In an increasingly competitive world, industries face growing pressure to improve efficiency while meeting strict environmental and social standards. Wastewater treatment plants (WWTPs) play a key role in reducing the environmental impact of water use across industrial, agricultural, and domestic activities. This study presents a bi-objective optimization framework to support chemical dosing decisions in physicochemical phosphorus removal (PPR) systems. Using an edible-oil WWTP as a case study, two common metal salts (aluminum sulfate and ferric chloride) are compared, considering operational cost and phosphorus removal efficiency as conflicting objectives. Polynomial surrogate models enabled the integration of BioWin PPR models into the optimization problem, and the weighted sum and $ \varepsilon $-constraint methods were used to estimate the Pareto fronts, yielding complementary solutions. The proposed framework provides a practical decision-support tool for WWTPs by revealing cost–performance trade-offs. Results show that costs escalate disproportionately: reducing effluent P from 3.0 to 1.0 mg−P/L increased costs by 114% with aluminum sulfate and 355% with ferric chloride. The framework is adaptable to different PPR systems and influent conditions.
Citation: Florencia Caro, Diego Rossit, Claudia Santiviago, Jimena Ferreira, Sergio Nesmachnow. Cost-performance trade-off analysis of physicochemical phosphorus removal systems for wastewater treatment: A bi-objective optimization approach[J]. Mathematical Biosciences and Engineering, 2026, 23(1): 124-147. doi: 10.3934/mbe.2026006
In an increasingly competitive world, industries face growing pressure to improve efficiency while meeting strict environmental and social standards. Wastewater treatment plants (WWTPs) play a key role in reducing the environmental impact of water use across industrial, agricultural, and domestic activities. This study presents a bi-objective optimization framework to support chemical dosing decisions in physicochemical phosphorus removal (PPR) systems. Using an edible-oil WWTP as a case study, two common metal salts (aluminum sulfate and ferric chloride) are compared, considering operational cost and phosphorus removal efficiency as conflicting objectives. Polynomial surrogate models enabled the integration of BioWin PPR models into the optimization problem, and the weighted sum and $ \varepsilon $-constraint methods were used to estimate the Pareto fronts, yielding complementary solutions. The proposed framework provides a practical decision-support tool for WWTPs by revealing cost–performance trade-offs. Results show that costs escalate disproportionately: reducing effluent P from 3.0 to 1.0 mg−P/L increased costs by 114% with aluminum sulfate and 355% with ferric chloride. The framework is adaptable to different PPR systems and influent conditions.
| [1] |
P. Zheng, H. Wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, et al., Smart manufacturing systems for industry 4.0: Conceptual framework, scenarios, and future perspectives, Front. Mechan. Eng., 13 (2018), 137–-150. https://doi.org/10.1007/s11465-018-0499-5 doi: 10.1007/s11465-018-0499-5
|
| [2] |
E. Oztemel, S. Gursev, Literature review of industry 4.0 and related technologies, J. Intell. Manuf., 31 (2020), 127–182. https://doi.org/10.1007/S10845-018-1433-8 doi: 10.1007/S10845-018-1433-8
|
