Over 140 million people worldwide and over 45 million people in the United States wear contact lenses; it is estimated that $ 12\% $–$ 27.4\% $ contact lens users stop wearing them due to discomfort. Contact lens mechanical interactions with the ocular surface have been found to affect the ocular surface itself. These mechanical interactions are difficult to measure and calculate in a clinical setting, and the research in this field is limited. This paper presents the first mathematical model that captures the interactions between the contact lens and the open eye, where the contact lens configuration, the contact lens suction pressure, and the deformed ocular shape are all emergent properties of the model. The non-linear coupling between the contact lens and the eye is achieved by assuming that the suction pressure under the lens is applied directly to the ocular surface through the post-lens tear film layer. The contact lens mechanics are modeled using a previous published model. We consider homogeneous and heterogeneous linear elastic eye models, different ocular shapes, different lens shapes and thickness profiles, and extract lens deformations, suction pressure profiles, and ocular deformations and stresses for all the considered scenarios. The model predicts higher ocular deformations and stresses at the center of the eye and in the limbal/scleral regions. Accounting for heterogeneous material eye parameters increases the magnitude of such deformations and stresses. The ocular displacements and stresses non-linearly increase as we increase the stiffness of the contact lens. Inserting a steeper contact lens on the eye results in a reduction of the ocular displacement at the center of the eye and a larger displacement at the edge of the contact lens. The model predictions are compared with experimental data and previously developed mathematical models.
Citation: Lucia Carichino, Kara L. Maki, David S. Ross, Riley K. Supple, Evan Rysdam. Quantifying ocular surface changes with contact lens wear[J]. Mathematical Biosciences and Engineering, 2026, 23(1): 172-209. doi: 10.3934/mbe.2026008
Over 140 million people worldwide and over 45 million people in the United States wear contact lenses; it is estimated that $ 12\% $–$ 27.4\% $ contact lens users stop wearing them due to discomfort. Contact lens mechanical interactions with the ocular surface have been found to affect the ocular surface itself. These mechanical interactions are difficult to measure and calculate in a clinical setting, and the research in this field is limited. This paper presents the first mathematical model that captures the interactions between the contact lens and the open eye, where the contact lens configuration, the contact lens suction pressure, and the deformed ocular shape are all emergent properties of the model. The non-linear coupling between the contact lens and the eye is achieved by assuming that the suction pressure under the lens is applied directly to the ocular surface through the post-lens tear film layer. The contact lens mechanics are modeled using a previous published model. We consider homogeneous and heterogeneous linear elastic eye models, different ocular shapes, different lens shapes and thickness profiles, and extract lens deformations, suction pressure profiles, and ocular deformations and stresses for all the considered scenarios. The model predicts higher ocular deformations and stresses at the center of the eye and in the limbal/scleral regions. Accounting for heterogeneous material eye parameters increases the magnitude of such deformations and stresses. The ocular displacements and stresses non-linearly increase as we increase the stiffness of the contact lens. Inserting a steeper contact lens on the eye results in a reduction of the ocular displacement at the center of the eye and a larger displacement at the edge of the contact lens. The model predictions are compared with experimental data and previously developed mathematical models.
| [1] | Washington University, John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Eight Tips for Contact Lens Wearers. Available from: https://ophthalmology.wustl.edu/8-tips-for-contact-lens-wearers/. |
| [2] |
A. D. Pucker, A. A. Tichenor, A review of contact lens dropout, Clin. Optom. (Auckl), 12 (2020), 85–94. https://doi.org/10.2147/OPTO.S198637 doi: 10.2147/OPTO.S198637
|
| [3] | R. S. Snell, M. A. Lemp, Clinical Anatomy of the Eye, John Wiley & Sons, 2013. |
