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Abstract: In this paper, the classical Poisson-Nernst-Planck (PNP) model describing ion transport
through a membrane channel is used to study the effects of small permanent charges and the structures
of ion channels on ionic flows. The model under study includes two oppositely charged ion species,
and the permanent charge in this model is a piecewise constant function with two nonzero regions.
By rescaling, the classical PNP model can be viewed as a singularly perturbed differential equation
system. Therefore, the geometric singular perturbation theory is employed to get a singular orbit.
Assuming that the permanent charge density is small, a regular perturbation expansion is used to obtain
the first-order approximation of the individual flux, which acts as a basis for our analysis. Then, the
effects of small permanent charges on the fluxes and the current-voltage relation, which not only depend
on the boundary conditions, but also depend on the structures of ion channels and the ratio between two
nonzero permanent charge densities, are analyzed in this paper. Particularly, our results indicate that the
geometric structures of three-dimensional ion channels have a short and narrow cross-section, which
is explained in [1]. Also, our results indicate that the ratio between two nonzero permanent charge
densities can change the position of a short and narrow cross-section in ion channels.
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1. Introduction

Ion channels are a class of proteins observed in cell membranes. These proteins form pores and
accessory structures in the cell membrane, allowing specific ions to pass through while maintaining
cellular homeostasis. They play important roles in cellular activity via controlling the flow of ions, and
are fundamental elements in many basic biological processes from excitation and signaling to secretion
and absorption. Therefore, ion channels are crucial to cell survival and function.

To understand the complex behavior of ion channels, molecular dynamics model is used, in which
ion, water, and protein dynamics are described in atomic detail by making use of classical force
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fields to describe molecular motions. To improve the computational efficiency in molecular dynamics
simulations, Brownian dynamics and the Monte Carlo approach are developed; the former is based on
the stochastic equation of the motions of ions, which describes some effective potential effects, and the
latter computes the probability of the movement of a selected set of ion species by assuming that the
ions are undergoing a random walk on a discrete mesh [2–6].

One of the most widely used models to describe ionic transport and electrostatic interactions in ion
channels is the Poisson-Nernst-Planck (PNP) model which couples the Poisson equation for the electric
potential with the Nernst–Planck equations that describe the fluxes of ionic species under the influence
of both electrical and concentration gradients [7–15]. As a mean field continuum theory, the ion species
involved in the PNP model are represented by macroscopic ion concentrations instead of microscopic
discrete particles. Also, the PNP model can be derived from the Langevin-Poisson system [12, 16–20],
the Maxwell-Boltzmann equations [5, 13, 18, 21], and the energy variational analysis [22–25]. Recently,
researchers have employed coupled PNP and the Navier-Stokes equations to model ion channels, which
provide a more detailed description of the ionic distribution [22, 26–29].

In this paper, the following one-dimensional version of the steady-state PNP type model [30, 31]
is studied:

1
h(x)

d
dx

(
εr(x)ε0h(x)

dΦ
dx

)
= −e

 n∑
j=1

z jc j(x) + Q(x)

 ,
dJi

dx
= 0, −Ji =

1
kBT

Di(x)h(x)ci(x)
dµi

dx
, i = 1, 2, · · · , n,

(1.1)

where x ∈ [0, 1] is the coordinate along the axis of the channel that is normalized to [0, 1], e is the
elementary charge, kB the Boltzmann constant, T the absolute temperature, Φ is the electric potential,
Q(x) is the permanent charge of the channel, εr(x) is the relative dielectric coefficient, ε0 is the vacuum
permittivity, and h(x) is the area of the cross-section of the channel over the point x. For the ith ion
species, ci is the concentration, zi the valence (the number of charges per particle), µi the electrochemical
potential, Ji the flux density, and Di(x) the diffusion coefficient. The boundary conditions are, for
i = 1, 2, · · · , n,

Φ(0) = V, ci(0) = Li > 0; Φ(1) = 0, ci(1) = Ri > 0. (1.2)

An important characteristic for ion channels is the I-V (current-voltage) relation. Given a solution of
the boundary value problem (1.1) and (1.2), the current I is

I =

n∑
i=1

ziJi. (1.3)

If boundary concentrations Li’s and Ri’s are fixed, then Ji’s depend onV only and Eq (1.3) provides a
dependence of the current I on the voltageV.

The electrochemical potential µi(x) in (1.1) for the ith ion is decomposed into the ideal component
µid

i (x) and the excess component µex
i (x), where

µid
i (x) = zieϕ(x) + kBT ln

ci(x)
c0

(1.4)
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with some characteristic number density c0.
The classical PNP model only includes the ideal component µid

i (x) but does not take the excess
component µex

i (x) into consideration, which means that ions are treated as volumeless point charges,
and water molecules are also treated as a dielectric medium without volumes. In the classical PNP
model, the ideal component µid

i (x) reflects the collision between ion particles and the water molecules,
but ion-ion and ion-water interactions are ignored. There are a great deal of works related to study the
classical PNP model by numerical simulations [2,7,11,12,18,31–34] and theoretical analysis [1,35–50].

When ions are crowded in a highly narrow ion channel, the ion size effects must be included in
describing ion transport. The excess component µex

i (x) accounts for ion sizes, which are also relevant to
the selectivity of ion channels. To include ion size effects, some modifications have been developed to
improve the classical PNP model [24, 51–53], and a lot of research has been done to understand the
effects of ion sizes on the dynamics of the PNP model [12, 22–25, 52, 54–58].

The classical PNP model incorporates the permanent charge description of ion channel proteins into
the Poisson equation. In [1], the authors take the classical PNP model with two oppositely charged ion
species to analyze the permanent charge effects on ionic flows under the assumption that the permanent
charge Q(x) is given by the following form:

Q(x) =


0, 0 < x < a,
Q0, a < x < b,
0, b < x < 1,

(1.5)

where Q0 is a constant. For large |Q0|, the existence of multiple solutions of the classical PNP model
is justified in [37, 40] by using the geometric singular perturbation theory [59, 60]. However, explicit
expressions for the fluxes are not available due to the computational complexity. For a small |Q0|, let

Ji = Ji0 +Ji1Q0 + O(Q2
0), I = I0 + I1Q0 + O(Q2

0), i = 1, 2, (1.6)

and

H(x) =
∫ x

0
h−1(s)ds, α =

H(a)
H(1)

, β =
H(b)
H(1)

. (1.7)

Using a regular perturbation expansion, the authors in [1] obtain explicit expressions for the first-order
approximation Ji1, which is then used to show that small |Q0| strengthens or reduces the individual
flux, and examine the signs of the first-order approximation I1 under some conditions. Furthermore,
they analyze the maximum of Ji1 with respect to the channel geometry (α, β) by fixing the boundary
conditions, and the results in [1] support the structures of the ion channels.

The shape of a typical ion channel is often approximated as a cylindrical-like domain with variable
cross-sectional areas along its axis. The spatial distribution of amino acid side chains within an ion
channel defines the permanent charge of the channel, with acidic side chains contributing negative
charges and basic side chains contributing positive charges. The ion channel shape and the permanent
charge within an ion channel are closely related to the functions of an ion channel, such as selectivity,
permeability and gating. As mentioned in [37,40], the permanent charge Q(x) is reasonably modeled by
a piecewise constant function with one nonzero region or multiple nonzero regions.
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In this paper, it is assumed that the permanent charge Q(x) takes the following form:

Q(x) =



0, 0 < x < a1,

Q1, a1 < x < b1,

0, b1 < x < a2,

Q2, a2 < x < b2,

0, b2 < x < 1,

(1.8)

where |Q1| and |Q2| are small relative to the boundary concentrations Li’s and Ri’s. Obviously, letting
Q1 = 0 or Q2 = 0, then (1.8) is reduced to (1.5).

Denote

α1 =
H(a1)
H(1)

, β1 =
H(b1)
H(1)

, α2 =
H(a2)
H(1)

, β2 =
H(b2)
H(1)

. (1.9)

The boundary value problem (1.1) and (1.2) is treated as a standard singularly perturbed problem in
this paper. First, the geometric singular perturbation theory is employed to get a singular orbit solution
for (1.1) and (1.2), then a regular perturbation expansion with respect to the small permanent charge
is used to obtain explicit expressions for Ji1. Finally, the effects of small permanent charges on the
fluxes and the I-V relation, which not only depend on the boundary conditions, but also depend on

the structures of ion channels (α1, β1, α2, β2) and the ratio µ =
Q2

Q1
, are analyzed. Particularly, our

results indicate that the geometric structures of three-dimensional ion channels have a short and narrow

cross-section, which is explained in [1]. Also, our results indicate that the ratio µ =
Q2

Q1
can change the

position of a short and narrow cross-section in ion channels.
In comparison with the article [1], there are some difficult points to be solved.
1) Fixing the boundary conditions, Ji1 only depends on two variables (α, β) in [1], but in this paper

Ji1 depends on four variables (α1, β1, α2, β2) and the ratio µ =
Q2

Q1
; it is this difference that gives rise to

the difficulty for our analysis.
2) Lemma 4.6 in Section 4 in this paper is a new result which does not appear in [1], and it is crucial

to analyze the effects of the permanent charge on the fluxes.
3) Fixing the boundary conditions, the maximum of the function Ji1 in four variables (α1, β1, α2, β2)

in this paper is much more difficult to examine than that of the function Ji1 in two variables (α, β) in [1].
The rest of the paper is organized as follows. In Section 2, the geometric singular perturbation

framework for the classical PNP model is described, and a singular orbit of the boundary value problem
of the PNP model is constructed. In Section 3, a regular perturbation expansion of a singular orbit with
respect to small permanent charge is carried out, and extremely important formulae for Ji1 are derived.
In Section 4, the effects of the permanent charge on the fluxes, the maximum of Ji1, and the signs of
I1 are analyzed. Some conclusions are contained in Section 5. A proof of Proposition 3.4 is given in
the Appendix.

2. Problem setup

For the boundary value problem (1.1) and (1.2), we make the following assumptions, which are
basically the same as that in [1, 37]:
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(A1). We consider two ion species (n = 2) with z1 > 0 and z2 < 0.
(A2). For the permanent charge Q(x) in (1.8), we assume |Q1| and |Q2| are small relative to Li’s and Ri’s.
(A3). For µi(x), we only include the ideal component µid

i (x), as in (1.4).
(A4). We assume that εr(x) = εr and Di(x) = Di are constants.

With rescaling, we get

ϕ =
e

kBT
Φ, V =

e
kBT
V, ε2 =

εrε0kBT
e2 , Ji =

Ji

Di
,

and the expression (1.4) for µi(x)=µid
i (x). The boundary value problem (1.1) and (1.2) becomes, for

i = 1, 2,

ε2

h(x)
d
dx

(
h(x)

d
dx
ϕ

)
= −z1c1 − z2c2 + Q(x),

h(x)
(
dci

dx
+ zici

dϕ
dx

)
= −Ji,

dJi

dx
= 0,

(2.1)

with the following boundary conditions:

ϕ(0) = V, ci(0) = Li; ϕ(1) = 0, ci(1) = Ri. (2.2)

We will assume ε > 0 is small, and treat system (2.1) as a singularly perturbed system, and apply the
geometric singular perturbation framework from [37,40] for the boundary value problem (2.1) and (2.2).

