=0.6573 € (0, 1).The parameters in image (b) are chosenas L = 6,R =3,z, = -1,V = 0.5,
and y] = 2.5573 ¢ (0, 1).

Fixing @, = B,, it can be seen that |p (a1, 51, @2,5,)| in (4.18) also reduces to a function in two vari-
ables a4, 8; in (4.20), which is independent of u. Therefore, the graph of the function |p (a1, 81, @2,5,)|
in (4.18) is the same as that in Figure 2, which is consistent with the analytical results in (I7), (13), and
(16), described in Lemma 4.16.

Fix @, < B,, and to demonstrate the influence of the parameter u on the graph of the function
|p1(ay, B, @z, 5,)] in (4.18), other parameters L, R, 2, V, a,, 8, are chosen to remain unchanged.

1
Fixing L = 6,R = 3,20 = —1, and V = 10, it follows that y] = y(< )——V = 0.6573 € (0,1)

by calculation, where y(¢) is defined in (4.8). Also, fixing a, = y] = 0. 6573 ,B> = 1, the function
|p1(ay, B, @2, 5)] in (4.18) is plotted in Figure 3 by taking 4 = 0.5, = 2,u = =0.5, and u = 2.

Image (b) for u = 2 in Figure 3 indicates |p;(ay, 81, @2, (>)| attains its maximum at (a1, @i, Y], 1),
where 0 < a; <y}, which is consistent with the analytical results in (/2) described in Lemma 4.16.

Images (c) and (d) for u = —0.5 and ¢ = -2 in Figure 3 indicate that |p;(ay, S, a2, 3>)| attains its
maximum at (0, y},¥], 1), which is consistent with the analytical results in (/3) and (/4) described in
Lemma 4.16. There is one difference between images (c) and (d) in Figure 3: The maximum value of
|p1(ay, B1, @2, 5,)| in image (c) is less than 1, but the maximum value of |p(ay, 81, @2, 5,)| in image (d)
is greater than 1.6.

Moreover, it can be seen that images (a)—(d) in Figure 3 indicate that as the parameter i changes, the
maximum value of |p;(a1, 1, @2, 32)| changes accordingly.

To visualize the influence of the parameters a, and 3, on the graph of the function |p(a, 81, @2,5,)|
in (4.18), other parameters, L, R, z,, V and u, are chosen to be the same as those of Figure 3. Then. the
graph of the function |p (a1, 81, @2,52)| in (4.18) is plotted in Figure 4 by fixing @, = 0.8 and 3, = 0.9.
Also, the parameters @, and 3, can be fixed to obtain other values belonging to the interval [0, 1].
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n
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Figure 3. The parameters are chosen as L = 6,R = 3,2z, = =1,V = 10,9} = 0.6573,a, =

0.6573, and B, = 1. Images (a), (b),(c),(d) correspond to u = 0.5,u = 2,u = —0.5, and
u = —2, respectively.

Based on Lemma 4.16, the following results can be obtained.

Proposition 4.17. The maximum of |J11| occurs in the same way as that of |pi(a1,B1, @2, 32)|, and the
maximum of |J21| occurs in the same way as that of |p2(ay, B1, @2, 52)|.

Proof. From the expressions for J;; and J; in (4.17), it can be seen that choosing a, 81, @;, and 5, as
four independent variables and fixing other parameters, the conditions for the maximum of |/y;| and |J5;]
are the same as those for the maximum of |p,(a1, 81, @3, 52)| and |pa2(ay, B, @2, 52)| in (4.18). Therefore,

Proposition 4.17 is proved.

Remark 4.18. As explained in [1], various conditions for the maximum of |J;;| are related to the

structures of the ion channels.

For example, in order to make (a1, 81, @2,532) = (0,0,0, 1), h(x) can take the following form: Namely,
by, —ay, < 1, and h(x) for x € (ay, by) is much smaller than h(x) for x ¢ [a,, b;].
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For another example, in order to make (a1, 81, @2,52) = (0,1, 1, 1), h(x) can take the follwoing form:
Namely, by — a; < 1, and h(x) for x € (ay, b)) is much smaller than h(x) for x ¢ [a,, by].

These two cases both imply that the ion channels have a short and narrow cross-section. Similar
explanations work for other conditions.

Remark 4.19. The ratio u = Q% is also a key parameter to determine the conditions for the maximum
1

of |Ji|l- Moreover, when the parameter u changes, the maximum point of |J;1| changes accordingly;
therefore, the ratio u can change the position of a short and narrow cross-section in ion channels.

