During epidemics, individuals may adjust their social behavior in response to the threat. This may affect the course of the epidemic, and, in turn, again modify people's behavior. Game theoretically, the system may end up in a Nash equilibrium, where no member of the population can benefit by unilaterally changing their behavior. Compartmentalized epidemic models can incorporate such endogenous decision making, where individuals try to optimize a utility function via their behavior. Typically, such models can only be solved numerically. Here, we extend a recently discovered analytic solution for time-dependent social distancing and the corresponding epidemic dynamics: now, the probability of an infection taking place can depend on both the susceptible and infectious individual behaviors. We show that the more effectively the susceptible individual can reduce the probability of infection, the more self-organized social distancing is expected to occur. The previously identified heuristic that the strength of rational social distancing is proportional to both the perceived infection cost and prevalence is found to also hold in the generalized model.
Citation: Simon K. Schnyder, John J. Molina, Joel C. Miller, Ryoichi Yamamoto, Tetsuya J. Kobayashi, Matthew S. Turner. Self-organized social distancing during epidemics when the force of infection depends on susceptible and infectious behavior[J]. Mathematical Biosciences and Engineering, 2026, 23(1): 148-171. doi: 10.3934/mbe.2026007
During epidemics, individuals may adjust their social behavior in response to the threat. This may affect the course of the epidemic, and, in turn, again modify people's behavior. Game theoretically, the system may end up in a Nash equilibrium, where no member of the population can benefit by unilaterally changing their behavior. Compartmentalized epidemic models can incorporate such endogenous decision making, where individuals try to optimize a utility function via their behavior. Typically, such models can only be solved numerically. Here, we extend a recently discovered analytic solution for time-dependent social distancing and the corresponding epidemic dynamics: now, the probability of an infection taking place can depend on both the susceptible and infectious individual behaviors. We show that the more effectively the susceptible individual can reduce the probability of infection, the more self-organized social distancing is expected to occur. The previously identified heuristic that the strength of rational social distancing is proportional to both the perceived infection cost and prevalence is found to also hold in the generalized model.
| [1] |
W. O. Kermack, A. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
|
| [2] |
V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
|
| [3] |
T. C. Reluga, Game Theory of Social Distancing in Response to an Epidemic, PLoS Comput. Biol., 6 (2010), e1000793. https://doi.org/10.1371/journal.pcbi.1000793 doi: 10.1371/journal.pcbi.1000793
|
| [4] |
E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. G. Parra, G. J. Hickling, et al., Adaptive human behavior in epidemiological models, Proc. Natl. Acad. Sci., 108 (2011), 6306–6311. https://doi.org/10.1073/pnas.1011250108 doi: 10.1073/pnas.1011250108
|
| [5] |
Y. Yan, A. A. Malik, J. Bayham, E. P. Fenichel, C. Couzens, S. B. Omer, Measuring voluntary and policy-induced social distancing behavior during the COVID-19 pandemic, Proc. Natl. Acad. Sci., 118 (2021), e2008814118. https://doi.org/10.1073/pnas.2008814118 doi: 10.1073/pnas.2008814118