Introduce u = ε
d
dx
ϕ, τ = x and denote the derivative with respect to x by dot. System (2.1) becomes,

for i = 1, 2,

εϕ̇ = u, εu̇ = −z1c1 − z2c2 − Q(τ) − ε
hτ(τ)
h(τ)

u,

εċi = −ziciu −
ε

h(τ)
Ji, J̇i = 0, τ̇ = 1.

(2.3)

System (2.3) will be treated as a dynamical system of phase space R7 with state variables
(ϕ, u, c1, c2, J1, J2, τ). System (2.3) is the so-called slow system. The rescaling x = εξ of the inde-
pendent variable x gives rise to the fast system, for i = 1, 2:

ϕ′ = u, u′ = −z1c1 − z2c2 − Q(τ) − ε
hτ(τ)
h(τ)

u,

c′i = −ziciu −
ε

h(τ)
Ji, J′i = 0, τ′ = ε,

(2.4)

where prime denotes the derivative with respect to the variable ξ.
Let BL and BR be the subsets of the phase space R7 defined by

BL ={(V, u, L1, L2, J1, J2, 0) ∈ R7 : arbitrary u, J1, J2},

BR ={(0, u,R1,R2, J1, J2, 1) ∈ R7 : arbitrary u, J1, J2}.
(2.5)
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Then, the original boundary value problem (2.1) and (2.2) is equivalent to a connecting problem, namely,
finding a solution of (2.3) or (2.4) from BL to BR.

As developed in [37, 40], a common method to analyze this connecting problem of classical PNP
models is first to reduce it to the limiting slow system by letting ϵ = 0 in (2.3) and to the limiting fast
system by letting ϵ = 0 in (2.4), then a singular orbit for the connecting problem is constructed by
matching slow orbits of the limiting slow system and fast orbits of the limiting fast system. Finally,
exchange lemmas in [59, 60] can be used to show that there is a unique solution of the boundary value
problem (2.1) and (2.2) for small ε > 0 in the vicinity of the singular orbit.

We now summarize the construction of a singular orbit derived in [37, 40].
Note that the permanent charge Q(x) in (1.8) is discontinuous at x = a1, x = b1, x = a2, and x = b2.

It is natural that the interval [0, 1] is split into five subintervals: [0, a1], [a1, b1], [b1, a2], [a2, b2], [b2, 1],
and on each subinterval a singular orbit is constructed. Therefore, we preassign unknown values of ϕ, c1

and c2 at x = a1, x = b1, x = a2, and x = b2 as follows:

ϕ(a1) =ϕa1 , c1(a1) = ca1
1 , c2(a1) = ca1

2 ; ϕ(b1) = ϕb1 , c1(b1) = cb1
1 , c2(b1) = cb1

2 ;

ϕ(a2) =ϕa2 , c1(a2) = ca2
1 , c2(a2) = ca2

2 ; ϕ(b2) = ϕb2 , c1(b2) = cb2
1 , c2(b2) = cb2

2 .
(2.6)

Let

Bai ={(ϕ
ai , u, cai

1 , c
ai
2 , J1, J2, ai) ∈ R7 : arbitrary u, J1, J2},

Bbi ={(ϕ
bi , u, cbi

1 , c
bi
2 , J1, J2, bi) ∈ R7 : arbitrary u, J1, J2}, i = 1, 2.

Using these twelve unknowns, a singular orbit can be constructed on each subinterval from the
following:

(i) The singular orbit on [0, a1] consists of two boundary layers (fast orbits) Γ0 at x = 0, Γa1
l at

x = a1, and one regular layer (slow orbit) Λ0,a1 over (0, a1), which connects from BL to Ba1 . In particular,
given (ϕa1 , ca1

1 , c
a1
2 ), the scaled flux densities J0,a1

1 , J
0,a1
2 over (0, a1) and the value ul(a1) are uniquely

determined.
(ii) The singular orbit on [a1, b1] consists of two boundary layers (fast orbits) Γa1

r at x = a1, Γb1
l

at x = b1 and one regular layer (slow orbit) Λa1,b1 over (a1, b1), which connects from Ba1 to Bb1 . In
particular, given (ϕa1 , ca1

1 , c
a1
2 ) and (ϕb1 , cb1

1 , c
b1
2 ), the scaled flux densities Ja1,b1

1 , Ja1,b1
2 over (a1, b1) and

the values ur(a1) and ul(b1) are uniquely determined.
(iii) The singular orbit on [b1, a2] consists of two boundary layers (fast orbits) Γb1

r at x = b1, Γa2
l

at x = a2 and one regular layer (slow orbit) Λb1,a2 over (b1, a2), which connects from Bb1 to Ba2 . In
particular, given (ϕb1 , cb1

1 , c
b1
2 ) and (ϕa2 , ca2

1 , c
a2
2 ), the scaled flux densities Jb1,a2

1 , Jb1,a2
2 over (b1, a2) and

the values ur(b1) and ul(a2) are uniquely determined.
(iv) The singular orbit on [a2, b2] consists of two boundary layers (fast orbits) Γa2

r at x = a2, Γb2
l

at x = b2 and one regular layer (slow orbit) Λa2,b2 over (a2, b2), which connects from Ba2 to Bb2 . In
particular, given (ϕa2 , ca2

1 , c
a2
2 ) and (ϕb2 , cb2

1 , c
b2
2 ), the scaled flux densities Ja2,b2

1 , Ja2,b2
2 over (a2, b2) and

the values ur(a2) and ul(b2) are uniquely determined.
(v) The singular orbit on [b2, 1] consists of two boundary layers (fast orbits) Γb2

r at x = b2, Γ1

at x = 1 and one regular layer (slow orbit) Λb2,1 over (b2, 1), which connects from Bb2 to BR. In
particular, given (ϕb2 , cb2

1 , c
b2
2 ), the scaled flux densities Jb2,1

1 , J
b2,1
2 over (b2, 1) and the value ur(b2) are

uniquely determined.
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To obtain a singular orbit on [0, 1], one requires the following matching conditions:

J0,a1
1 =Ja1,b1

1 = Jb1,a2
1 = Ja2,b2

1 = Jb2,1
1 ;

J0,a1
2 =Ja1,b1

2 = Jb1,a2
2 = Ja2,b2

2 = Jb2,1
2 ;

ul(a1) =ur(a1), ul(b1) = ur(b1), ul(a2) = ur(a2), ul(b2) = ur(b2).

(2.7)

Note that the number of twelve conditions in (2.7) is exactly equal to that of twelve unknowns
preassigned in (2.6). Just as shown in [1, 37], the matching conditions in (2.7) can reduce the singular
connecting problem to the system (43) in [37], which can be recast below for i = 1, 2:

z1cai
1 ez1(ϕai−ϕai ,r) + z2cai

2 ez2(ϕai−ϕai ,r) + Qi = 0,

z1cbi
1 ez1(ϕbi−ϕbi ,l) + z2cbi

2 ez2(ϕbi−ϕbi ,l) + Qi = 0,
z2 − z1

z2
cai,l

1 = cai
1 ez1(ϕai−ϕai ,r) + cai

2 ez2(ϕai−ϕai ,r) + Qi(ϕai − ϕai,r),

z2 − z1

z2
cbi,r

1 = cbi
1 ez1(ϕbi−ϕbi ,l) + cbi

2 ez2(ϕbi−ϕbi ,l) + Qi(ϕbi − ϕbi,l),

J1 =
cL

1 − ca1,l
1

H(a1)

[
1 +

z1(ϕL − ϕa1,l)

ln cL
1 − ln ca1,l

1

]
=

cb2,r
1 − cR

1

H(1) − H(b2)

[
1 +

z1(ϕb2,r − ϕR)

ln cb2,r
1 − ln cR

1

]
=

cb1,r
1 − ca2,l

1

H(a2) − H(b1)

[
1 +

z1(ϕb1,r − ϕa2,l)

ln cb1,r
1 − ln ca2,l

1

]
,

J2 =
cL

2 − ca1,l
2

H(a1)

[
1 +

z2(ϕL − ϕa1,l)

ln cL
2 − ln ca1,l

2

]
=

cb2,r
2 − cR

2

H(1) − H(b2)

[
1 +

z2(ϕb2,r − ϕR)

ln cb2,r
2 − ln cR

2

]
=

cb1,r
2 − ca2,l

2

H(a2) − H(b1)

[
1 +

z2(ϕb1,r − ϕa2,l)

ln cb1,r
2 − ln ca2,l

2

]
,

ϕbi,l = ϕai,r − (z1J1 + z2J2)yi,

cbi,l
1 = ez1z2(J1+J2)yicai,r

1 −
QiJ1

z1(J1 + J2)

[
1 − ez1z2(J1+J2)yi

]
,

J1 + J2 = −
(z1 − z2)(cai,r

1 − cbi,l
1 ) + z2Qi(ϕai,r − ϕbi,l)

z2[H(bi) − H(ai)]
,

(2.8)

where yi > 0 are also unknowns, and related symbols are collected in Table 1.

Remark 2.1. The symbol ϕai,r denotes the unique solution for the first equality in (2.8), which dose not
have an explicit formula. Similarly, the symbol ϕbi,l denotes the unique solution for the second equality
in (2.8), which does not have an explicit formula.

It can be seen that a solution for (2.8) can determine a singular orbit (Γ0 ∪ Λ0,a1 ∪ Γ
a1
l ) ∪ (Γa1

r ∪

Λa1,b1 ∪ Γ
b1
l ) ∪ (Γb1

r ∪ Λb1,a2 ∪ Γ
a2
l ) ∪ (Γa2

r ∪ Λa2,b2 ∪ Γ
b2
l ) ∪ (Γb2

r ∪ Λb2,1 ∪ Γ
1), which connects BL and BR;

see Figure 1 for an illustration.
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Table 1. Symbols.

Column 1 Column 2

ϕL = V − 1
z1−z2

ln −z2L2
z1L1

ϕR = − 1
z1−z2

ln −z2R2
z1R1

cL
1 =

1
z1

(z1L1)
−z2

z1−z2 (−z2L2)
z1

z1−z2 cL
2 = −

1
z2

(z1L1)
−z2

z1−z2 (−z2L2)
z1

z1−z2

cR
1 =

1
z1

(z1R1)
−z2

z1−z2 (−z2R2)
z1

z1−z2 cR
2 = −

1
z2

(z1R1)
−z2

z1−z2 (−z2R2)
z1

z1−z2

ϕai,l = ϕai − 1
z1−z2

ln −z2cai
2

z1cai
1

ϕbi,r = ϕbi − 1
z1−z2

ln −z2cbi
2

z1cbi
1

cai,l
1 =

1
z1

(z1cai
1 )

−z2
z1−z2 (−z2cai

2 )
z1

z1−z2 cai,l
2 = −

1
z2

(z1cai
1 )

−z2
z1−z2 (−z2cai

2 )
z1

z1−z2

cbi,r
1 =

1
z1

(z1cbi
1 )

−z2
z1−z2 (−z2cbi

2 )
z1

z1−z2 cbi,r
2 = −

1
z2

(z1cbi
1 )

−z2
z1−z2 (−z2cbi

2 )
z1

z1−z2

cai,r
1 = ez1(ϕai−ϕai ,r)cai

1 cbi,l
1 = ez1(ϕbi−ϕbi ,l)cbi

1

z c z c+
1 1 2 2

u

x0 1
a
1 b

1
a
2 b

2

Q−
1

Q−
2

L
B

R
B

0Γ
Γ1

,
Λ

a10

,
Λ
a b1 1

,
Λ
b a1 2

,
Λ
a b2 2

,
Λ
b2 1

Γa

l
1

Γa

r
1

Γb

l
1

Γb

r
1

Γa

l
2

Γa

r
2 Γb

l
2

Γb

r
2

a
B
1

b
B
1

b
B
2

a
B

2

Figure 1. A singular orbit connecting BL to BR, where Γ0, Γa1
l , Γ

a1
r , Γ

b1
l , Γ

b1
r , Γ

a2
l , Γ

a2
r , Γ

b2
l , Γ

b2
r ,

Γ1 are limiting fast orbits and Λ0,a1 ,Λa1,b1 ,Λb1,a2 ,Λa2,b2 , and Λb2,1 are limiting slow orbits.