| [3] | M. Breque, L. De Nul, A. Petridis, Industry 5.0 – Towards a sustainable, human-centric and resilient European industry, Directorate-General for Research and Innovation of the European Commission, 2021. https://doi.org/doi/10.2777/308407 |
| [4] |
M. Golovianko, V. Terziyan, V. Branytskyi, D. Malyk, Industry 4.0 vs. industry 5.0: Co-existence, transition, or a hybrid, Proced. Computer Sci., 217 (2023), 102–113. https://doi.org/10.1016/j.procs.2022.12.206 doi: 10.1016/j.procs.2022.12.206
|
| [5] |
S. Pandey, B. Twala, R. Singh, A. Gehlot, A. Singh, E. Montero, et al., Wastewater treatment with technical intervention inclination towards smart cities, Sustainability, 14 (2022), 11563. https://doi.org/10.3390/su141811563 doi: 10.3390/su141811563
|
| [6] | United Nations, Goal 6: Ensure access to water and sanitation for all, Available from: https://www.un.org/sustainabledevelopment/water-and-sanitation/ |
| [7] |
V. Smith, G. Tilman, J. Nekola, Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems, Environ. Pollut., 100 (1999), 179–196. https://doi.org/10.1016/S0269-7491(99)00091-3 doi: 10.1016/S0269-7491(99)00091-3
|
| [8] | F. Jiang, M. Beck, R. Cummings, K. Rowles, D. Russell, Estimation of costs of phosphorus removal in wastewater treatment facilities: Construction de novo, Water Policy Work., 10 (2004), 28. |
| [9] |
R. Bashar, K. Gungor, K. Karthikeyan, P. Barak, Cost effectiveness of phosphorus removal processes in municipal wastewater treatment, Chemosphere, 197 (2018), 280–290. https://doi.org/10.1016/j.chemosphere.2017.12.169 doi: 10.1016/j.chemosphere.2017.12.169
|
| [10] |
M. Preisner, M. Smol, Investigating phosphorus loads removed by chemical and biological methods in municipal wastewater treatment plants in poland, J. Environ. Manag., 322 (2022), 116058. https://doi.org/10.1016/j.jenvman.2022.116058 doi: 10.1016/j.jenvman.2022.116058
|
| [11] |
I. Takács, S. Murthy, P. Fairlamb, Chemical phosphorus removal model based on equilibrium chemistry, Water Sci. Technol., 52 (2005), 549–555. https://doi.org/10.2166/wst.2005.0735 doi: 10.2166/wst.2005.0735
|
| [12] | Metcalf, Eddy, Wastewater Engineering: Treatment and Resource Recovery, McGraw-Hill, 5th edition, 2014. ISBN: 978-0-07-340118-8. |
| [13] | S. Abdoli, B. Asgari Lajayer, Z. Dehghanian, N. Bagheri, A. H. Vafaei, M. Chamani, et al., A review of the efficiency of phosphorus removal and recovery from wastewater by physicochemical and biological processes: Challenges and opportunities, Water, 16 (2024). https://doi.org/10.3390/w16172507 |
| [14] | J. Bunce, E. Ndam, I. Ofiteru, A. Moore, D. Graham, A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems, Front. Environ. Sci., 6 (2018). https://doi.org/10.3389/fenvs.2018.00008 |
| [15] |
A. Szabó, I. Takács, S. Murthy, G. Daigger, I. Licskó, S. Smith, Significance of design and operational variables in chemical phosphorus removal, Water Environ. Res., 80 (2008), 407–-416. https://doi.org/10.2175/106143008x268498 doi: 10.2175/106143008x268498
|
| [16] |
S. Smith, I. Takács, A. Szabo, S. Murthy, G. Daigger, Phosphate complexation model and its implications for chemical phosphorus removal, Water Environ. Res., 80 (2008), 428–438. doi.org/10.1002/j.1554-7531.2008.tb00349.x doi: 10.1002/j.1554-7531.2008.tb00349.x
|
| [17] |
S. Haghiri, A. Daghighi, S. Moharramzadeh, Optimum coagulant forecasting by modeling jar test experiments using anns, Drink. Water Eng. Sci., 11 (2018), 1–8. https://doi.org/10.5194/dwes-11-1-2018 doi: 10.5194/dwes-11-1-2018