=)
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& &
Ip, (a8 05.)l
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|pl((vl Hl @, [32)|
o o <
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Figure 4. The parameters are chosenas L =6,R =3,z, = -1,V = 10,a, = 0.8 and 3, = 0.9.
Images (a), (b), (c), and (d) correspond to u = 0.5, u = 2,4 = —0.5, and u = -2, respectively.

4.4. Permanent charge effects on I-V relation

In this section, it is assumed that A; # 0, and i = 1, 2.
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It follows from (4.5) and (4.6) that

L-R ] s P(V;L,R)
Io= (Drok = Doz ) 1y = @21)
HOnL—nR\ "ksT kT (21 — 2)H(D)
where A = L and
InL-1nR
P =P(V;L,R) = 2122(z1 Dy — 22D2)[A1(1 = By) + Ay(1 — By)u]A®
+ [2122(D1 — D2)[A((1 — By) + Ax(1 — By)u] (4.22)

+(22D) — ZDY)(A| + Ag) | + (21D — 22D7)(A} + Ajp).

Theorem 4.20. For Q = 0, the zeroth order in & approximation of the reversal potential V., is defined by

D,—-D
View = Vieo(L,R) = —l—z(lnL - lIlR) (423)
21Dy — 22D»

Hence, 10> 0ifV >V,,,and Iy <0ifV < V,,.

Proof. From the expressions for 7 in (4.21), it follows that

L-R

L= gL —mR

((Z1D1 - Z2D2)V + (D1 - Dz)(lnL —1In R)) (424)

Because z; D — 20D, > 0, Theorem 4.20 is proved.

We now examine the sign of 7 to determine the leading effects of the permanent charge on
the current.
Note that if A;(1 — By) + Ay(1 — By)u = 0, then

1
= TR L =R

(z1D1 — 23D2) (A} + Ay)V

(4.25)
+ (Z1D1 — ZgDz)(Al + Az/.l)(ln L—-1n R)]

Also, the assumption A;(1 — By) + A>(1 — B)u = O means (I): B, =1 and B; = 1, or (II): B, # 1 and
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_ _A(-B)
A1 = By)’

For ziDy — 23D, # 0, let

(ZIDI - Z2D2)(ln L — ln R)

V0= VYL,R) = -
71Dy = 23D,

Lemma 4.21. The signs of Ay + Axu are collected in the following Table 2.

Table 2. Signs of A| + Ayu.

Column 1 Column 2

L A1 L Al
Ift==>1,u<—-——,thenA; +Au>0 Ift=—=<1,u>—-——,thenA; +Au>0
R <=4 enA; + Ay R H> = enA; + Ay

L A L A
Ift==>1,u>—-——,thenA; +Au<0 Ifr=—=—<l,u<—-—,thenA;+Au<0
R p> s then Ay +Axp R <= then A+ Aqp

L A
Proof. If t = R > 1, it follows from Lemma 4.4 that A, < 0. Therefore, as u > _A_l’ Ap + Ay > 0.
2
Other cases can be similarly verified.

Theorem 4.22. Assume B, = 1 and B, = 1.
Ifz%Dl - Z%Dz =0,then I, >0for Ay +Ayu>0and I, <0 for A, + Au < 0.

(Z1D1 = 3 D2)(A} + Ayp)

>0, then I, >0forV>V'and I, <0forV < V°
InL-InR

(22D — ZZD1)(A; + Aop)
InL-InR

If <0, thenI,>0forV<V'and I, <0forV > VP

Proof. Assume B, = 1 and B; = 1, then A(1 — By) + A>(1 — By)u = 0, and the formula for 7 is given
by (4.25). Based on the formula for 7 in (4.25), the statement of Theorem 4.22 can be verified.

A1 - By)
. Ay(1 - By)
Ift= R #land 1 — By >0, then A} + Ayu < 0.

Lemma 4.23. Assume B, # 1 and u = —

L
Iftzﬁilandl—Bz<0, then Ay + Au > 0.
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A(1-B
Proof. As B, # 1 and u = —H, then, one has
Ai(B; - B
Ay + At = AuBi - B) (4.26)
1-B,

Based on (4.26) and Lemma 4.6, the result follows.
_A1-By)
Ay(1 = By)
Ifz%Dl - Z%Dz =0,then I, >0for Ay +Ayu>0and I, <0 for A, + Au < 0.

Theorem 4.24. Assume B, # 1 and u =

(z1D1 — 3D2)(A) + Aop)
InL—-1nR

If >0, thenI; >0forV>V'and I, <0 forV < V°.