|
| [6] |
P. Dönges, J. Wagner, S. Contreras, E. N. Iftekhar, S. Bauer, S. B. Mohr, et al., Interplay Between Risk Perception, Behavior, and COVID-19 Spread, Front. Phys., 10 (2022), 1–12. https://doi.org/10.3389/fphy.2022.842180 doi: 10.3389/fphy.2022.842180
|
| [7] |
S. Funk, M. Salathé, V. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface, 7 (2010), 1247–1256. https://doi.org/10.1098/rsif.2010.0142 doi: 10.1098/rsif.2010.0142
|
| [8] | Piero Manfredi, Alberto D'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer New York, New York, NY (2013). https://doi.org/10.1007/978-1-4614-5474-8 |
| [9] |
Z. Wang, C. T. Bauch, S. Bhattacharyya, A. D'Onofrio, P. Manfredi, M. Perc, et al., Statistical physics of vaccination, Phys. Rep., 664 (2016), 1–113. https://doi.org/10.1016/j.physrep.2016.10.006 doi: 10.1016/j.physrep.2016.10.006
|
| [10] |
F. Verelst, L. Willem, P. Beutels, Behavioural change models for infectious disease transmission: A systematic review (2010–2015), J. R. Soc. Interface, 13 (2016). https://doi.org/10.1098/rsif.2016.0820 doi: 10.1098/rsif.2016.0820
|
| [11] |
S. L. Chang, M. Piraveenan, P. Pattison, M. Prokopenko, Game theoretic modelling of infectious disease dynamics and intervention methods: A review, J. Biol. Dyn., 14 (2020), 57–89. https://doi.org/10.1080/17513758.2020.1720322 doi: 10.1080/17513758.2020.1720322
|
| [12] |
A. Reitenbach, F. Sartori, S. Banisch, A. Golovin, A. Calero Valdez, M. Kretzschmar, et al., Coupled infectious disease and behavior dynamics. A review of model assumptions, Rep. Prog. Phys., 88 (2024). https://doi.org/10.1088/1361-6633/ad90ef doi: 10.1088/1361-6633/ad90ef
|
| [13] |
N. Gozzi, N. Perra, A. Vespignani, Comparative evaluation of behavioral epidemic models using COVID-19 data, Proc. Natl. Acad. Sci., 122 (2025), e2421993122. https://doi.org/10.1073/pnas.2421993122 doi: 10.1073/pnas.2421993122
|
| [14] |
L. Müller, P. Mallick, A. B. Marín-Carballo, P. Dönges, R. J. N. Kettlitz, C. J. Klett-Tammen, et al., Testing paradox may explain increased observed prevalence of bacterial stis among msm on hiv prep: A modeling study, Proc. Natl. Acad. Sci., 122 (2025), 2524944122. https://doi.org/10.1073/pnas.2524944122 doi: 10.1073/pnas.2524944122
|
| [15] |
E. M. Hill, M. Ryan, D. Haw, M. P. Lynch, R. McCabe, A. E. Milne, et al., Integrating human behaviour and epidemiological modelling: unlocking the remaining challenges, Math. Med. Life Sci., 1 (2024). https://doi.org/10.1080/29937574.2024.2429479 doi: 10.1080/29937574.2024.2429479
|
| [16] | T. Philipson, Chapter 33 Economic epidemiology and infectious diseases, in: Handbook of Health Economics (eds. A. Culyer, J. Newhouse). Elsevier Science B. V. (2000), 1761–1799. https://doi.org/10.1016/S1574-0064(00)80046-3 |
| [17] |
T. C. Reluga, J. Li, Games of age-dependent prevention of chronic infections by social distancing, J. Math. Biol., 66 (2013), 1527–1553. https://doi.org/10.1007/s00285-012-0543-8 doi: 10.1007/s00285-012-0543-8
|
| [18] |
D. Acemoglu, V. Chernozhukov, I. Werning, M. D. Whinston, Optimal Targeted Lockdowns in a Multigroup SIR Model, Am. Econ. Rev. Insights, 3 (2021), 487–502. https://doi.org/10.1257/aeri.20200590 doi: 10.1257/aeri.20200590
|
| [19] |
M. Makris, Covid and social distancing with a heterogenous population, Econ. Theory, 77 (2024), 445–494. https://doi.org/10.1007/s00199-021-01377-2 doi: 10.1007/s00199-021-01377-2