|
| [18] | F. Caro, D. Rossit, C. Santiviago, J. Ferreira, S. Nesmachnow, Multi-objective optimization for the operation of a physicochemical phosphorus removal system, In: S. Nesmachnow, L. Hernández Callejo (Eds.), Smart Cities, Springer Nature Switzerland, Cham, 2025,176–189. ISBN: 978-3-031-85324-1. |
| [19] |
J. Padrón, S. Almaraz, A. Román, Sustainable wastewater treatment plants design through multiobjective optimization, Comput. Chem. Eng., 140 (2020), 106850. https://doi.org/10.1016/j.compchemeng.2020.106850 doi: 10.1016/j.compchemeng.2020.106850
|
| [20] |
J. Hakanen, K. Sahlstedt, K. Miettinen, Wastewater treatment plant design and operation under multiple conflicting objective functions, Environ. Model. Software, 46 (2013), 240–249. https://doi.org/10.1016/j.envsoft.2013.03.016 doi: 10.1016/j.envsoft.2013.03.016
|
| [21] |
H.-G. Han, C. Chen, H.-Y. Sun, J.-F. Qiao, Multi-objective integrated optimal control for a wastewater treatment process, Control Eng. Pract., 128 (2022), 105296. https://doi.org/10.1016/j.conengprac.2022.105296 doi: 10.1016/j.conengprac.2022.105296
|
| [22] | X. Zhang, S. Yong, Optimization control of wastewater treatment based on neural network and multi-objective optimization algorithm, Desalin. Water Treatment 320 (2024), 100736. https://doi.org/10.1016/j.dwt.2024.100736 |
| [23] |
J. Qiao, Y. Hou, H. Han, Optimal control for wastewater treatment process based on an adaptive multi-objective differential evolution algorithm, Neural Comput. Appl., 31 (2019), 2537–2550. https://doi.org/10.1007/s00521-017-3212-4 doi: 10.1007/s00521-017-3212-4
|
| [24] |
E. Tejaswini, S. Panjwani, U. Gara, S. Ambati, Multi-objective optimization based controller design for improved wastewater treatment plant operation, Environ. Technol. Innov., 23 (2021), 101591. https://doi.org/10.1016/j.eti.2021.101591 doi: 10.1016/j.eti.2021.101591
|
| [25] |
T. Liu, H. Zhang, J. Wu, W. Liu, Y. Fang, Wastewater treatment process enhancement based on multi-objective optimization and interpretable machine learning, J. Environ. Manag., 364 (2024), 121430. https://doi.org/10.1016/j.jenvman.2024.121430 doi: 10.1016/j.jenvman.2024.121430
|
| [26] | K. Miettinen, Nonlinear Multiobjective Optimization, International Series in Operations Research & Management Science, 1 ed., Springer New York, NY, 1998. https://doi.org/10.1007/978-1-4615-5563-6 |
| [27] | C. A. Coello Coello, G. B. Lamont, D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Genetic and Evolutionary Computation, Springer, New York, NY, 2007. https://doi.org/10.1007/978-0-387-36797-2 |
| [28] |
M. Zelany, A concept of compromise solutions and the method of the displaced ideal, Comput. Oper. Res., 1 (1974), 479–496. https://doi.org/10.1016/0305-0548(74)90064-1 doi: 10.1016/0305-0548(74)90064-1
|
| [29] |
Y. Zheng, D. Wang, A survey of recommender systems with multi-objective optimization, Neurocomputing, 474 (2022), 141–153. https://doi.org/10.1016/j.neucom.2021.11.041 doi: 10.1016/j.neucom.2021.11.041
|
| [30] |
M. T. M. Emmerich, A. H. Deutz, A tutorial on multiobjective optimization: Fundamentals and evolutionary methods, Natural Comput., 17 (2018), 585–609. https://doi.org/10.1007/s11047-018-9685-y doi: 10.1007/s11047-018-9685-y
|