Moreover, once a singular orbit is constructed, then as shown in [37, 40], under some transversality
conditions, it can verified that there is a unique solution of the boundary value problem (2.1) and (2.2)
for small ε > 0 in the vicinity of the singular orbit by using exchange lemmas [59, 60].

In this paper, due to the assumption (A2) that the constants |Q1| and |Q2| are small, then explicit
expansions of a singular orbit with respect to Q1 and Q2 can be obtained in the next section.

For convenience, denote Q1 = Q and Q2 = µQ, where the constant Q is small.
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3. Expansion of singular solutions in small |Q|

In this section, it is assumed that the constant |Q| is small. Therefore, we expand all unknown
quantities in systems (2.8) in Q; namely, for i = 1, 2, let

ϕai = ϕai
0 + ϕ

ai
1 Q + ϕai

2 Q2 + · · · , ϕbi = ϕbi
0 + ϕ

bi
1 Q + ϕbi

2 Q2 + · · · ,

cai
1 = cai

10 + cai
11Q + cai

12Q2 + · · · , cai
2 = cai

20 + cai
21Q + cai

22Q2 + · · · ,

cbi
1 = cbi

10 + cbi
11Q + cbi

12Q2 + · · · , cbi
2 = cbi

20 + cbi
21Q + cbi

22Q2 + · · · ,

yi = yi0 + yi1Q + yi2Q2 + · · · , Ji = Ji0 + Ji1Q + Ji2Q2 + · · · ,

ϕai,r = ϕai,r
0 + ϕ

ai,r
1 Q + ϕai,r

2 Q2 + · · · , cai,l
2 = cai,l

20 + cai,l
21 Q + cai,l

22 Q2 + · · · ,

ϕai,l = ϕai,l
0 + ϕ

ai,l
1 Q + ϕai,l

2 Q2 + · · · , cbi,l
1 = cbi,l

10 + cbi,l
11 Q + cbi,l

12 Q2 + · · · ,

cai,l
1 = cai,l

10 + cai,l
11 Q + cai,l

12 Q2 + · · · , ϕbi,l = ϕbi,l
0 + ϕ

bi,l
1 Q + ϕbi,l

2 Q2 + · · · ,

cbi,r
1 = cbi,r

10 + cbi,r
11 Q + cbi,r

12 Q2 + · · · , cbi,r
2 = cbi,r

20 + cbi,r
21 Q + cbi,r

22 Q2 + · · · ,

cai,r
1 = cai,r

10 + cai,r
11 Q + cai,r

12 Q2 + · · · , ϕbi,r = ϕbi,r
0 + ϕ

bi,r
1 Q + ϕbi,r

2 Q2 + · · · .

(3.1)

Then, by substituting (3.1) into (2.8), expanding the identities in Q, and comparing the terms of
like-powers in Q, we can obtain the zeroth-order solution and the first-order solution of (2.8), which
will be uesd to analyze effects of the permanent charge on ionic flows.

Remark 3.1. For small Q and small ϵ > 0, the existence of a unique solution for (2.8) is proved
in [37, 40] in the vicinity of a singular orbit. For our purpose, unknown quantities in (3.1) are only
expanded and calculated up to the first order.

3.1. Zeroth-order solution in |Q| of (2.8)

Actually, the zeroth-order solution of (2.8) has been solved in [37, 39]. We summarize the results
below.

Proposition 3.2. The zeroth-order solution in Q of (2.8) is given by, for i = 1, 2,

cai
10 = cL

1 + αi(cR
1 − cL

1), z1cai
10 = −z2cai

20,

cbi
10 = cL

1 + βi(cR
1 − cL

1), z1cbi
10 = −z2cbi

20,

ϕai
0 =

ln cR
1 − ln cai

10

ln cR
1 − ln cL

1

ϕL +
ln cai

10 − ln cL
1

ln cR
1 − ln cL

1

ϕR,
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ϕbi
0 =

ln cR
1 − ln cbi

10

ln cR
1 − ln cL

1

ϕL +
ln cbi

10 − ln cL
1

ln cR
1 − ln cL

1

ϕR,

yi0 =
H(1)

z1(z1 − z2)(cR
1 − cL

1)
ln

(1 − βi)cL
1 + βicR

1

(1 − αi)cL
1 + αicR

1

,

J10 =
cL

1 − cR
1

H(1)(ln cL
1 − ln cR

1 )
(z1V + ln L1 − ln R1),

J20 =
cL

2 − cR
2

H(1)(ln cL
2 − ln cR

2 )
(z2V + ln L2 − ln R2).

Corollary 3.3. Under electroneutrality boundary conditions z1L1 = −z2L2 = L and z1R1 = −z2R2 = R,
one has cL

1 = L1, cL
2 = L2, cR

1 = R1, cR
2 = R2, ϕ

L = V, ϕR = 0, and, for i = 1, 2,

z1cai
10 = L + αi(R − L), z1cai

10 = −z2cai
20,

z1cbi
10 = L + βi(R − L), z1cbi

10 = −z2cbi
20,

ϕai
0 =

ln R − ln[L + αi(R − L)]
ln R − ln L

V,

ϕbi
0 =

ln R − ln[L + βi(R − L)]
ln R − ln L

V,

yi0 =
H(1)

(z1 − z2)(R − L)
ln

(1 − βi)L + βiR
(1 − αi)L + αiR

,

J10 =
L − R

z1H(1)(ln L − ln R)
(z1V + ln L − ln R),

J20 = −
L − R

z2H(1)(ln L − ln R)
(z2V + ln L − ln R).

3.2. First-order solution in |Q| of (2.8)

Substituting (3.1) into (2.8), the first-order solution of (2.8) can be obtained by lengthy calculations.
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Proposition 3.4. First-order terms of the solution in Q of (2.8) are given by

ca1
11 =

z2α1

z2 − z1
(ϕa1

0 − ϕ
b1
0 ) +

z2α1µ

z2 − z1
(ϕa2

0 − ϕ
b2
0 ) +

1
2(z2 − z1)

,

cb1
11 =

z2(β1 − 1)
z2 − z1

(ϕa1
0 − ϕ

b1
0 ) +

z2β1µ

z2 − z1
(ϕa2

0 − ϕ
b2
0 ) +

1
2(z2 − z1)

,

ca2
11 =

z2(α2 − 1)
z2 − z1

(ϕa1
0 − ϕ

b1
0 ) +

z2α2µ

z2 − z1
(ϕa2

0 − ϕ
b2
0 ) +

µ

2(z2 − z1)
,

cb2
11 =

z2(β2 − 1)
z2 − z1

(ϕa1
0 − ϕ

b1
0 ) +

z2(β2 − 1)µ
z2 − z1

(ϕa2
0 − ϕ

b2
0 ) +

µ

2(z2 − z1)
,

z1ca1
11 + z2ca1

21 = −
1
2
, z1cb1

11 + z2cb1
21 = −

1
2
,

z1ca2
11 + z2ca2

21 = −
µ

2
, z1cb2

11 + z2cb2
21 = −

µ

2
,

ϕa1
1 =

(1 + z1λ)(1 + z2λ)(c
a1
10 − cb1

10)(ln cL
1 − ln ca1

10)

z1(z1 − z2)ca1
10cb1

10(ln cL
1 − ln cR

1 )

+
(1 + z1λ)(1 + z2λ)(c

a2
10 − cb2

10)(ln cL
1 − ln ca1

10)µ

z1(z1 − z2)ca2
10cb2

10(ln cL
1 − ln cR

1 )

+
1

2z1(z1 − z2)ca1
10
+
α1(ϕb1

0 − ϕ
a1
0 )z2λ

(z1 − z2)ca1
10

+
α1(ϕb2

0 − ϕ
a2
0 )z2λµ

(z1 − z2)ca1
10

,

ϕb1
1 =

(1 + z1λ)(1 + z2λ)(c
a1
10 − cb1

10)(ln cR
1 − ln cb1

10)

z1(z1 − z2)ca1
10cb1

10(ln cL
1 − ln cR

1 )

+
(1 + z1λ)(1 + z2λ)(c

a2
10 − cb2

10)(ln cL
1 − ln cb1

10)µ

z1(z1 − z2)ca2
10cb2

10(ln cL
1 − ln cR

1 )

+
1

2z1(z1 − z2)cb1
10

+
(β1 − 1)(ϕb1

0 − ϕ
a1
0 )z2λ

(z1 − z2)cb1
10

+
β1(ϕb2

0 − ϕ
a2
0 )z2λµ

(z1 − z2)cb1
10

,

ϕa2
1 =

(1 + z1λ)(1 + z2λ)(c
a1
10 − cb1

10)(ln cR
1 − ln ca2

10)

z1(z1 − z2)ca1
10cb1

10(ln cL
1 − ln cR

1 )

+
(1 + z1λ)(1 + z2λ)(c

a2
10 − cb2

10)(ln cL
1 − ln ca2

10)µ

z1(z1 − z2)ca2
10cb2

10(ln cL
1 − ln cR

1 )

+
µ

2z1(z1 − z2)ca2
10
+

(α2 − 1)(ϕb1
0 − ϕ

a1
0 )z2λ

(z1 − z2)ca2
10

+
α2(ϕb2

0 − ϕ
a2
0 )z2λµ

(z1 − z2)ca2
10

,

ϕb2
1 =

(1 + z1λ)(1 + z2λ)(c
a1
10 − cb1

10)(ln cR
1 − ln cb2

10)

z1(z1 − z2)ca1
10cb1

10(ln cL
1 − ln cR

1 )

+
(1 + z1λ)(1 + z2λ)(c

a2
10 − cb2

10)(ln cR
1 − ln cb2

10)µ

z1(z1 − z2)ca2
10cb2

10(ln cL
1 − ln cR

1 )

+
µ

2z1(z1 − z2)cb2
10

+
(β2 − 1)(ϕb1

0 − ϕ
a1
0 )z2λ

(z1 − z2)cb2
10

+
(β2 − 1)(ϕb2

0 − ϕ
a2
0 )z2λµ

(z1 − z2)cb2
10

(3.2)
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and

y11 =
[(β1 − 1)cL

1 − α1cR
1 ](ϕa1

0 − ϕ
b1
0 )

z1(z2 − z1)ca1
10cb1

10(J10 + J20)
+

(β1 − α1)cL
1(ϕa2

0 − ϕ
b2
0 )µ

z1(z2 − z1)ca1
10cb1

10(J10 + J20)