(23D — ZZD2)(A1 + Aop)
InL-1nR

If <0, thenI, >0forV<V'and I, <0forV > V°

A(l-B
_ 1( 1)’ then A1(1 _ Bl) + A2(1 — Bz)lJ = 0, and the formula
Ax(1 - By)

for 7, is given by (4.25). Based on the formula for 7, in (4.25), the statement of Theorem 4.22 can
be verified.

Proof. Assume B, # 1 and u =

Based on (4.22), if A1(1 — By) + Ay(1 — By)u # 0, then P = 0 is a quadratic equation in A whose
discriminant is

A =z7175(Dy — Dy)*[A (1 = By — 1)

4.27)
+ Ay(1 = By —rOul[Ai(1 = By — ry) + Ay(1 = By — ry)ul,
where r_ < r, < 0is given by
(@ VD1 -2 VD,)? and 7. = (z1 VD1 + 22 VD,)? (4.28)
- = + — . .
2122(VDy — VD»)? 2122(VDy + VD»)?
Note that, if D; = D,, then
(z1 + 22)°
r_.=-o0o and r, = ——.
4z120
For convenience, let
Ai(1-By-r) Ai(1-By-ry) Ai(1-By)
- — R = — d = - 4.29
-8y 7 a0 -8,-r) T TR0 - B (*29)
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Note that if r, = 0, then u, = us.
Lemma 4.25. Assume 1 — B, = 0.

L
Ifl = E > 1, then A1(1 — By) + Ax(1 —Bz),u > OfOI" 1-B; <0and A1(1 — By) + Ay(1 —Bz),u < OfOI"
1-B;>0.

L
Ifl = E <1, then A1(1 — By) + A»(1 —Bz),u > OfOI" 1-B; >0and A1(1 — By) + Ay(1 —Bz),u < OfOI"
1-B; <0.

L
Proof. 1If t = ® > 1, it follows from Lemma 4.4 that A; < 0. Additionally, assume 1 — B, = 0. Then
A1(1 —B))+Ax(1 —BZ),LC =A(1-B)) > 0 for l—Bl <0, andAl(l —-B))+Ax(1 —BZ),LL =A|(1-B)) < 0
for 1 — By > 0. The other case can be verified similarly.

Remark 4.26. As 1 — B, # 0, the sign of A{(1 — By) + Ay(1 — By)u is determined by Lemma 4.10.

Lemma 4.27. (i) Assume r_ <1 — B, < r,.

L L
Then, pu, < uz < uy fort = R > 1, and uy < puz < o fort = R < 1L
(ii) Assume 1 — B, < r_.

L L
Then, uy < up < us fort = R > 1, and uz < puy <y fort = R < 1.
(iii) Assume r, <1 — B, <0.

L L
Then, uz < uy < up fort = 7 > 1, and uy < py < usz fort = R < 1.
(iv) Assume 1 — B, > 0.

L L
Then, uy < o < usz fort = R > 1, and pus < puy < uy fort = R < 1.

Proof. Note that

A(ry —r_)(B, - By)

s =B —r)(1-B,-r)
Ap-r(B,— By)
— = , 4,
o= =B, - r)(1 - By) (430)
_ Ay -ri(By - By)
M3 — My =

Ay(1 =By —ry)(1 - Bz)'

Based on (4.30) and Lemma 4.6, the result follows.

Lemma 4.28. Assumer_ <1 — B, <r,.
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L
Ift:I_Q>1’ then A > O for u, < u < u;, A <O foru > uy oru < up, and A = 0 for u = u, or
H = M.

L
Ift:E<1,thenA>0f0r,u1<y<u2,A<0f0ru>y20ru<,u1,andA:0foru:ulor
o= Ha.

Proof. Assumer_ <1 —-B,<r,,thenl —-B,—-r_>0and1-B,-r, <O0.

L
Ifr= R > 1, it follows from Lemma 4.4 that A, < 0. Therefore, A,(1 — B, — r_) < 0 and A,(1 —
B, — 7'+) > 0.

Ai(1-B; - Ai(l1-By—-r_
i L) <u<-— i L7 ). Therefore,

Ay(1=By—ry) Ay(1=By—r.)

A1 =By =r) +As(1 = By —r)u > 0, and A, (1 = By — r,) + As(1 — By — r.)u > 0. Based on the

expression for A in (4.27), it can be seen that A > 0.
Other cases can be verified similarly.

For p, < p < yy, it follows from (4.29) that —

Lemma 4.29. Assume 1 — B, & [r_,r.].

