Turing pattern formation in growing domains depends on a steady state that balances reaction rates and local volume changes, leading to more complex patterning conditions than in fixed domains. We analyzed the effects of domain growth and shrinkage on spatially homogeneous concentrations and their stability, demonstrating that long-term behavior depends on the growth type: exponential growth causes asymptotic deviations, linear and quadratic growth enable gradual recovery of the fixed-domain state, and oscillatory growth induces concentration oscillations. Using a linear approximation for the base state, we derived an analytic expression that accurately predicts these effects for slow domain variations. Our theoretical model shows that dilution-induced steady states evolve proportionally to the chemical fixed-point concentration, a result validated through extensive numerical simulations of the Brusselator and BVAM reactions. Additionally, we proposed an approximate framework for evaluating the stability of spatially homogeneous perturbations, interpreting it as a balance between reaction rates and dilution. This yielded an analytical criterion for determining stability in the absence of diffusion, offering an alternative to previously exclusive numerical approaches for identifying the first Turing condition for pattern formation.
Citation: Aldo Ledesma-Durán, Consuelo García-Alcántara, Iván Santamaría-Holek. Base state of growing reaction-dilution systems exhibiting Turing patterns[J]. Mathematical Biosciences and Engineering, 2026, 23(1): 97-123. doi: 10.3934/mbe.2026005
Turing pattern formation in growing domains depends on a steady state that balances reaction rates and local volume changes, leading to more complex patterning conditions than in fixed domains. We analyzed the effects of domain growth and shrinkage on spatially homogeneous concentrations and their stability, demonstrating that long-term behavior depends on the growth type: exponential growth causes asymptotic deviations, linear and quadratic growth enable gradual recovery of the fixed-domain state, and oscillatory growth induces concentration oscillations. Using a linear approximation for the base state, we derived an analytic expression that accurately predicts these effects for slow domain variations. Our theoretical model shows that dilution-induced steady states evolve proportionally to the chemical fixed-point concentration, a result validated through extensive numerical simulations of the Brusselator and BVAM reactions. Additionally, we proposed an approximate framework for evaluating the stability of spatially homogeneous perturbations, interpreting it as a balance between reaction rates and dilution. This yielded an analytical criterion for determining stability in the absence of diffusion, offering an alternative to previously exclusive numerical approaches for identifying the first Turing condition for pattern formation.
| [1] |
A. M. Turing, The chemical basis of morphogenesis, Bull. Math. Biol., 52 (1990), 153–197. https://doi.org/10.1007/BF02459572 doi: 10.1007/BF02459572
|
| [2] | J. D. Murray, Mathematical biology Ⅱ: Spatial models and biomedical applications, vol. 3, Springer, 2001. https://doi.org/10.1007/978-0-387-22437-4 |
| [3] |
E. Knobloch, R. Krechetnikov, Problems on time-varying domains: Formulation, dynamics, and challenges, Acta Appl. Math., 137 (2015), 123–157. https://doi.org/10.1007/s10440-014-9989-9 doi: 10.1007/s10440-014-9989-9