+
(z1J20 + z2J10)(ca1

10 − cb1
10)

z2
1z2(z2 − z1)ca1

10cb1
10(J10 + J20)2

+
ϕa1

0 − ϕ
b1
0 + (ϕa2

0 − ϕ
b2
0 )µ

z1(z2 − z1)(cL
1 − cR

1 )(J10 + J20)
ln

cb1,m
10

ca1,m
10
,

y21 =
[(β2 − 1)cL

1 − α2cR
1 ](ϕa2

0 − ϕ
b2
0 )µ

z1(z2 − z1)ca2
10cb2

10(J10 + J20)
+

(β2 − α2)cR
1 (ϕa1

0 − ϕ
b1
0 )

z1(z2 − z1)ca2
10cb2

10(J10 + J20)

+
(z1J20 + z2J10)(ca2

10 − cb2
10)µ

z2
1z2(z2 − z1)ca2

10cb2
10(J10 + J20)2

+
ϕa1

0 − ϕ
b1
0 + (ϕa2

0 − ϕ
b2
0 )µ

z1(z2 − z1)(cL
1 − cR

1 )(J10 + J20)
ln

cb2,m
10

ca2,m
10
,

J11 =
A1[1 + (1 − B1)z2λ](1 + z1λ)

(z1 − z2)H(1)
+

A2[1 + (1 − B2)z2λ](1 + z1λ)µ
(z1 − z2)H(1)

,

J21 =
A1[1 + (1 − B1)z1λ](1 + z2λ)

(z2 − z1)H(1)
+

A2[1 + (1 − B2)z1λ](1 + z2λ)µ
(z2 − z1)H(1)

,

(3.3)

where

λ =
ϕL − ϕR

ln cL
1 − ln cR

1

, A1 =
(cb1

10 − ca1
10)(cL

1 − cR
1 )

ca1
10cb1

10(ln cL
1 − ln cR

1 )
,

B1 =
ln cb1

10 − ln ca1
10

A1
=

ca1
10cb1

10(ln cL
1 − ln cR

1 )(ln cb1
10 − ln ca1

10)

(cb1
10 − ca1

10)(cL
1 − cR

1 )
,

A2 =
(cb2

10 − ca2
10)(cL

1 − cR
1 )

ca2
10cb2

10(ln cL
1 − ln cR

1 )
,

B2 =
ln cb2

10 − ln ca2
10

A2
=

ca2
10cb2

10(ln cL
1 − ln cR

1 )(ln cb2
10 − ln ca2

10)

(cb2
10 − ca2

10)(cL
1 − cR

1 )
.

(3.4)

Proof. The proof is given in the appendix.

Remark 3.5. It can be seen that as Q1 = 0 or Q2 = 0 in (1.8), the formulae for J11 and J21 in
Proposition 3.4 are the same as those in [1].

4. Effects of permanent charge and channel geometry

In this section, we study effects of permanent charges and channel geometry on individual flux and
on I − V relations under electroneutrality conditions:

z1L1 = −z2L2 = L, and z1R1 = −z2R2 = R. (4.1)

Mathematical Biosciences and Engineering Volume 23, Issue 3, 636–677.



648

For small |Q|, the flux Ji of the ith ion species and the current I are

Ji = DiJi0 + DiJi1Q + O(Q2), I = I0 + I1Q + O(Q2), i = 1, 2, (4.2)

where

I0 = z1D1J10 + z2D2J20 and I1 = z1D1J11 + z2D2J21. (4.3)

The quantities J11 and J21 will be used to analyze the dominating effects of permanent charges and
channel geometry on the ionic flow.

4.1. A comparison between zeroth-order and first-order in Q

For the ith ion species, i = 1, 2, denote the difference of its electrochemical potentials at the two
boundaries by

µδi = µ
δ
i (V, Li,Ri) = µi(0) − µi(1) = kBT (ziV + ln Li − ln Ri). (4.4)

Under the electroneutrality condition (4.1), from Corollary 3.3,

J10 =
L − R

z1H(1)(ln L − ln R)
µδ1

kBT
=

L1 − R1

H(1)(ln L1 − ln R1)
µδ1

kBT
,

J20 =
R − L

z2H(1)(ln L − ln R)
µδ2

kBT
=

L2 − R2

H(1)(ln L2 − ln R2)
µδ2

kBT
.

(4.5)

Also, it follows from Proposition 3.4 that

J11 =

(A1[(1 − B1)z2V + ln L − ln R]
(z1 − z2)H(1)(ln L − ln R)2

+
A2[(1 − B2)z2V + ln L − ln R]µ

(z1 − z2)H(1)(ln L − ln R)2

) µδ1
kBT
,

J21 =

(A1[(1 − B1)z1V + ln L − ln R]
(z2 − z1)H(1)(ln L − ln R)2

+
A2[(1 − B2)z1V + ln L − ln R]µ

(z2 − z1)H(1)(ln L − ln R)2

) µδ2
kBT
,

(4.6)

where α1, α2, β1, β2 are defined in (1.9), and A1, A2, B1, B2 defined in (3.4) become
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A1(L,R) = −
(β1 − α1)(L − R)2

[(1 − α1)L + α1R][(1 − β1)L + β1R](ln L − ln R)
,

B1(L,R) =
ln[(1 − β1)L + β1R] − ln[(1 − α1)L + α1R]

A1
,

A2(L,R) = −
(β2 − α2)(L − R)2

[(1 − α2)L + α2R][(1 − β2)L + β2R](ln L − ln R)
,

B2(L,R) =
ln[(1 − β2)L + β2R] − ln[(1 − α2)L + α2R]

A2
.

(4.7)

Lemma 4.1. The quantities A1 = A1(L,R), B1 = B1(L,R), A2 = A2(L,R), B2 = B2(L,R), and µδi (V; L,R)
scale invariantly in (L,R); that is, for any s > 0,

A1(sL, sR) = A1(L,R), B1(sL, sR) = B1(L,R), A2(sL, sR) = A2(L,R),

B2(sL, sR) = B2(L,R) and µδi (V; sL, sR) = µδi (V; L,R).

Lemma 4.2. The quantities Ji0(V; L,R) and I0(V; L,R) scale linearly in (L,R), and Ji1(V; L,R) and
I1(V; L,R) scale invariantly in (L,R); that is, for any s > 0,

Ji0(V; sL, sR) = sJi0(V; L,R), I0(V; sL, sR) = sI0(V; L,R),

Ji1(V; sL, sR) = Ji1(V; L,R), I1(V; sL, sR) = I1(V; L,R).

For convenience, the following function is introduced in [1] and is useful below. For t > 0, Let

γ(t) =
t ln t − t + 1
(t − 1) ln t

for t , 1 and γ(1) =
1
2
. (4.8)

The following lemma was established in [1].

Lemma 4.3. For t > 0, 0 < γ(t) < 1, γ′(t) > 0, lim
t→0
γ(t) = 0, lim

t→+∞
γ(t) = 1.

4.2. Dependence of the signs of J11 and J21 on channel geometry

In this section, the signs of J11J10 and J21J20 will be determined by the channel geometry
(α1, β1, α2, β2) and the boundary condition (V, L,R).

Lemma 4.4. Assume z1 > 0 > z2. Then, A1, A2, and R − L have the same sign.

Proof. This follows from the formulae for A1 and A2 in (4.7).
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Due to the fact that 0 ≤ αi ≤ βi ≤ 1, and i = 1, 2, the following lemma was established in [1].

Lemma 4.5. Let t =
L
R

, and let γ(t) be as in (4.8). Then, Bi > 0 and lim
t→1

Bi = 1.
For t > 1, the following hold:

(i) If αi < γ(t), then there exists a unique β∗i ∈ (αi, 1) such that

1 − Bi < 0, f or βi ∈ (αi, β
∗
i ) and 1 − Bi > 0 f or βi ∈ (β∗i , 1).

(ii) If αi ≥ γ(t), then 1 − Bi > 0.
For t < 1, the following hold:

(iii) If 1 − βi < γ(
1
t
), then there exists a unique α∗i ∈ (0, βi) such that

1 − Bi < 0, f or αi ∈ (α∗i , βi) and 1 − Bi > 0 f or αi ∈ (0, α∗i ).

(iv) If 1 − βi ≥ γ(
1
t
), then 1 − Bi > 0.

From (1.9), it can be seen that 0 ≤ α1 ≤ β1 ≤ α2 ≤ β2 ≤ 1; thus, the following result can
be established.

Lemma 4.6. Let t =
L
R

. Then, B1 − B2 > 0 for t > 1, and B1 − B2 < 0 for t < 1.

Proof. We will justify that B1 − B2 > 0 for t > 1. The statement that B1 − B2 < 0 for t < 1 can be
justified in a similar way. Let

g(β2) =
(
(1 − α2)t + α2

)(
(1 − β2)t + β2

)
ln t ln

(1 − β2)t + β2

(1 − α2)t + α2
(β1 − α1)

−
(
(1 − α1)t + α1

)(
(1 − β1)t + β1

)
ln t ln

(1 − β1)t + β1

(1 − α1)t + α1
(β2 − α2).

Then, we have

B1 − B2 =
g(β2)

(β2 − α2)(β1 − α1)(t − 1)2 .

Obviously, B1 − B2 has the same sign as that of g(β2). Note that lim
β2→α2

g(β2) = 0. By calculation, one has

g′(β2) =
(
(1 − α2)t + α2

)
(1 − t) ln t ln

(1 − β2)t + β2

(1 − α2)t + α2
(β1 − α1)

+
(
(1 − α2)t + α2

)
ln t · (1 − t)(β1 − α1)

−
(
(1 − α1)t + α1

)(
(1 − β1)t + β1

)
ln t ln

(1 − β1)t + β1

(1 − α1)t + α1
,
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g′′(β2) =
(1 − α2)t + α2

(1 − β2)t + β2
(1 − t)2 ln t · (β1 − α1).

Therefore, for t > 1, the function g(β2) is concave upward. Let

f (β1) =
(
(1 − α2)t + α2

)
ln t · (1 − t)(β1 − α1)

−
(
(1 − α1)t + α1

)(
(1 − β1)t + β1

)
ln t ln

(1 − β1)t + β1

(1 − α1)t + α1
.

Then lim
β2→α2

g′(β2) = f (β1).

Note that lim
β1→α1

f (β1) = 0. By calculation, one has

f ′(β1) = (α2 − α1) ln t · (1 − t)2

−
(
(1 − α1)t + α1

)
(1 − t) ln t ln

(1 − β1)t + β1

(1 − α1)t + α1
,

f ′′(β1) = −
(1 − α1)t + α1

(1 − β1)t + β1
(1 − t)2 ln t.

Therefore, for t > 1, the function f (β1) is concave downward. Additionally, it can be verified that

lim
β1→α2

f (β1) > 0 and lim
β1→α1

f ′(β1) = (α2 − α1) ln t · (1 − t)2 > 0, for t > 1.

It follows that lim
β2→α2

g′(β2) = f (β1) ≥ 0. Hence, we have g(β2) > 0 for t > 1, that is, B1 − B2 > 0 for

t > 1.

Theorem 4.7. Assume B2 = 1 and B1 = 1, where B1 and B2 are in (4.7).

For t =
L
R
, 1 and µ < −

A1

A2
, then J10J11 > 0 and J20J21 < 0;

for t =
L
R
, 1 and µ > −

A1

A2
, then J10J11 < 0 and J20J21 > 0.