|
| [20] |
M. J. Tildesley, A. Vassall, S. Riley, M. Jit, F. Sandmann, E. M. Hill, et al., Optimal health and economic impact of non-pharmaceutical intervention measures prior and post vaccination in England: a mathematical modelling study, R. Soc. Open Sci., 9 (2022), 211746. https://doi.org/10.1098/rsos.211746 doi: 10.1098/rsos.211746
|
| [21] |
M. J. Keeling, L. Dyson, M. J. Tildesley, E. M. Hill, S. Moore, Comparison of the 2021 COVID-19 roadmap projections against public health data in England, Nat. Commun., 13 (2022), 4924. https://doi.org/10.1038/s41467-022-31991-0 doi: 10.1038/s41467-022-31991-0
|
| [22] |
C. I. Huang, R. E. Crump, P. E. Brown, S. E. Spencer, E. M. Miaka, C. Shampa et al., Identifying regions for enhanced control of gambiense sleeping sickness in the Democratic Republic of Congo, Nat. Commun., 13 (2022), 1–11. https://doi.org/10.1038/s41467-022-29192-w doi: 10.1038/s41467-022-29192-w
|
| [23] |
N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448–452. https://doi.org/10.1038/nature04795 doi: 10.1038/nature04795
|
| [24] | J. Tanimoto, Social Dilemma Analysis of the Spread of Infectious Disease, in: Evol. Games with Sociophysics. Springer, Singapore, (2018), 155–216. https://doi.org/10.1007/978-981-13-2769-8_4 |
| [25] | P. Mellacher, COVID-Town: An Integrated Economic-Epidemiological Agent-Based Model, GSC discussion papers, (2020). Available from: https://ideas.repec.org/p/pra/mprapa/103661.html |
| [26] |
J. Grauer, H. Löwen, B. Liebchen, Strategic spatiotemporal vaccine distribution increases the survival rate in an infectious disease like Covid-19, Sci. Rep., 10 (2020), 1–10. https://doi.org/10.1038/s41598-020-78447-3 doi: 10.1038/s41598-020-78447-3
|
| [27] |
P. Holme, J. Saramäki, Temporal networks, Phys. Rep., 519 (2012), 97–125. https://doi.org/10.1016/j.physrep.2012.03.001 doi: 10.1016/j.physrep.2012.03.001
|
| [28] |
P. Holme, N. Masuda, The basic reproduction number as a predictor for epidemic outbreaks in temporal networks, PLoS One, 10 (2015), 1–15. https://doi.org/10.1371/journal.pone.0120567 doi: 10.1371/journal.pone.0120567
|
| [29] |
A. G. Chandrasekhar, P. Goldsmith-Pinkham, M. O. Jackson, S. Thau, Interacting regional policies in containing a disease, Proc. Natl. Acad. Sci., 118 (2021), e2021520118. https://doi.org/10.1073/pnas.2021520118 doi: 10.1073/pnas.2021520118
|
| [30] |
D. He, J. Dushoff, T. Day, J. Ma, D. J. Earn, Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales, Proc. R. Soc. B Biol. Sci., 280 (2013), 20131345. https://doi.org/10.1098/rspb.2013.1345 doi: 10.1098/rspb.2013.1345
|
| [31] |
K. Prem, A. R. Cook, M. Jit, Projecting social contact matrices in 152 countries using contact surveys and demographic data, PLOS Comput. Biol., 13 (2017), e1005697. https://doi.org/10.1371/journal.pcbi.1005697 doi: 10.1371/journal.pcbi.1005697
|
| [32] |
J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk et al., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med., 5 (2008), 0381–0391. https://doi.org/10.1371/journal.pmed.0050074 doi: 10.1371/journal.pmed.0050074
|
| [33] |
M. J. Tildesley, T. A. House, M. C. Bruhn, R. J. Curry, M. O'Neil, J. L. Allpress et al., Impact of spatial clustering on disease transmission and optimal control, Proc. Natl. Acad. Sci., 107 (2010), 1041–1046. https://doi.org/10.1073/pnas.0909047107 doi: 10.1073/pnas.0909047107
|
| [34] |