|
| [4] |
L. Marcon, J. Sharpe, Turing patterns in development: What about the horse part?, Curr. Opin. Genet. Dev., 22 (2012), 578–584. https://doi.org/10.1016/j.gde.2012.11.004 doi: 10.1016/j.gde.2012.11.004
|
| [5] |
O. Chara, E. M. Tanaka, L. Brusch, Mathematical modeling of regenerative processes, Curr. Top. Dev. Biol., 108 (2014), 283–317. https://doi.org/10.1016/B978-0-12-391498-9.00010-8 doi: 10.1016/B978-0-12-391498-9.00010-8
|
| [6] | F. R. Macfarlane, M. A. J. Chaplain, T. Lorenzi, A hybrid discrete-continuum approach to model turing pattern formation, arXiv, arXiv: 2007.04195. https://doi.org/10.48550/arXiv.2007.04195, |
| [7] |
C. Gilbert, T. Ellis, Biological engineered living materials: Growing functional materials with genetically programmable properties, ACS Synth. Biol., 8 (2018), 1–15. https://doi.org/10.1021/acssynbio.8b00423 doi: 10.1021/acssynbio.8b00423
|
| [8] |
J. L. Payne, A. Wagner, The causes of evolvability and their evolution, Nat. Rev. Genet., 20 (2019), 24–38. https://doi.org/10.1038/s41576-018-0069-5 doi: 10.1038/s41576-018-0069-5
|
| [9] |
I. Salazar-Ciudad, J. Jernvall, Graduality and innovation in the evolution of complex phenotypes: Insights from development, J. Exp. Zool. B Mol. Dev. Evol., 304 (2005), 619–631. https://doi.org/10.1002/jez.b.21083 doi: 10.1002/jez.b.21083
|
| [10] |
J. I. Overbø, Y. Ma, B. A. Edgar, Cell growth and the cell cycle: New insights about persistent questions, BioEssays, 44 (2022), e2200150. https://doi.org/10.1002/bies.202200150 doi: 10.1002/bies.202200150
|
| [11] |
M. B. Ginzberg, N. Chang, H. D'Souza, N. Patel, R. Kafri, M. W Kirschner, Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity, eLife, 7 (2018), e26957. https://doi.org/10.7554/eLife.26957 doi: 10.7554/eLife.26957
|
| [12] |
R. B. Haga, A. J. Ridley, Rho gtpases: Regulation and roles in cancer cell biology, Small GTPases, 7 (2016), 207–221. https://doi.org/10.1080/21541248.2016.1232583 doi: 10.1080/21541248.2016.1232583
|
| [13] |
C. D. Lawson, A. J. Ridley, Rho gtpase signaling complexes in cell migration and invasion, J. Cell Biol., 217 (2018), 447–457. https://doi.org/10.1083/jcb.201612069 doi: 10.1083/jcb.201612069
|
| [14] |
S. Hladyshau, J. P. Stoop, K. Kamada, S. Die, D. Tsygankov, Spatiotemporal coordination of rac1 and cdc42 at the whole cell level during cell ruffling, Cells, 12 (2023), 1638. https://doi.org/10.3390/cells12121638 doi: 10.3390/cells12121638
|
| [15] |
M. Picard, R. J. Petrie, J. Antoine-Bertrand, É. Saint-Cyr-Proulx, J.-F. Villemure, N. Lamarche-Vane, Spatial and temporal activation of the small gtpases rhoa and rac1 by the netrin-1 receptor unc5a during neurite outgrowth, Cell. Signal., 21 (2009), 1961–1973. https://doi.org/10.1016/j.cellsig.2009.08.017 doi: 10.1016/j.cellsig.2009.08.017
|
| [16] |
M. Machacek, L. Hodgson, C. Welch, H. Elliott, O. Pertz, P. Nalbant, et al., Coordination of rho gtpase during cell protrusion, Nature, 461 (2009), 99–103. https://doi.org/10.1038/nature08242 doi: 10.1038/nature08242
|
| [17] |
W. A. Waters, R. A. Van Gorder, Turing patterns under hybrid apical–uniform domain growth, Proc. R. Soc. A, 481 (2024). https://doi.org/10.1098/rspa.2024.0935. doi: 10.1098/rspa.2024.0935
|
| [18] |