Equivalently, for t =
L
R
, 1 and µ < −

A1

A2
, a small positive Q strengthens |J1|; for t =

L
R
, 1 and

µ > −
A1

A2
, a small positive Q reduces |J1|; for t =

L
R
, 1 and µ > −

A1

A2
, a small positive Q strengthens

|J2|; and for t =
L
R
, 1 and µ < −

A1

A2
, a small positive Q reduces |J2|.
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Proof. As B1 = 1 and B2 = 1, (4.6) reduces to

J11 =
(A1 + A2µ)(ln L − ln R)

(z1 − z2)H(1)(ln L − ln R)2

µδ1
kBT
,

J21 =
(A1 + A2µ)(ln L − ln R)

(z2 − z1)H(1)(ln L − ln R)2

µδ2
kBT
.

(4.9)

From (4.5), it follows that

J10J11 =
(L − R)(A1 + A2µ)(µδ1)2

z1(z1 − z2)[H(1)]2(ln L − ln R)2(kBT )2 ,

J20J21 =
(R − L)(A1 + A2µ)(µδ2)2

z2(z2 − z1)[H(1)]2(ln L − ln R)2(kBT )2 .

(4.10)

From (4.10), the result follows.

Theorem 4.8. Assume B2 = 1 and B1 , 1, where B2 and B1 are in (4.7). Let V1
q and V2

q be as follows:

V1
q = V1

q (L,R) = −
(A1 + A2µ)(ln L − ln R)

z2A1(1 − B1)
,

V2
q = V2

q (L,R) = −
(A1 + A2µ)(ln L − ln R)

z1A1(1 − B1)
.

(4.11)

For A1(1 − B1) > 0 and V < V1
q , then J10J11 > 0;

for A1(1 − B1) > 0 and V > V1
q , then J10J11 < 0;

for A1(1 − B1) < 0 and V < V1
q , then J10J11 < 0;

for A1(1 − B1) < 0 and V > V1
q , then J10J11 > 0;

for A1(1 − B1) > 0 and V < V2
q , then J20J21 > 0;

for A1(1 − B1) > 0 and V > V2
q , then J20J21 < 0;

for A1(1 − B1) < 0 and V < V2
q , then J20J21 < 0;

for A1(1 − B1) < 0 and V > V2
q , then J20J21 > 0.

Equivalently, for A1(1 − B1) > 0 and V < V1
q , or A1(1 − B1) < 0 and V > V1

q , a small positive Q
strengthens |J1|; for A1(1 − B1) > 0 and V > V1

q , or A1(1 − B1) < 0 and V < V1
q , a small positive

Q reduces |J1|; for A1(1 − B1) > 0 and V < V2
q , or A1(1 − B1) < 0 and V > V2

q , a small positive Q
strengthens |J2|; and for A1(1 − B1) > 0 and V > V2

q , or A1(1 − B1) < 0 and V < V2
q , a small positive Q

reduces |J2|.
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Proof. As B2 = 1 and B1 , 1, (4.6) reduces to

J11 =
A1(1 − B1)z2V + (A1 + A2µ)(ln L − ln R)

(z1 − z2)H(1)(ln L − ln R)2

µδ1
kBT
,

J21 =
A1(1 − B1)z1V + (A1 + A2µ)(ln L − ln R)

(z2 − z1)H(1)(ln L − ln R)2

µδ2
kBT
.

(4.12)

From (4.5), it follows that

J10J11 =
(L − R)[A1(1 − B1)z2V + (A1 + A2µ)(ln L − ln R)](µδ1)2

z1(z1 − z2)[H(1)]2(ln L − ln R)3(kBT )2 ,

J20J21 =
(R − L)[A1(1 − B1)z1V + (A1 + A2µ)(ln L − ln R)](µδ2)2

z2(z2 − z1)[H(1)]2(ln L − ln R)3(kBT )2 .

(4.13)

From (4.13), the result follows.

Remark 4.9. The signs of A1(1 − B1) can be determined by Lemmas 4.4 and 4.5.

Lemma 4.10. Assume B2 , 1, where B2 is in (4.7).

For 1 − B2 > 0, t > 1, µ < −
A1(1 − B1)
A2(1 − B2)

, then A1(1 − B1) + A2(1 − B2)µ > 0;

for 1 − B2 > 0, t > 1, µ > −
A1(1 − B1)
A2(1 − B2)

, then A1(1 − B1) + A2(1 − B2)µ < 0;

for 1 − B2 > 0, t < 1, µ > −
A1(1 − B1)
A2(1 − B2)

, then A1(1 − B1) + A2(1 − B2)µ > 0;

for 1 − B2 > 0, t < 1, µ < −
A1(1 − B1)
A2(1 − B2)

, then A1(1 − B1) + A2(1 − B2)µ < 0;

for 1 − B2 < 0, t > 1, µ > −
A1(1 − B1)
A2(1 − B2)

, then A1(1 − B1) + A2(1 − B2)µ > 0;

for 1 − B2 < 0, t > 1, µ < −
A1(1 − B1)
A2(1 − B2)

, then A1(1 − B1) + A2(1 − B2)µ < 0;

for 1 − B2 < 0, t < 1, µ < −
A1(1 − B1)
A2(1 − B2)

, then A1(1 − B1) + A2(1 − B2)µ > 0;

for 1 − B2 < 0, t < 1, µ > −
A1(1 − B1)
A2(1 − B2)

, then A1(1 − B1) + A2(1 − B2)µ < 0.

Proof. For 1 − B2 > 0, t > 1, it follows from Lemma 4.4 that A2 < 0 and A2(1 − B2) < 0. Therefore, as

µ < −
A1(1 − B1)
A2(1 − B2)

, then A1(1 − B1) + A2(1 − B2)µ > 0. Other cases can be similarly verified.

Remark 4.11. The signs of 1 − B2 can be determined by Lemma 4.5.
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Theorem 4.12. Assume B2 , 1, where B2 is in (4.7) and A1(1 − B1) + A2(1 − B2)µ , 0. Let V3
q and V4

q

be given by

V3
q = V3

q (L,R) = −
(A1 + A2µ)(ln L − ln R)

z2[A1(1 − B1) + A2(1 − B2)µ]
,

V4
q = V4

q (L,R) = −
(A1 + A2µ)(ln L − ln R)

z1[A1(1 − B1) + A2(1 − B2)µ]
.

(4.14)

For A1(1 − B1) + A2(1 − B2)µ > 0 and V < V3
q , then J10J11 > 0;

for A1(1 − B1) + A2(1 − B2)µ > 0 and V > V3
q , then J10J11 < 0;

for A1(1 − B1) + A2(1 − B2)µ < 0 and V < V3
q , then J10J11 < 0;

for A1(1 − B1) + A2(1 − B2)µ < 0 and V > V3
q , then J10J11 > 0;

for A1(1 − B1) + A2(1 − B2)µ > 0 and V < V4
q , then J20J21 > 0;

for A1(1 − B1) + A2(1 − B2)µ > 0 and V > V4
q , then J20J21 < 0;

for A1(1 − B1) + A2(1 − B2)µ < 0 and V < V4
q , then J20J21 > 0;

for A1(1 − B1) + A2(1 − B2)µ < 0 and V > V4
q , then J20J21 < 0.

Equivalently, for A1(1 − B1) + A2(1 − B2)µ > 0 and V < V3
q , or A1(1 − B1) + A2(1 − B2)µ < 0

and V > V3
q , a small positive Q strengthens |J1|; for A1(1 − B1) + A2(1 − B2)µ > 0 and V > V3

q , or
A1(1−B1)+A2(1−B2)µ < 0 and V < V3

q , a small positive Q reduces |J1|; for A1(1−B1)+A2(1−B2)µ > 0
and V < V4

q , or A1(1 − B1) + A2(1 − B2)µ < 0 and V < V4
q , a small positive Q strengthens |J2|; and

for A1(1 − B1) + A2(1 − B2)µ > 0 and V > V4
q , or A1(1 − B1) + A2(1 − B2)µ < 0 and V > V4

q , a small
positive Q reduces |J2|.

Proof. As B2 , 1, based on (4.5) and (4.6), we have

J10J11 =

(L − R)(µδ1)2
(
[A1(1 − B1) + A2(1 − B2)µ]z2V + (A1 + A2µ)(ln L − ln R)

)
z1(z1 − z2)[H(1)]2(ln L − ln R)3(kBT )2 ,

J20J21 =

(R − L)(µδ2)2
(
[A1(1 − B1) + A2(1 − B2)µ]z1V + (A1 + A2µ)(ln L − ln R)

)
z2(z2 − z1)[H(1)]2(ln L − ln R)3(kBT )2 .

Therefore, the result follows.

Theorem 4.13. Assume B2 , 1, where B2 is in (4.7) and A1(1 − B1) + A2(1 − B2)µ = 0, that is,

µ = −
A1(1 − B1)
A2(1 − B2)

.

For t > 1 and 1 − B2 > 0, then J10J11 < 0;
for t > 1 and 1 − B2 < 0, then J10J11 > 0;
for t < 1 and 1 − B2 > 0, then J10J11 > 0;
for t < 1 and 1 − B2 < 0, then J10J11 < 0;
for t > 1 and 1 − B2 > 0, then J20J21 > 0;
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for t > 1 and 1 − B2 < 0, then J20J21 < 0;

for t < 1 and 1 − B2 > 0, then J20J21 < 0;

for t < 1 and 1 − B2 < 0, then J20J21 > 0.

Equivalently, for t > 1 and 1 − B2 < 0, or t < 1 and 1 − B2 > 0, a small positive Q strengthens
|J1|; for t > 1 and 1 − B2 > 0, or t < 1 and 1 − B2 < 0, a small positive Q reduces |J1|; for t > 1 and
1 − B2 > 0, or t < 1 and 1 − B2 < 0, a small positive Q strengthens |J2|; and for t > 1 and 1 − B2 < 0,
or t < 1 and 1 − B2 > 0, a small positive Q reduces |J2|.

Proof. As B2 , 1 and µ = −
A1(1 − B1)
A2(1 − B2)

, (4.6) reduces to

J11 =
1

(z1 − z2)H(1)(ln L − ln R)
µδ1

kBT
A1(B1 − B2)

1 − B2
,

J21 =
1

(z2 − z1)H(1)(ln L − ln R)
µδ2

kBT
A1(B1 − B2)

1 − B2
.

(4.15)

From (4.5), it follows that

J10J11 =
(L − R)(µδ1)2

z1(z1 − z2)[H(1)]2(ln L − ln R)2(kBT )2

A1(B1 − B2)
1 − B2

,

J20J21 =
(R − L)(µδ2)2

z2(z2 − z1)[H(1)]2(ln L − ln R)2(kBT )2

A1(B1 − B2)
1 − B2

.

(4.16)

From (4.16) and Lemma 4.6, the result follows.

Remark 4.14. Analytically, the effects of a small permanent charge Q on an individual flux are proved
in Theorems 4.7, 4.8, 4.12, and 4.13, that is, a small positive Q can strengthens or reduce the individual
flux |J1| or |J2|.

Proposition 4.15. The potentials V1
q (L,R),V2

q (L,R),V3
q (L,R), and V4

q (L,R) scale invariantly in (L,R).