| [31] | N. Riquelme, C. Von Lücken, B. Baran, Performance metrics in multi-objective optimization, In: 2015 Latin American Computing Conference (CLEI), 2015, 1–11. https://doi.org/10.1109/CLEI.2015.7360024 |
| [32] |
C. Audet, J. Bigeon, D. Cartiera, S. Le Digabel, L. Salomon, Performance indicators in multiobjective optimization, European J. Operat. Res., 292 (2021), 397–422. https://doi.org/https://doi.org/10.1016/j.ejor.2020.11.016 doi: 10.1016/j.ejor.2020.11.016
|
| [33] | J. Branke, K. Deb, K. Miettinen, R. Słowiński, Multiobjective Optimization: Interactive and Evolutionary Approaches, volume 5252 of Lecture Notes in Computer Science, Springer Berlin, Heidelberg, 2008. https://doi.org/10.1007/978-3-540-88908-3 |
| [34] | J. R. Schott, Fault tolerant design using single and multicriteria genetic algorithm optimization, 1995. |
| [35] | K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley Interscience Series in Systems and Optimization. John Wiley & Sons, 2001. ISBN: 9780471873396. |
| [36] | Uruguay, Decreto 253/979, 1979. Available from: www.impo.com.uy/bases/decretos/253-1979 |
| [37] | Isusa, 2024. Available from: www.isusa.com.uy/ |
| [38] | Efice, 2024. Available from: www.efice.uy/ |
| [39] | EnviroSim Associates Ltd., BioWin 6.3 User Manual, Hamilton, Ontario, 2024. |
| [40] |
S. Bentancur, C. López-Vázquez, H. García, M. Duarte, D. Travers, D. Brdjanovic, Modelling of a pulp mill wastewater treatment plant for improving its performance on phosphorus removal, Process Safety Environ. Protect., 146 (2021), 208–219. https://doi.org/10.1016/j.psep.2020.08.029 doi: 10.1016/j.psep.2020.08.029
|
| [41] |
H. Awad, M. Mossad, H. Mahanna, M. Foad, M. Gar Alalm, Comparative assessment of different scenarios for upgrading activated sludge wastewater treatment plants in developing countries, Sci. Total Environ., 907 (2024), 168022. https://doi.org/10.1016/j.scitotenv.2023.168022 doi: 10.1016/j.scitotenv.2023.168022
|
| [42] | Instituto Uruguayo de Meteorología INUMET, Características climáticas, 2024. Available from: www.inumet.gub.uy/clima/estadisticas-climatologicas/caracteristicas-climaticas#: : text = El |
| [43] | R. Bowker, H. Stensel, Design Manual for Phosphorous Removal: EPA 625/1 87/001, US EPA, Washington, D.C., 1987. |
| [44] |
F. Caro, J. Ferreira, E. Castelló, J. C. Pinto, C. Santiviago, Bio2Py: An API for integrating Python with BioWin for enhanced data acquisition in wastewater treatment simulations, J. Water Process Eng., 63 (2024), 105426. https://doi.org/10.1016/j.jwpe.2024.105426 doi: 10.1016/j.jwpe.2024.105426
|
| [45] | M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nicholson, J. D. Siirola, et al., Pyomo–optimization modeling in python, 67, third ed., Springer Science & Business Media, 2021. |
| [46] |
A. Wächter, L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25–57. https://doi.org/10.1007/s10107-004-0559-y doi: 10.1007/s10107-004-0559-y
|
| [47] | J. Blank, K. Deb, Pymoo: Multi-objective optimization in python, IEEE Access, 8 (2020). https://doi.org/10.1109/ACCESS.2020.2990567 |
| [48] |
H. Hauduc, I. Takács, S. Smith, A. Szabo, S. Murthy, G. Daigger, et al., A dynamic physicochemical model for chemical phosphorus removal, Water Res., 73 (2015), 157–170. https://doi.org/10.1016/j.watres.2014.12.053 doi: 10.1016/j.watres.2014.12.053
|
| [49] | EnviroSim Associates Ltd., BioWin Advantage 10.1: Investigating Chemical Phosphorus Removal in BioWin 6, 2021. Available from: https://envirosim.com/8553 |