Ift = %> 1, then A < O for u; < u < pa, A > 0 foru > pp or u < uy, and A = 0 for u = u; or
H = M.

Ift = %< 1, then A < O foru, < u < puy, A >0 foru> puy oru < up, and A =0 for u = u; or
H = M.
Proof. The proof of Lemma 4.29 is similar to that of Lemma 4.28.

Lemma 4.30. Assume 1 — B, = r_.
L
Ift = B > 1, then A < 0 for u < uz, A > 0 for u > un, and A = 0 for u = u,.
L
Ift= R <1, then A <O for u> u, A >0 for u < un, and A = 0 for u = .
Proof. Assume 1 — B, =r_,then 1 — B, — r_ = 0. From (4.28), it can be seen that r_ < r,. Therefore,
1-By,—r, < 0.
L
Ifr= R > 1, it follows from Lemma 4.4 that A; < 0 and A, < 0. Therefore, A,(1 — B, —r,) > 0.

L
Ifr= R > 1, it follows from Lemma 4.6 that —B; < —B,. Therefore, 1 — B; — r_ < 0.

Ai(1-By-ry)
. Therefore, A{(1 — B; — + A>(1 -
(=B, =) erefore, A;( 1 —r) + Ax(

B, — ry)u < 0. Based on the expression for A in (4.27), it can be seen that A < 0.
Other cases can be verified similarly.

For u < u,, it follows from (4.29) that u < —

Lemma 4.31. Assume 1 — B, = r,.

L

Ift=1—3>1, then A < 0 for u > uy, A >0 for u < uy, and A = 0 for u = ;.
L

Ift:1_€<1’ then A < 0 for u < uy, A >0 for u > uy, and A = 0 for u = ;.

Proof. The proof of Lemma 4.31 is similar to that of Lemma 4.30.
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Remark 4.32. In Lemmas 4.28-4.31, conditions in terms of 1 — B, can be made in terms of a,,8,, L
and R by using Lemma 4.5.

Theorem 4.33. For the sign of 1, in (4.21), one has the following results:

(i) IfA <0, then I < OfOI"Al(l —B))+A,(1 —Bz),u >0and I, > OfOVAl(l —B))+A,(1 —Bz)/,t < 0.

(ii) If A = O, then there exists one potential V) = V)(L, R) such that

(iil ) if V = Vg, then I, =0;

(ii2) if V # VO then T, < 0 for Ay(1-=B))+A,(1-=By)u > 0and I, > 0 for A\(1-B;)+A>(1-B,)u < 0.

(iii) If A > 0, then there exist two potentials Vi = V7(L, R) such that

(iiil ) if V. = V*, then 1| = 0;

(iii2) if V. € (V, V]), then Iy > 0 for Ai(1 — By) + Ay(1 = By)u > 0 and I, < 0 for Ai(1 — By) +
Ay(1 = Byu < 0;

(iti3) if V ¢ [V, V], then I, <0 for Ai(1 = By) + Ay(1 = Bo)u > 0 and I, > 0 for A\(1 — By) +
Ay (1 — Bz),u < 0.

Proof. From (4.21) and (4.22), it can be seen that 7; is a quadratic equation in V by fixing other
parameters, and its discriminant A is given by (4.27). Therefore, based on (4.21) and (4.22), if A < 0,
then 7, < O for Ai(1 — By) + A>(1 — B,)u > 0 and an arbitrary V; if A < 0, then 7; > O for
Ai(1 = By) + Ay(1 — By)u < 0 and an arbitrary V.

Other cases can be verified similarly.

Remark 4.34. The sign of A|(1 — By) + Ay(1 — By)u in Theorem 4.33 is determined by Lemmas 4.10
and 4.25. The sign of A in Theorem 4.33 is determined by Lemmas 4.28-4.31.

Remark 4.35. In summary, the effects of a small permanent charge on the I-V relation are analytically
proved in Theorems 4.22, 4.24, and 4.33, which indicate that a small positive Q can strengthens or
reduce the current I based on (4.2).

To illustrate some analytical results in Theorems 4.22, 4.24, and 4.33, numerical simulations on the
I-V relation are carried out and shown in Figure 5.
From Figure 5, the following can be seen:

(I Q =0, that is, without the permanent charge, then the /-V relation is a straight line.
D) @ =0.05, and u = 0, that is, the permanent charge has one nonzero region, and a small positive Q
can strengthens or reduce the current /.
I Q =0.05,u=1or Q =0.05,u = -2, that is, the permanent charges have two nonzero regions,
and a small positive Q can furthermore strengthens or reduce the current /.