A. Madzvamuse, E. A. Gaffney and P. K. Maini, Stability analysis of non‐autonomous reaction‐diffusion systems: The effects of growing domains, J. Math. Biol., 61 (2010), 133–164. https://doi.org/10.1007/s00285-009-0293-4 doi: 10.1007/s00285-009-0293-4
|
| [19] |
T. Kolokolnikov, J. Wei, Pattern formation in a reaction‐diffusion system with space-dependent feed rate, SIAM Rev., 60 (2018), 626–645. https://doi.org/10.1137/17M1116027 doi: 10.1137/17M1116027
|
| [20] |
A. L. Krause, E. A. Gaffney, B. J. Walker, Concentration‐dependent domain evolution in reaction–diffusion systems, Bull. Math. Biol., 85 (2023), 14. https://doi.org/10.1007/s11538-022-01115-2 doi: 10.1007/s11538-022-01115-2
|
| [21] |
C. Fraga Delfino Kunz, A. Gerisch, J. Glover, D. Headon, K. J. Painter, F. Matthäus, Novel aspects in pattern formation arise from coupling turing reaction–diffusion and chemotaxis, Bull. Math. Biol., 86 (2024), 1–37. https://doi.org/10.1007/s11538-023-01225-5 doi: 10.1007/s11538-023-01225-5
|
| [22] |
L. Silva-Dias, I. R. Epstein, M. Dolnik, Turing patterns on rotating spiral growing domains, Phys. Chem. Chem. Phys., 26 (2024), 26258–26265. https://doi.org/10.1039/D4CP02889A doi: 10.1039/D4CP02889A
|
| [23] |
S. Okuda, T. Miura, Y. Inoue, T. Adachi, M. Eiraku, Combining turing and 3d vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching, Sci. Rep., 8 (2018), 1–15. https://doi.org/10.1038/s41598-018-20606-1 doi: 10.1038/s41598-018-20606-1
|
| [24] |
C. Konow, N. H. Somberg, J. Chavez, I. R. Epstein, M. Dolnik, Turing patterns on radially growing domains: Experiments and simulations, Phys. Chem. Chem. Phys., 21 (2019), 6718–6724. https://doi.org/10.1039/C9CP00315A doi: 10.1039/C9CP00315A
|
| [25] |
R. Krechetnikov, E. Knobloch, Stability on time-dependent domains: Convective and dilution effects, Phys. D, 342 (2017), 16–23. https://doi.org/10.1016/j.physd.2016.10.005 doi: 10.1016/j.physd.2016.10.005
|
| [26] |
A. Ledesma-Durán, E. Ortiz-Durán, J. Aragón, I. Santamaría-Holek, Eckhaus selection: The mechanism of pattern persistence in a reaction-diffusion system, Phys. Rev. E, 102 (2020), 032214. https://doi.org/10.1103/PhysRevE.102.032214 doi: 10.1103/PhysRevE.102.032214
|
| [27] |
M. Ghadiri, R. Krechetnikov, Pattern formation on time-dependent domains, J. Fluid Mech., 880 (2019), 136–179. https://doi.org/10.1017/jfm.2019.694 doi: 10.1017/jfm.2019.694
|
| [28] |
H. Kim, A. Yun, S. Yoon, C. Lee, J. Park, J. Kim, Pattern formation in reaction–diffusion systems on evolving surfaces, Comput. Math. Appl., 80 (2020), 2019–2028. https://doi.org/10.1016/j.camwa.2020.08.029 doi: 10.1016/j.camwa.2020.08.029
|
| [29] |
S. T. Vittadello, T. Leyshon, D. Schnoerr, M. P. H. Stumpf, Turing pattern design principles and their robustness, Philos. Trans. R. Soc. A, 379 (2021), 20200272. https://doi.org/10.1098/rsta.2020.0272 doi: 10.1098/rsta.2020.0272
|
| [30] |
R. A. Van Gorder, V. Klika, A. L. Krause, Turing conditions for pattern forming systems on evolving manifolds, J. Math. Biol., 82 (2021), 1–61. https://doi.org/10.1007/s00285-021-01609-6 doi: 10.1007/s00285-021-01609-6
|
| [31] |
V. Klika, Significance of non-normality-induced patterns: Transient growth versus asymptotic stability, Chaos, 27 (2017), 073114. https://doi.org/10.1063/1.4996824 doi: 10.1063/1.4996824
|
| [32] |
V. Klika, M. Kozák and E. A. Gaffney, Domain size driven instability: Self-organization in systems with advection, SIAM J. Appl. Math., 78 (2018), 2298–2322. https://doi.org/10.1137/17M115843X doi: 10.1137/17M115843X