K. Sun, W. Wang, L. Gao, Y. Wang, K. Luo, L. Ren, et al., Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2, Science, 371 (2021), eabe2424. https://doi.org/10.1126/science.abe2424 doi: 10.1126/science.abe2424
|
| [35] |
E. M. Hill, N. S. Prosser, P. E. Brown, E. Ferguson, M. J. Green, J. Kaler, et al., Incorporating heterogeneity in farmer disease control behaviour into a livestock disease transmission model, Prev. Vet. Med., 219 (2023), 106019. https://doi.org/10.1016/j.prevetmed.2023.106019 doi: 10.1016/j.prevetmed.2023.106019
|
| [36] |
P. Dönges, T. Götz, N. Kruchinina, T. Krüger, K. Niedzielewski, V. Priesemann, et al., Sir Model for Households, SIAM J. Appl. Math., 84 (2024), 1460–1481. https://doi.org/10.1137/23M1556861 doi: 10.1137/23M1556861
|
| [37] |
C. Giannitsarou, S. Kissler, F. Toxvaerd, Waning Immunity and the Second Wave: Some Projections for SARS-CoV-2, Am. Econ. Rev. Insights, 3 (2021), 321–338. https://doi.org/10.1257/aeri.20200343 doi: 10.1257/aeri.20200343
|
| [38] |
F. J. Schwarzendahl, J. Grauer, B. Liebchen, H. Löwen, Mutation induced infection waves in diseases like COVID-19, Sci. Rep., 12 (2022), 1–11. https://doi.org/10.1038/s41598-022-13137-w doi: 10.1038/s41598-022-13137-w
|
| [39] | J. Yong, X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, Springer Science & Business Media, (1999). https://doi.org/10.1007/978-1-4612-1466-3 |
| [40] |
T. Tottori, T. J. Kobayashi, Memory-limited partially observable stochastic control and its mean-field control approach, Entropy, 24 (2022), 1–27. https://doi.org/10.3390/e24111599 doi: 10.3390/e24111599
|
| [41] |
T. Tottori, T. J. Kobayashi, Theory for optimal estimation and control under resource limitations and its applications to biological information processing and decision-making, Phys. Rev. Res., 7 (2025), 043048. https://doi.org/10.1103/gvl6-cvby doi: 10.1103/gvl6-cvby
|
| [42] |
S. A. Horiguchi, T. J. Kobayashi, Optimal control of stochastic reaction networks with entropic control cost and emergence of mode-switching strategies, PRX Life, 3 (2025), 033027. https://doi.org/10.1103/zttn-tpzq doi: 10.1103/zttn-tpzq
|
| [43] |
M. Barnett, G. Buchak, C. Yannelis, Epidemic responses under uncertainty, Proc. Natl. Acad. Sci., 120 (2023), e2208111120. https://doi.org/10.1073/pnas.2208111120 doi: 10.1073/pnas.2208111120
|
| [44] |
K. Shea, R. K. Borchering, W. J. M. Probert, E. Howerton, T. L. Bogich, S.-L. Li, et al., Multiple models for outbreak decision support in the face of uncertainty, Proc. Natl. Acad. Sci., 120 (2023), e2207537120. https://doi.org/10.1073/pnas.2207537120 doi: 10.1073/pnas.2207537120
|
| [45] |
F. Toxvaerd, R. Rowthorn, On the management of population immunity, J. Econ. Theory, 204 (2022), 105501. https://doi.org/10.1016/j.jet.2022.105501 doi: 10.1016/j.jet.2022.105501
|
| [46] |
S. Moore, E. M. Hill, L. Dyson, M. J. Tildesley, M. J. Keeling, Modelling optimal vaccination strategy for SARS-CoV-2 in the UK, PLoS Comput. Biol., 17 (2021), 1–20. https://doi.org/10.1371/journal.pcbi.1008849 doi: 10.1371/journal.pcbi.1008849
|
| [47] |
A. J. Kucharski, P. Klepac, A. J. Conlan, S. M. Kissler, M. L. Tang, H. Fry, et al., Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: A mathematical modelling study, Lancet Infect. Dis., 20 (2020), 1151–1160. https://doi.org/10.1016/S1473-3099(20)30457-6 doi: 10.1016/S1473-3099(20)30457-6
|
| [48] |