Proof. It can be seen from Lemma 4.1 that A1, A2, B1, and B2 scale invariantly in (L,R). Then, based on
the formulae for V1

q (L,R),V2
q (L,R) in (4.8) and V3

q (L,R),V4
q (L,R) in (4.14), Proposition 4.15 is proved.

4.3. Dependence of magnitudes of J11 and J21 on channel geometry

We now analyze how the magnitudes of J11 and J21 depend on the channel geometry (α1, β1, α2, β2),
and the boundary condition (V, L,R).
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Recall that (α1, β1, α2, β2) ∈ Ω = {0 ≤ α1 ≤ β1 ≤ α2 ≤ β2 ≤ 1}, and

J11 =
p1(α1, β1, α2, β2)

(z1 − z2)H(1)(ln L − ln R)2 ·
µδ1(V; L,R)

kBT
,

J21 =
p2(α1, β1, α2, β2)

(z2 − z1)H(1)(ln L − ln R)2 ·
µδ2(V; L,R)

kBT
,

(4.17)

where

p1(α1, β1, α2, β2) =
(α1 − β1)(L − R)2(z2V + ln L − ln R)

[(1 − α1)L + α1R][(1 − β1)L + β1R](ln L − ln R)

− z2V ln
(1 − β1)L + β1R
(1 − α1)L + α1R

+

( (α2 − β2)(L − R)2(z2V + ln L − ln R)
[(1 − α2)L + α2R][(1 − β2)L + β2R](ln L − ln R)

− z2V ln
(1 − β2)L + β2R
(1 − α2)L + α2R

)
µ,

p2(α1, β1, α2, β2) =
(α1 − β1)(L − R)2(z1V + ln L − ln R)

[(1 − α1)L + α1R][(1 − β1)L + β1R](ln L − ln R)

− z1V ln
(1 − β1)L + β1R
(1 − α1)L + α1R

+

( (α2 − β2)(L − R)2(z1V + ln L − ln R)
[(1 − α2)L + α2R][(1 − β2)L + β2R](ln L − ln R)

− z1V ln
(1 − β2)L + β2R
(1 − α2)L + α2R

)
µ.

(4.18)

Lemma 4.16. Assume γ∗1 = γ(
L
R

) −
1

z2V
∈ (0, 1) where γ(t) ∈ (0, 1) is defined in (4.8).

(I1). For 0 ≤ µ ≤ 1, |p1(α1, β1, α2, β2)| attains its maximum at either (γ∗1, 1, 1, 1), or (0, γ∗1, β2, β2), where
γ∗1 ≤ β2 ≤ 1.

(I2). For µ > 1, |p1(α1, β1, α2, β2)| attains its maximum at either (0, 0, 0, γ∗1), or (α1, α1, γ
∗
1, 1), where

0 ≤ α1 ≤ γ
∗
1.

(I3). For −1 ≤ µ < 0, |p1(α1, β1, α2, β2)| attains its maximum at either (0, γ∗1, γ
∗
1, 1), or (γ∗1, 1, 1, 1).

(I4). For µ < −1, |p1(α1, β1, α2, β2)| attains its maximum at either (0, 0, 0, γ∗1), or (0, γ∗1, γ
∗
1, 1).

Assume γ∗1 < (0, 1).
(I5). For |µ| > 1, then |p1(α1, β1, α2, β2)| attains its maximum at (0, 0, 0, 1).
(I6). For |µ| ≤ 1, then |p1(α1, β1, α2, β2)| attains its maximum at (0, 1, 1, 1).
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Similarly, Assume γ∗2 = γ(
L
R

) −
1

z1V
∈ (0, 1).

(II1). For 0 ≤ µ ≤ 1, |p2(α1, β1, α2, β2)| attains its maximum at either (γ∗2, 1, 1, 1), or (0, γ∗2, β2, β2), where
γ∗2 ≤ β2 ≤ 1.

(II2). For µ > 1, |p2(α1, β1, α2, β2)| attains its maximum at either (0, 0, 0, γ∗2), or (α1, α1, γ
∗
2, 1), where

0 ≤ α1 ≤ γ
∗
2.

(II3). For −1 ≤ µ < 0, |p2(α1, β1, α2, β2)| attains its maximum at either (0, γ∗2, γ
∗
2, 1), or (γ∗2, 1, 1, 1).

(II4). For µ < −1, |p2(α1, β1, α2, β2)| attains its maximum at either (0, 0, 0, γ∗2), or (0, γ∗2, γ
∗
2, 1).

Assume γ∗2 < (0, 1).
(II5). For |µ| > 1, |p2(α1, β1, α2, β2)| attains its maximum at (0, 0, 0, 1).
(II6). For |µ| ≤ 1, |p2(α1, β1, α2, β2)| attains its maximum at (0, 1, 1, 1).

Proof. Note that

∂p1(α1, β1, α2, β2)
∂α1

=
(L − R)2(z2V + ln L − ln R)

[(1 − α1)L + α1R]2(ln L − ln R)

+ z2V
R − L

(1 − α1)L + α1R
,

∂p1(α1, β1, α2, β2)
∂β1

= −
(L − R)2(z2V + ln L − ln R)

[(1 − β1)L + β1R]2(ln L − ln R)

− z2V
R − L

(1 − β1)L + β1R
,

∂p1(α1, β1, α2, β2)
∂α2

=

( (L − R)2(z2V + ln L − ln R)
[(1 − α2)L + α2R]2(ln L − ln R)

+ z2V
R − L

(1 − α2)L + α2R

)
µ,

∂p1(α1, β1, α2, β2)
∂β2

= −

( (L − R)2(z2V + ln L − ln R)
[(1 − β2)L + β2R]2(ln L − ln R)

+ z2V
R − L

(1 − β2)L + β2R

)
µ.

(4.19)

Based on (4.19), it can be verified that any critical point of p1(α1, β1, α2, β2) satisfies the equality

α1 = β1 = α2 = β2.

Moreover, p1(α1, β1, α2, β2) = 0 at any critical point (α1, β1, α2, β2). Hence, the maximum of
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|p1(α1, β1, α2, β2)| on Ω is attained on the boundary of Ω, which consists of the following five parts:

{α1 = 0, 0 ≤ β1 ≤ α2 ≤ β2 ≤ 1} ∪ {α1 = β1, 0 ≤ α1 ≤ α2 ≤ β2 ≤ 1}

∪ {β1 = α2, 0 ≤ α1 ≤ α2 ≤ β2 ≤ 1}

∪ {α2 = β2, 0 ≤ α1 ≤ β1 ≤ β2 ≤ 1}

∪ {β2 = 1, 0 ≤ α1 ≤ β1 ≤ α2 ≤ 1}.

By analyzing the maximum of |p1(α1, β1, α2, β2)| on each part of the boundary of Ω, the result follows.

To illustrate some analytical results in Lemma 4.16, some numerical simulations on the maximum
value of the function |p1(α1, β1, α2, β2)| are carried out in the following.

For µ = 0, the function |p1(α1, β1, α2, β2)| in (4.18) reduces to a function in two variables α1, β1 of
the following form:

p1(α1, β1, α2, β2) =
(α1 − β1)(L − R)2(z2V + ln L − ln R)

[(1 − α1)L + α1R][(1 − β1)L + β1R](ln L − ln R)

− z2V ln
(1 − β1)L + β1R
(1 − α1)L + α1R

,

(4.20)

where 0 ≤ α1 ≤ β1 ≤ 1, which is independent of α2, β2.
Actually, µ = 0 corresponds to the case that the permanent charge Q(x) takes the form of (1.5), that

is, the permanent charge Q(x) with one nonzero region, which has been analyzed in [1]. Moreover, it
has been proved in [1] that

for γ∗1 ∈ (0, 1), |p1(α1, β1, α2, β2)| for µ = 0 in (4.20) attains its maximum at either (0, γ∗1) or (γ∗1, 1),
and

for γ∗1 < (0, 1), |p1(α1, β1, α2, β2)| for µ = 0 in (4.20) attains its maximum at (0, 1).
It can be seen that these results are consistent with those of |p1(α1, β1, α2, β2)| for µ = 0 in (I1) and

(I6), which are described in Lemma 4.16.
Because |p1(α1, β1, α2, β2)| for µ = 0 in (4.20) is a function in two variables α1, β1, the graph of

the function |p1(α1, β1, α2, β2)| for µ = 0 in (4.20) can be visualized in three dimensional space. The
graph of the function |p1(α1, β1, α2, β2)| for µ = 0 in (4.20) is plotted in Figure 2, which supports these
analytical results. Specifically, from Figure 2, it can be seen that

for γ∗1 ∈ (0, 1), |p1(α1, β1, α2, β2)| for µ = 0 in (4.20) attains its maximum at either (0, γ∗1), and
for γ∗1 < (0, 1), |p1(α1, β1, α2, β2)| for µ = 0 in (4.20) attains its maximum at (0, 1).
For µ , 0, the domain of the function |p1(α1, β1, α2, β2)| in four variables, given in (4.18), is

Ω = {0 ≤ α1 ≤ β1 ≤ α2 ≤ β2 ≤ 1}.
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Therefore, to visualize the graph of the function |p1(α1, β1, α2, β2)| in (4.18) in three dimensional space,
it is necessary to fix two variables, and α2, β2 are chosen to be fixed in our numerical simulations.

Figure 2. The parameters in image (a) are chosen as L = 6,R = 3, z2 = −1,V = 10, and
γ∗1 = 0.6573 ∈ (0, 1).The parameters in image (b) are chosen as L = 6,R = 3, z2 = −1,V = 0.5,
and γ∗1 = 2.5573 < (0, 1).

Fixing α2 = β2, it can be seen that |p1(α1, β1, α2, β2)| in (4.18) also reduces to a function in two vari-
ables α1, β1 in (4.20), which is independent of µ. Therefore, the graph of the function |p1(α1, β1, α2, β2)|
in (4.18) is the same as that in Figure 2, which is consistent with the analytical results in (I1), (I3), and
(I6), described in Lemma 4.16.

Fix α2 < β2, and to demonstrate the influence of the parameter µ on the graph of the function
|p1(α1, β1, α2, β2)| in (4.18), other parameters L,R, z2,V, α2, β2 are chosen to remain unchanged.

Fixing L = 6,R = 3, z2 = −1, and V = 10, it follows that γ∗1 = γ(
L
R

) −
1

z2V
= 0.6573 ∈ (0, 1)

by calculation, where γ(t) is defined in (4.8). Also, fixing α2 = γ
∗
1 = 0.6573, β2 = 1, the function

|p1(α1, β1, α2, β2)| in (4.18) is plotted in Figure 3 by taking µ = 0.5, µ = 2, µ = −0.5, and µ = −2.
Image (b) for µ = 2 in Figure 3 indicates |p1(α1, β1, α2, β2)| attains its maximum at (α1, α1, γ

∗
1, 1),

where 0 ≤ α1 ≤ γ
∗
1, which is consistent with the analytical results in (I2) described in Lemma 4.16.

Images (c) and (d) for µ = −0.5 and µ = −2 in Figure 3 indicate that |p1(α1, β1, α2, β2)| attains its
maximum at (0, γ∗1, γ

∗
1, 1), which is consistent with the analytical results in (I3) and (I4) described in

Lemma 4.16. There is one difference between images (c) and (d) in Figure 3: The maximum value of
|p1(α1, β1, α2, β2)| in image (c) is less than 1, but the maximum value of |p1(α1, β1, α2, β2)| in image (d)
is greater than 1.6.