|
| [33] |
V. Klika and E. A. Gaffney, History dependence and the continuum approximation breakdown: The impact of domain growth on turing's instability, Proc. R. Soc. A, 473 (2017), 20160744. https://doi.org/10.1098/rspa.2016.0744 doi: 10.1098/rspa.2016.0744
|
| [34] |
B. Pena and C. Perez-Garcia, Stability of turing patterns in the brusselator model, Phys. Rev. E, 64 (2001), 056213. https://doi.org/10.1103/PhysRevE.64.056213 doi: 10.1103/PhysRevE.64.056213
|
| [35] | R. A. Barrio, Turing systems: A general model for complex patterns in nature, in Physics of emergence and organization. World Scientific, 2008,267–296. https://doi.org/10.1142/9789812814739_0011 |
| [36] |
A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction–diffusion systems on fixed and growing domains, J. Comput. Phys., 214 (2006), 239–263. https://doi.org/10.1016/j.jcp.2005.09.018 doi: 10.1016/j.jcp.2005.09.018
|
| [37] |
R. G. Plaza, F. Sánchez-Garduño, P. Padilla, R. A. Barrio, P. K. Maini, The effect of growth and curvature on pattern formation, J. Dyn. Differ. Equ., 16 (2004), 1093–1121. https://doi.org/10.1007/s10884-004-7837-9 doi: 10.1007/s10884-004-7837-9
|
| [38] |
E. J. Crampin, E. A. Gaffney, P. K. Maini, Reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bull. Math. Biol., 61 (1999), 1093–1120. https://doi.org/10.1006/bulm.1999.0132 doi: 10.1006/bulm.1999.0132
|
| [39] |
A. L. Krause, M. A. Ellis, R. A. Van Gorder, Influence of curvature, growth, and anisotropy on the evolution of turing patterns on growing manifolds, Bull. Math. Biol., 81 (2019), 759–799. https://doi.org/10.1007/s11538-018-00557-w doi: 10.1007/s11538-018-00557-w
|
| [40] |
M. Meixner, A. De Wit, S. Bose, E. Schöll, Generic spatiotemporal dynamics near codimension-two turing-hopf bifurcations, Phys. Rev. E, 55 (1997), 6690–6699. https://doi.org/10.1103/PhysRevE.55.6690 doi: 10.1103/PhysRevE.55.6690
|
| [41] |
A. Ledesma-Durán, J. L. Aragón, Primary and secondary instabilities of the mixed mode solution in a reaction diffusion system near the codimension-two turing-hopf point, Chaos Soliton. Fract., 124 (2019), 68–77. https://doi.org/10.1016/j.chaos.2019.04.038 doi: 10.1016/j.chaos.2019.04.038
|
| [42] | H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, 2002. |
| [43] |
M. Wu, A note on stability of linear time-varying systems, IEEE Trans. Automat. Contr., 19 (1974), 162. https://doi.org/10.1109/TAC.1974.1100520 doi: 10.1109/TAC.1974.1100520
|
| [44] |
E. Knobloch, W. Merryfield, Enhancement of diffusive transport in oscillatory flows, Astrophys. J., 401 (1992), 196–205. https://doi.org/10.1086/172054 doi: 10.1086/172054
|
| [45] |
K. Josić, R. Rosenbaum, Unstable solutions of nonautonomous linear differential equations, SIAM Rev., 50 (2008), 570–584. https://doi.org/10.1137/07069620X doi: 10.1137/07069620X
|
| [46] |
J. Mierczyński, Instability in linear cooperative systems of ordinary differential equations, SIAM Rev., 59 (2017), 649–670. https://doi.org/10.1137/16M1082778 doi: 10.1137/16M1082778
|
| [47] |
A. Ledesma-Durán, C. García-Alcántara, I. Santamaría-Holek, Turing conditions for a two-component isotropic growing system from a potential function, Results Appl. Math., 28 (2025), 100664. https://doi.org/10.1016/j.rinam.2024.100664 doi: 10.1016/j.rinam.2024.100664
|