S. Contreras, J. Dehning, M. Loidolt, J. Zierenberg, F. P. Spitzner, J. H. Urrea-Quintero, et al., The challenges of containing SARS-CoV-2 via test-trace-and-isolate, Nat. Commun., 12 (2021), 1–13. https://doi.org/10.1038/s41467-020-20699-8 doi: 10.1038/s41467-020-20699-8
|
| [49] |
S. Contreras, J. Dehning, S. B. Mohr, S. Bauer, F. Paul Spitzner, V. Priesemann, Low case numbers enable long-term stable pandemic control without lockdowns, Sci. Adv., 7 (2021), eabg2243. https://doi.org/10.1126/sciadv.abg2243 doi: 10.1126/sciadv.abg2243
|
| [50] |
D. Roberts, E. Jamrozik, G. S. Heriot, A. C. Slim, M. J. Selgelid, J. C. Miller, Quantifying the impact of individual and collective compliance with infection control measures for ethical public health policy, Sci. Adv., 9 (2023), eabn7153. https://doi.org/10.1126/sciadv.abn7153 doi: 10.1126/sciadv.abn7153
|
| [51] |
J. C. Miller, A Note on the Derivation of Epidemic Final Sizes, Bull. Math. Biol., 74 (2012), 2125–2141. https://doi.org/10.1007/s11538-012-9749-6 doi: 10.1007/s11538-012-9749-6
|
| [52] |
T. Harko, F. S. Lobo, M. K. Mak, Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates, Appl. Math. Comput., 236 (2014), 184–194. https://doi.org/10.1016/j.amc.2014.03.030 doi: 10.1016/j.amc.2014.03.030
|
| [53] |
J. C. Miller, Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes, Infect. Dis. Model., 2 (2017), 35–55. https://doi.org/10.1016/j.idm.2016.12.003 doi: 10.1016/j.idm.2016.12.003
|
| [54] |
M. Kröger, R. Schlickeiser, Analytical solution of the SIR-model for the temporal evolution of epidemics. Part A: Time-independent reproduction factor, J. Phys. A Math. Theor., 53 (2020), 505601. https://doi.org/10.1088/1751-8121/abc65d doi: 10.1088/1751-8121/abc65d
|
| [55] |
I. S. Pacheco, C. A. M. C. Junior, D. A. Stariolo, Semianalytical solution of seir-like models of epidemic spreading, Phys. Rev. E, 111 (2025), 064305. https://doi.org/10.1103/fwx4-m2wg doi: 10.1103/fwx4-m2wg
|
| [56] |
S. K. Schnyder, J. J. Molina, R. Yamamoto, M. S. Turner, Understanding Nash epidemics, Proc. Natl. Acad. Sci., 122 (2025), e2409362122. https://doi.org/10.1073/pnas.2409362122 doi: 10.1073/pnas.2409362122
|
| [57] | M. Makris, F. Toxvaerd, Great Expectations: Social Distancing in Anticipation of Pharmaceutical Innovations, Cambridge Work. Pap. Econ., (2020). https://doi.org/10.17863/CAM.62310 |
| [58] | R. Rowthorn, F. Toxvaerd, The optimal control of infectious diseases via prevention and treatment, Cambridge Work. Pap. Econ., (2020). https://doi.org/10.17863/CAM.52481 |
| [59] |
S. L. Li, O. N. Bjørnstad, M. J. Ferrari, R. Mummah, M. C. Runge, C. J. Fonnesbeck, et al., Essential information: Uncertainty and optimal control of Ebola outbreaks, Proc. Natl. Acad. Sci., 114 (2017), 5659–5664. https://doi.org/10.1073/pnas.1617482114 doi: 10.1073/pnas.1617482114
|
| [60] | Z. A. Bethune, A. Korinek, COVID-19 infection externalities: Trading off lives vs. livelihoods, NBER working paper series, (2020). Available from: http://www.nber.org/papers/w27009 |
| [61] |
A. Aurell, R. Carmona, G. Dayanikli, M. Laurière, Optimal Incentives to Mitigate Epidemics: A Stackelberg Mean Field Game Approach, SIAM J. Control Optim., 60 (2022), S294–S322. https://doi.org/10.1137/20M1377862 doi: 10.1137/20M1377862
|
| [62] |
S. K. Schnyder, J. J. Molina, R. Yamamoto, M. S. Turner, Rational social distancing policy during epidemics with limited healthcare capacity, PLoS Comput. Biol., 19 (2023), e1011533. https://doi.org/10.1371/journal.pcbi.1011533 doi: 10.1371/journal.pcbi.1011533