Also, the following can be easily verified:

Proposition 4.36. The critical potentials V,.,(L,R), V'(L,R), VJ(L, R), and V; (L, R) scale invariantly
in (L, R).

Proof. From the expression for V,.,(L,R) in (4.23), it can be seen that V,.,(L, R) scales invariantly
in (L,R). From Lemma 4.1, it follows that A;, B, A,, and B, scale invariantly in (L, R). Therefore,
based on (4.22), it can be seen that the critical potentials VO(L, R), VS(L, R), and ti (L,R), as roots of
P(V; L,R) = 0, scale invariantly in (L, R) accordingly.
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Figure 5. The parameters are chosen as z; = 1,20 = —1,D; = 4,D, = 2,a; = 02,6, =

04, = 0.6,8, = 0.8 and H(1) = 1. The left image and right image correspond to
L=6,R=3and L = 3,R = 6, respectively.

5. Conclusions

The PNP model is a very popular continuum theory describing ion transport in complex biological
systems. With the electrochemical potential in (1.4) and the permanent charge in (1.8), the classical
PNP model including two oppositely charged ions is used in this paper to study the effects of the small
permanent charge and channel geometry (a1, 1, @»,3,) on ionic flows. By employing the geometric
singular perturbation theory and a regular perturbation expansion, we obtain explicit expressions for the
first-order approximation J;; in (3.3) of individual flux, which is a very complicated function of multiple
variables. Based on the properties of J;;, the effects of the permanent charge on the fluxes is analyzed in
Theorems 4.7, 4.8, 4.12, and 4.13, which indicate that small |Q| strengthens or reduces the individual
flux. Under some conditions, the critical potentials and the signs of 7 are justified in Theorems 4.22,
4.24, and 4.33. Also, various conditions for the maximum of J;; are identified in Proposition 4.17,
which are related to the structures of the ion channels, namely, the ion channels have a short and narrow
cross-section.

Relative to the article [1], there are some differences due to the permanent charge in (1.8). Specifically,

the ratio u = 9 is an additional parameter included in our analysis. Lemma 4.6 is also a new result

related to the chellnnel geometry (1,1, @2, 32). Moreover J;; is a function in multivariables a, 81, @3, 5>,
and u. On the other hand, it can be seen that as Q; = 0 or O, = 0 in (1.8), the formula for J;; in
Proposition 3.4 is the same as that in [1], and the results in this paper can be reduced to those in [1].

The function J;; in (3.3) explicitly depends on the boundary conditions, the channel geometry
(a1,B1,a2,B>), and u in a very complicated way. Therefore, it is very convenient to carry out extensive
numerical experiments on the individual flux.

In this paper, due to the one-dimensional version of the steady-state PNP model under study, there are
some existing results, such as finite-dimensional geometric singular perturbation theory and the exchange
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lemma, which can be employed to prove the existence of a unique solution for (2.8) in the vicinity of a
singular orbit for small Q and small € > 0. Afterwards, the effects of the small permanent charge and
channel geometry on ionic flow can be further analyzed. However, it is very challenging as to whether a
two-dimensional version or three-dimensional version of the steady-state PNP model can be theoretically
analyzed in a similar way. From a dynamical view, a two-dimensional version or three-dimensional
version of the steady-state PNP model is an infinite-dimensional dynamical system. Recently, in [61],
finite-dimensional geometric singular perturbation theory is extended to an infinite-dimensional version,
which can be used to analyze fast-slow systems of partial differential equations.

Apart from mathematical analysis of the dynamics of the one-dimensional version of the steady-
state PNP model, there are extensive numerical works for the PNP system [62-67]. In particular,
Liu et al. [64—66] proposed both the first-order and second-order numerical schemes which preserve
three theoretical properties: unique solvability/positivity-preserving, unconditional energy stability, and
optimal rate convergence analysis in the energetic variational formulation. Since the ion concentration
must be non-negative, numerical algorithms preserving positivity proposed in [64—66] will be very
important for the ion concentrations. Accordingly, it is an important problem whether numerical
algorithms developed in [64—66] can be applicable to the PNP model studied in this article.
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Appendix

In this section, we give a proof of Proposition 3.4.

Proof. First, by substituting (3.1) into (2.8) and Table 1, the following formulae can be obtained.
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Then, by using the results in Proposition 3.2 and Lemma 5.1, and by substituting (3.1) into (2.8) and

Table 1, one obtains
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Finally, by solving the linear algebraic equations in (5.1)—(5.3), Proposition 3.4 is proved.
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