Moreover, it can be seen that images (a)–(d) in Figure 3 indicate that as the parameter µ changes, the
maximum value of |p1(α1, β1, α2, β2)| changes accordingly.

To visualize the influence of the parameters α2 and β2 on the graph of the function |p1(α1, β1, α2, β2)|
in (4.18), other parameters, L,R, z2,V and µ, are chosen to be the same as those of Figure 3. Then. the
graph of the function |p1(α1, β1, α2, β2)| in (4.18) is plotted in Figure 4 by fixing α2 = 0.8 and β2 = 0.9.
Also, the parameters α2 and β2 can be fixed to obtain other values belonging to the interval [0, 1].
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Figure 3. The parameters are chosen as L = 6,R = 3, z2 = −1,V = 10, γ∗1 = 0.6573, α2 =

0.6573, and β2 = 1. Images (a), (b), (c), (d) correspond to µ = 0.5, µ = 2, µ = −0.5, and
µ = −2, respectively.

Based on Lemma 4.16, the following results can be obtained.

Proposition 4.17. The maximum of |J11| occurs in the same way as that of |p1(α1, β1, α2, β2)|, and the
maximum of |J21| occurs in the same way as that of |p2(α1, β1, α2, β2)|.

Proof. From the expressions for J11 and J21 in (4.17), it can be seen that choosing α1, β1, α2, and β2 as
four independent variables and fixing other parameters, the conditions for the maximum of |J11| and |J21|

are the same as those for the maximum of |p1(α1, β1, α2, β2)| and |p2(α1, β1, α2, β2)| in (4.18). Therefore,
Proposition 4.17 is proved.

Remark 4.18. As explained in [1], various conditions for the maximum of |Ji1| are related to the
structures of the ion channels.

For example, in order to make (α1, β1, α2, β2) ≈ (0, 0, 0, 1), h(x) can take the following form: Namely,
b2 − a2 ≪ 1, and h(x) for x ∈ (a2, b2) is much smaller than h(x) for x < [a2, b2].
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For another example, in order to make (α1, β1, α2, β2) ≈ (0, 1, 1, 1), h(x) can take the follwoing form:
Namely, b1 − a1 ≪ 1, and h(x) for x ∈ (a1, b1) is much smaller than h(x) for x < [a1, b1].

These two cases both imply that the ion channels have a short and narrow cross-section. Similar
explanations work for other conditions.

Remark 4.19. The ratio µ =
Q2

Q1
is also a key parameter to determine the conditions for the maximum

of |Ji1|. Moreover, when the parameter µ changes, the maximum point of |Ji1| changes accordingly;
therefore, the ratio µ can change the position of a short and narrow cross-section in ion channels.

Figure 4. The parameters are chosen as L = 6,R = 3, z2 = −1,V = 10, α2 = 0.8 and β2 = 0.9.
Images (a), (b), (c), and (d) correspond to µ = 0.5, µ = 2, µ = −0.5, and µ = −2, respectively.

4.4. Permanent charge effects on I-V relation

In this section, it is assumed that Ai , 0, and i = 1, 2.
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It follows from (4.5) and (4.6) that

I0 =
L − R

H(1)(ln L − ln R)

(
D1
µδ1

kBT
− D2

µδ2
kBT

)
, I1 =

P(V; L,R)
(z1 − z2)H(1)

, (4.21)

where λ =
V

ln L − ln R
and

P = P(V; L,R) = z1z2(z1D1 − z2D2)[A1(1 − B1) + A2(1 − B2)µ]λ2

+

[
z1z2(D1 − D2)[A1(1 − B1) + A2(1 − B2)µ]

+ (z2
1D1 − z2

2D2)(A1 + A2µ)
]
λ + (z1D1 − z2D2)(A1 + A2µ).

(4.22)

Theorem 4.20. For Q = 0, the zeroth order in ε approximation of the reversal potential Vrev is defined by

Vrev = Vrev(L,R) = −
D1 − D2

z1D1 − z2D2
(ln L − ln R). (4.23)

Hence, I0 > 0 if V > Vrev and I0 < 0 if V < Vrev.

Proof. From the expressions for I0 in (4.21), it follows that

I0 =
L − R

H(1)(ln L − ln R)

(
(z1D1 − z2D2)V + (D1 − D2)(ln L − ln R)

)
. (4.24)

Because z1D1 − z2D2 > 0, Theorem 4.20 is proved.

We now examine the sign of I1 to determine the leading effects of the permanent charge on
the current.

Note that if A1(1 − B1) + A2(1 − B2)µ = 0, then

I1 =
1

(z1 − z2)H(1)(ln L − ln R)

[
(z2

1D1 − z2
2D2)(A1 + A2µ)V

+ (z1D1 − z2D2)(A1 + A2µ)(ln L − ln R)
]
.

(4.25)

Also, the assumption A1(1 − B1) + A2(1 − B2)µ = 0 means (I): B2 = 1 and B1 = 1, or (II): B2 , 1 and
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µ = −
A1(1 − B1)
A2(1 − B2)

.

For z2
1D1 − z2

2D2 , 0, let

V0 = V0(L,R) = −
(z1D1 − z2D2)(ln L − ln R)

z2
1D1 − z2

2D2
.

Lemma 4.21. The signs of A1 + A2µ are collected in the following Table 2.

Table 2. Signs of A1 + A2µ.

Column 1 Column 2

If t =
L
R
> 1, µ < −

A1

A2
, then A1 + A2µ > 0 If t =

L
R
< 1, µ > −

A1

A2
, then A1 + A2µ > 0

If t =
L
R
> 1, µ > −

A1

A2
, then A1 + A2µ < 0 If t =

L
R
< 1, µ < −

A1

A2
, then A1 + A2µ < 0

Proof. If t =
L
R
> 1, it follows from Lemma 4.4 that A2 < 0. Therefore, as µ > −

A1

A2
, A1 + A2µ > 0.

Other cases can be similarly verified.

Theorem 4.22. Assume B2 = 1 and B1 = 1.

If z2
1D1 − z2

2D2 = 0, then I1 > 0 for A1 + A2µ > 0 and I1 < 0 for A1 + A2µ < 0.

If
(z2

1D1 − z2
2D2)(A1 + A2µ)

ln L − ln R
> 0, then I1 > 0 for V > V0 and I1 < 0 for V < V0.

If
(z2

1D1 − z2
2D2)(A1 + A2µ)

ln L − ln R
< 0, then I1 > 0 for V < V0 and I1 < 0 for V > V0.

Proof. Assume B2 = 1 and B1 = 1, then A1(1 − B1) + A2(1 − B2)µ = 0, and the formula for I1 is given
by (4.25). Based on the formula for I1 in (4.25), the statement of Theorem 4.22 can be verified.

Lemma 4.23. Assume B2 , 1 and µ = −
A1(1 − B1)
A2(1 − B2)

.

If t =
L
R
, 1 and 1 − B2 > 0, then A1 + A2µ < 0.

If t =
L
R
, 1 and 1 − B2 < 0, then A1 + A2µ > 0.
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Proof. As B2 , 1 and µ = −
A1(1 − B1)
A2(1 − B2)

, then, one has

A1 + A2µ =
A1(B1 − B2)

1 − B2
. (4.26)

Based on (4.26) and Lemma 4.6, the result follows.

Theorem 4.24. Assume B2 , 1 and µ = −
A1(1 − B1)
A2(1 − B2)

.

If z2
1D1 − z2

2D2 = 0, then I1 > 0 for A1 + A2µ > 0 and I1 < 0 for A1 + A2µ < 0.

If
(z2

1D1 − z2
2D2)(A1 + A2µ)

ln L − ln R
> 0, then I1 > 0 for V > V0 and I1 < 0 for V < V0.

If
(z2

1D1 − z2
2D2)(A1 + A2µ)

ln L − ln R
< 0, then I1 > 0 for V < V0 and I1 < 0 for V > V0.

Proof. Assume B2 , 1 and µ = −
A1(1 − B1)
A2(1 − B2)

, then A1(1 − B1) + A2(1 − B2)µ = 0, and the formula

for I1 is given by (4.25). Based on the formula for I1 in (4.25), the statement of Theorem 4.22 can
be verified.

Based on (4.22), if A1(1 − B1) + A2(1 − B2)µ , 0, then P = 0 is a quadratic equation in λ whose
discriminant is

∆ = z2
1z2

2(D1 − D2)2[A1(1 − B1 − r−)

+ A2(1 − B2 − r−)µ][A1(1 − B1 − r+) + A2(1 − B2 − r+)µ],
(4.27)

where r− < r+ ≤ 0 is given by

r− =
(z1
√

D1 − z2
√

D2)2

z1z2(
√

D1 −
√

D2)2
and r+ =

(z1
√

D1 + z2
√

D2)2

z1z2(
√

D1 +
√

D2)2
. (4.28)

Note that, if D1 = D2, then

r− = −∞ and r+ =
(z1 + z2)2

4z1z2
.

For convenience, let

µ1 = −
A1(1 − B1 − r−)
A2(1 − B2 − r−)

, µ2 = −
A1(1 − B1 − r+)
A2(1 − B2 − r+)

and µ3 = −
A1(1 − B1)
A2(1 − B2)

. (4.29)
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Note that if r+ = 0, then µ2 = µ3.

Lemma 4.25. Assume 1 − B2 = 0.

If t =
L
R
> 1, then A1(1− B1) + A2(1− B2)µ > 0 for 1− B1 < 0 and A1(1− B1) + A2(1− B2)µ < 0 for

1 − B1 > 0.

If t =
L
R
< 1, then A1(1− B1) + A2(1− B2)µ > 0 for 1− B1 > 0 and A1(1− B1) + A2(1− B2)µ < 0 for

1 − B1 < 0.

Proof. If t =
L
R
> 1, it follows from Lemma 4.4 that A1 < 0. Additionally, assume 1 − B2 = 0. Then

A1(1−B1)+A2(1−B2)µ = A1(1−B1) > 0 for 1−B1 < 0, and A1(1−B1)+A2(1−B2)µ = A1(1−B1) < 0
for 1 − B1 > 0. The other case can be verified similarly.

Remark 4.26. As 1 − B2 , 0, the sign of A1(1 − B1) + A2(1 − B2)µ is determined by Lemma 4.10.

Lemma 4.27. (i) Assume r− < 1 − B2 < r+.

Then, µ2 < µ3 < µ1 for t =
L
R
> 1, and µ1 < µ3 < µ2 for t =

L
R
< 1.

(ii) Assume 1 − B2 < r−.

Then, µ1 < µ2 < µ3 for t =
L
R
> 1, and µ3 < µ2 < µ1 for t =

L
R
< 1.

(iii) Assume r+ < 1 − B2 < 0.

Then, µ3 < µ1 < µ2 for t =
L
R
> 1, and µ2 < µ1 < µ3 for t =

L
R
< 1.

(iv) Assume 1 − B2 > 0.

Then, µ1 < µ2 < µ3 for t =
L
R
> 1, and µ3 < µ2 < µ1 for t =

L
R
< 1.