|
| [63] |
B. M. Althouse, T. C. Bergstrom, C. T. Bergstrom, A public choice framework for controlling transmissible and evolving diseases, Proc. Natl. Acad. Sci., 107 (2010), 1696–1701. https://doi.org/10.1073/pnas.0906078107 doi: 10.1073/pnas.0906078107
|
| [64] | A. Bensoussan, J. Frehse, P. Yam, Mean Field Games and Mean Field Type Control Theory, Springer, (2013). https://doi.org/10.1007/978-1-4614-8508-7 |
| [65] | R. Carmona, F. Delarue, Probabilistic Theory of Mean Field Games with Applications I, Springer, (2018). https://doi.org/10.1007/978-3-319-58920-6 |
| [66] |
M. S. Eichenbaum, S. Rebelo, M. Trabandt, The Macroeconomics of Epidemics, Rev. Financ. Stud., 34 (2021), 5149–5187. https://doi.org/10.1093/rfs/hhab040 doi: 10.1093/rfs/hhab040
|
| [67] | D. McAdams, Nash SIR: An Economic-Epidemiological Model of Strategic Behavior During a Viral Epidemic, SSRN Electron. J. (2020). https://doi.org/10.2139/ssrn.3593272 |
| [68] | F. Toxvaerd, Equilibrium Social Distancing, Cambridge Work. Pap. Econ., 8 (2020). Available from: https://www.econ.cam.ac.uk/publications/cwpe/2021 |
| [69] |
S. K. Schnyder, J. J. Molina, R. Yamamoto, M. S. Turner, Rational social distancing in epidemics with uncertain vaccination timing, PLoS One, 18 (2023), e0288963. https://doi.org/10.1371/journal.pone.0288963 doi: 10.1371/journal.pone.0288963
|
| [70] |
A. D'Onofrio, P. Manfredi, P. Poletti, The Interplay of Public Intervention and Private Choices in Determining the Outcome of Vaccination Programmes, PLoS One, 7 (2012), e45653. https://doi.org/10.1371/journal.pone.0045653 doi: 10.1371/journal.pone.0045653
|
| [71] |
C. Chen, G. Kaur, A. Adiga, B. Espinoza, S. Venkatramanan, A. Warren, et al., Wastewater-based Epidemiology for COVID-19 Surveillance: A Survey, Epidemics, 49 (2024), 100793. https://doi.org/10.1016/j.epidem.2024.100793 doi: 10.1016/j.epidem.2024.100793
|
| [72] |
T. C. Reluga, A. P. Galvani, A general approach for population games with application to vaccination, Math. Biosci., 230 (2011), 67–78. https://doi.org/10.1016/j.mbs.2011.01.003 doi: 10.1016/j.mbs.2011.01.003
|
| [73] | S. Lenhart, J. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC, (2007). https://doi.org/10.1201/9781420011418 |
| [74] | L. S. Pontryagin, The Mathematical Theory of Optimal Processes, Routledge, (1987). https://doi.org/10.1201/9780203749319 |
| [75] |
M. Cadoni, How to reduce epidemic peaks keeping under control the time-span of the epidemic, Chaos Soliton Fract., 138 (2020), 109940. https://doi.org/10.1016/j.chaos.2020.109940 doi: 10.1016/j.chaos.2020.109940
|
| [76] |
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the Lambert W Function, Adv. Comput. Math., 5 (1996), 329–359. https://doi.org/10.1007/BF02124750 doi: 10.1007/BF02124750
|
| [77] |
J. Wagner, S. Bauer, S. Contreras, L. Fleddermann, U. Parlitz, V. Priesemann, Societal self-regulation induces complex infection dynamics and chaos, Phys. Rev. Res., 7 (2025), 013308. https://doi.org/10.1103/PhysRevResearch.7.013308 doi: 10.1103/PhysRevResearch.7.013308
|
| [78] |
K. P. Hadeler, C. Castillo-Chavez, A core group model for disease transmission, Math. Biosci., 128 (1995), 41–55. https://doi.org/10.1016/0025-5564(94)00066-9 doi: 10.1016/0025-5564(94)00066-9
|
| [79] |
M. Kremer, Integrating behavioral choice into epidemiological models of aids, Q. J. Econ., 111 (1996), 549–573. https://doi.org/10.2307/2946687 doi: 10.2307/2946687
|