Proof. Note that

µ1 − µ2 =
A1(r+ − r−)(B2 − B1)

A2(1 − B2 − r+)(1 − B2 − r−)
,

µ3 − µ1 =
A1 · r−(B2 − B1)

A2(1 − B2 − r−)(1 − B2)
,

µ3 − µ2 =
A1 · r+(B2 − B1)

A2(1 − B2 − r+)(1 − B2)
.

(4.30)

Based on (4.30) and Lemma 4.6, the result follows.

Lemma 4.28. Assume r− < 1 − B2 < r+.
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If t =
L
R
> 1, then ∆ > 0 for µ2 < µ < µ1, ∆ < 0 for µ > µ1 or µ < µ2, and ∆ = 0 for µ = µ1 or

µ = µ2.

If t =
L
R
< 1, then ∆ > 0 for µ1 < µ < µ2, ∆ < 0 for µ > µ2 or µ < µ1, and ∆ = 0 for µ = µ1 or

µ = µ2.

Proof. Assume r− < 1 − B2 < r+, then 1 − B2 − r− > 0 and 1 − B2 − r+ < 0.

If t =
L
R
> 1, it follows from Lemma 4.4 that A2 < 0. Therefore, A2(1 − B2 − r−) < 0 and A2(1 −

B2 − r+) > 0.

For µ2 < µ < µ1, it follows from (4.29) that −
A1(1 − B1 − r+)
A2(1 − B2 − r+)

< µ < −
A1(1 − B1 − r−)
A2(1 − B2 − r−)

. Therefore,

A1(1 − B1 − r−) + A2(1 − B2 − r−)µ > 0, and A1(1 − B1 − r+) + A2(1 − B2 − r+)µ > 0. Based on the
expression for ∆ in (4.27), it can be seen that ∆ > 0.

Other cases can be verified similarly.

Lemma 4.29. Assume 1 − B2 < [r−, r+].

If t =
L
R
> 1, then ∆ < 0 for µ1 < µ < µ2, ∆ > 0 for µ > µ2 or µ < µ1, and ∆ = 0 for µ = µ1 or

µ = µ2.

If t =
L
R
< 1, then ∆ < 0 for µ2 < µ < µ1, ∆ > 0 for µ > µ1 or µ < µ2, and ∆ = 0 for µ = µ1 or

µ = µ2.

Proof. The proof of Lemma 4.29 is similar to that of Lemma 4.28.

Lemma 4.30. Assume 1 − B2 = r−.

If t =
L
R
> 1, then ∆ < 0 for µ < µ2, ∆ > 0 for µ > µ2, and ∆ = 0 for µ = µ2.

If t =
L
R
< 1, then ∆ < 0 for µ > µ2, ∆ > 0 for µ < µ2, and ∆ = 0 for µ = µ2.

Proof. Assume 1 − B2 = r−, then 1 − B2 − r− = 0. From (4.28), it can be seen that r− < r+. Therefore,
1 − B2 − r+ < 0.

If t =
L
R
> 1, it follows from Lemma 4.4 that A1 < 0 and A2 < 0. Therefore, A2(1 − B2 − r+) > 0.

If t =
L
R
> 1, it follows from Lemma 4.6 that −B1 < −B2. Therefore, 1 − B1 − r− < 0.

For µ < µ2, it follows from (4.29) that µ < −
A1(1 − B1 − r+)
A2(1 − B2 − r+)

. Therefore, A1(1 − B1 − r+) + A2(1 −

B2 − r+)µ < 0. Based on the expression for ∆ in (4.27), it can be seen that ∆ < 0.
Other cases can be verified similarly.

Lemma 4.31. Assume 1 − B2 = r+.

If t =
L
R
> 1, then ∆ < 0 for µ > µ1, ∆ > 0 for µ < µ1, and ∆ = 0 for µ = µ1.

If t =
L
R
< 1, then ∆ < 0 for µ < µ1, ∆ > 0 for µ > µ1, and ∆ = 0 for µ = µ1.

Proof. The proof of Lemma 4.31 is similar to that of Lemma 4.30.
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Remark 4.32. In Lemmas 4.28–4.31, conditions in terms of 1 − B2 can be made in terms of α2, β2, L
and R by using Lemma 4.5.

Theorem 4.33. For the sign of I1 in (4.21), one has the following results:
(i) If ∆ < 0, then I1 < 0 for A1(1−B1)+A2(1−B2)µ > 0 and I1 > 0 for A1(1−B1)+A2(1−B2)µ < 0.
(ii) If ∆ = 0, then there exists one potential V0

q = V0
q (L,R) such that

(ii1) if V = V0
q , then I1 = 0;

(ii2) if V , V0
q , then I1 < 0 for A1(1−B1)+A2(1−B2)µ > 0 and I1 > 0 for A1(1−B1)+A2(1−B2)µ < 0.

(iii) If ∆ > 0, then there exist two potentials V±q = V±q (L,R) such that
(iii1) if V = V±q , then I1 = 0;
(iii2) if V ∈ (V−q ,V

+
q ), then I1 > 0 for A1(1 − B1) + A2(1 − B2)µ > 0 and I1 < 0 for A1(1 − B1) +

A2(1 − B2)µ < 0;
(iii3) if V < [V−q ,V

+
q ], then I1 < 0 for A1(1 − B1) + A2(1 − B2)µ > 0 and I1 > 0 for A1(1 − B1) +

A2(1 − B2)µ < 0.

Proof. From (4.21) and (4.22), it can be seen that I1 is a quadratic equation in V by fixing other
parameters, and its discriminant ∆ is given by (4.27). Therefore, based on (4.21) and (4.22), if ∆ < 0,
then I1 < 0 for A1(1 − B1) + A2(1 − B2)µ > 0 and an arbitrary V; if ∆ < 0, then I1 > 0 for
A1(1 − B1) + A2(1 − B2)µ < 0 and an arbitrary V .

Other cases can be verified similarly.

Remark 4.34. The sign of A1(1 − B1) + A2(1 − B2)µ in Theorem 4.33 is determined by Lemmas 4.10
and 4.25. The sign of ∆ in Theorem 4.33 is determined by Lemmas 4.28–4.31.

Remark 4.35. In summary, the effects of a small permanent charge on the I-V relation are analytically
proved in Theorems 4.22, 4.24, and 4.33, which indicate that a small positive Q can strengthens or
reduce the current I based on (4.2).

To illustrate some analytical results in Theorems 4.22, 4.24, and 4.33, numerical simulations on the
I-V relation are carried out and shown in Figure 5.

From Figure 5, the following can be seen:

(I) Q = 0, that is, without the permanent charge, then the I-V relation is a straight line.
(II) Q = 0.05, and µ = 0, that is, the permanent charge has one nonzero region, and a small positive Q

can strengthens or reduce the current I.
(III) Q = 0.05, µ = 1 or Q = 0.05, µ = −2 , that is, the permanent charges have two nonzero regions,

and a small positive Q can furthermore strengthens or reduce the current I.

Also, the following can be easily verified:

Proposition 4.36. The critical potentials Vrev(L,R),V0(L,R),V0
q (L,R), and V±q (L,R) scale invariantly

in (L,R).

Proof. From the expression for Vrev(L,R) in (4.23), it can be seen that Vrev(L,R) scales invariantly
in (L,R). From Lemma 4.1, it follows that A1, B1, A2, and B2 scale invariantly in (L,R). Therefore,
based on (4.22), it can be seen that the critical potentials V0(L,R),V0

q (L,R), and V±q (L,R), as roots of
P(V; L,R) = 0, scale invariantly in (L,R) accordingly.
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Figure 5. The parameters are chosen as z1 = 1, z2 = −1,D1 = 4,D2 = 2, α1 = 0.2, β1 =

0.4, α2 = 0.6, β2 = 0.8 and H(1) = 1. The left image and right image correspond to
L = 6,R = 3 and L = 3,R = 6, respectively.

5. Conclusions

The PNP model is a very popular continuum theory describing ion transport in complex biological
systems. With the electrochemical potential in (1.4) and the permanent charge in (1.8), the classical
PNP model including two oppositely charged ions is used in this paper to study the effects of the small
permanent charge and channel geometry (α1, β1, α2, β2) on ionic flows. By employing the geometric
singular perturbation theory and a regular perturbation expansion, we obtain explicit expressions for the
first-order approximation Ji1 in (3.3) of individual flux, which is a very complicated function of multiple
variables. Based on the properties of Ji1, the effects of the permanent charge on the fluxes is analyzed in
Theorems 4.7, 4.8, 4.12, and 4.13, which indicate that small |Q| strengthens or reduces the individual
flux. Under some conditions, the critical potentials and the signs of I1 are justified in Theorems 4.22,
4.24, and 4.33. Also, various conditions for the maximum of Ji1 are identified in Proposition 4.17,
which are related to the structures of the ion channels, namely, the ion channels have a short and narrow
cross-section.

Relative to the article [1], there are some differences due to the permanent charge in (1.8). Specifically,

the ratio µ =
Q2

Q1
is an additional parameter included in our analysis. Lemma 4.6 is also a new result

related to the channel geometry (α1, β1, α2, β2). Moreover Ji1 is a function in multivariables α1, β1, α2, β2,

and µ. On the other hand, it can be seen that as Q1 = 0 or Q2 = 0 in (1.8), the formula for Ji1 in
Proposition 3.4 is the same as that in [1], and the results in this paper can be reduced to those in [1].

The function Ji1 in (3.3) explicitly depends on the boundary conditions, the channel geometry
(α1, β1, α2, β2), and µ in a very complicated way. Therefore, it is very convenient to carry out extensive
numerical experiments on the individual flux.

In this paper, due to the one-dimensional version of the steady-state PNP model under study, there are
some existing results, such as finite-dimensional geometric singular perturbation theory and the exchange
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lemma, which can be employed to prove the existence of a unique solution for (2.8) in the vicinity of a
singular orbit for small Q and small ε > 0. Afterwards, the effects of the small permanent charge and
channel geometry on ionic flow can be further analyzed. However, it is very challenging as to whether a
two-dimensional version or three-dimensional version of the steady-state PNP model can be theoretically
analyzed in a similar way. From a dynamical view, a two-dimensional version or three-dimensional
version of the steady-state PNP model is an infinite-dimensional dynamical system. Recently, in [61],
finite-dimensional geometric singular perturbation theory is extended to an infinite-dimensional version,
which can be used to analyze fast-slow systems of partial differential equations.

Apart from mathematical analysis of the dynamics of the one-dimensional version of the steady-
state PNP model, there are extensive numerical works for the PNP system [62–67]. In particular,
Liu et al. [64–66] proposed both the first-order and second-order numerical schemes which preserve
three theoretical properties: unique solvability/positivity-preserving, unconditional energy stability, and
optimal rate convergence analysis in the energetic variational formulation. Since the ion concentration
must be non-negative, numerical algorithms preserving positivity proposed in [64–66] will be very
important for the ion concentrations. Accordingly, it is an important problem whether numerical
algorithms developed in [64–66] can be applicable to the PNP model studied in this article.
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Appendix

In this section, we give a proof of Proposition 3.4.

Proof. First, by substituting (3.1) into (2.8) and Table 1, the following formulae can be obtained.

Lemma 5.1. One has
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Then, by using the results in Proposition 3.2 and Lemma 5.1, and by substituting (3.1) into (2.8) and
Table 1, one obtains
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(5.1)
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and
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(5.3)

Finally, by solving the linear algebraic equations in (5.1)–(5.3), Proposition 3.4 is proved.
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