| [4] | T. J. Liesegang, Physiologic changes of the cornea with contact lens wear, CLAO J., 28 (2002), 12–27. |
| [5] |
D. Alonso-Caneiro, A. J. Shaw, M. J. Collins, Using optical coherence tomography to assess corneoscleral morphology after soft contact lens wear, Optom. Vision Sci., 89 (2012), 1619–1626. https://doi.org/10.1097/OPX.0b013e31826c5f63 doi: 10.1097/OPX.0b013e31826c5f63
|
| [6] |
N. Efron, L. Jones, A. J. Bron, E. Knop, R. Arita, S. Barabino, et al., The TFOS international workshop on contact lens discomfort: Report of the contact lens interactions with the ocular surface and adnexa subcommittee, Invest. Ophthalmol. Visual Sci., 54 (2013), TFOS98–TFOS122. https://doi.org/10.1167/iovs.13-13187 doi: 10.1167/iovs.13-13187
|
| [7] |
F. Stapleton, J. Tan, Impact of contact lens material, design, and fitting on discomfort, Eye Contact Lens, 43 (2017), 32–39. https://doi.org/10.1016/j.foot.2017.05.002 doi: 10.1016/j.foot.2017.05.002
|
| [8] |
L. A. Hall, G. Young, J. S. Wolffsohn, C. Riley, The influence of corneoscleral topography on soft contact lens fit, IOVS, 52 (2011), 6801–6806. https://doi.org/10.1167/iovs.11-7177 doi: 10.1167/iovs.11-7177
|
| [9] |
G. T. Funkenbusch, R. C. Benson, The conformity of a soft contact lens on the eye, J. Biomech. Eng., 118 (1996), 341–348. https://doi.org/10.1115/1.2796016 doi: 10.1115/1.2796016
|
| [10] | K. L. Maki, D. S. Ross, A new model for the suction pressure under a contact lens, J. Biol. Syst., 22 (2014), 235–248. |
| [11] |
K. L. Maki, D. S. Ross, Exchange of tears under a contact lens is driven by distortions of the contact lens, Integr. Comp. Biol., 54 (2014), 1043–1050. https://doi.org/10.1093/icb/icu092 doi: 10.1093/icb/icu092
|
| [12] |
D. S. Ross, K. L. Maki, E. K. Holz, Existence theory for the radially symmetric contact lens equation, SIAM J. Appl. Math., 76 (2016), 827–844. https://doi.org/10.1137/15M1036865 doi: 10.1137/15M1036865
|
| [13] |
J. Wu, W. Fang, H. Xu, X. Liu, D. Zhao, Q. Rong, The biomechanical response of the cornea in orthokeratology, Front. Bioeng. Biotechnol., 9 (2021), 743745. https://doi.org/10.3389/fbioe.2021.594429 doi: 10.3389/fbioe.2021.594429
|
| [14] | G. P. Zhao, H. T. Zhai, H. Z. Xiang, L. M. Wu, Q. O. Chen, C. Chen, et al., Biomechanical study of cornea response under orthokeratology lens therapy: A finite element analysis, Int. J. Numer. Methods Biomed. Eng., 39 (2023), e3691. |
| [15] |
L. Y. Wu, W. P. Lin, R. Wu, L. White, A. Abass, FEA-based stress–strain barometers as forecasters for corneal refractive power change in orthokeratology, Bioengineering, 11 (2024), 166. https://doi.org/10.3390/bioengineering11020166 doi: 10.3390/bioengineering11020166
|
| [16] |
D. Ramasubramanian, J. L. Hernández-Verdejo, J. M. López-Alonso, Influence of contact lens parameters on cornea: Biomechanical analysis, Bioengineering, 11 (2024), 966. https://doi.org/10.3390/bioengineering11100966 doi: 10.3390/bioengineering11100966
|
| [17] |
T. Doll, J. Moore, A. H. Shihab, B. T. Lopes, A. Eliasy, O. Maklad, et al., Which feature influences on-eye power change of soft toric contact lenses: Design or corneal shape, PLoS One, 15 (2020), e0242243. https://doi.org/10.1371/journal.pone.0242243 doi: 10.1371/journal.pone.0242243
|
| [18] | L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann, Oxford, UK, 1986. |
| [19] |
S. Woo, A. S. Kobayashi, W. A. Schlegel, C. Lawrence, Nonlinear material properties of intact cornea and sclera, Expl. Eye Res., 14 (1972), 29–39. https://doi.org/10.1016/0014-4835(72)90139-X doi: 10.1016/0014-4835(72)90139-X
|
| [20] |
N. K. Tram, C. J. Maxwell, K. E. Swindle-Reilly, Macro- and microscale properties of the vitreous humor to inform substitute design and intravitreal biotransport, Curr. Eye Res., 46 (2021), 429–444. https://doi.org/10.1080/02713683.2020.1826977 doi: 10.1080/02713683.2020.1826977
|
| [21] |
M. R. Bryant, P. J. McDonnell, Constitutive laws for biomechanical modeling of refractive surgery, J. Biomech. Eng., 118 (1996), 473–481. https://doi.org/10.1115/1.2796033 doi: 10.1115/1.2796033
|
| [22] |
H. Yeh, T. Huang, D. A. Schachar, A closed shell structured eyeball model with application to radial keratotomy, J. Biomech. Eng., 122 (2000), 504–510. https://doi.org/10.1115/1.1289626 doi: 10.1115/1.1289626
|
| [23] |
A. Pandolfi, E. Manganiello, A model for the human cornea: Constitutive formulation and numerical analysis, Biomech. Model. Mechanobiol., 5 (2006), 237–246. https://doi.org/10.1007/s10237-005-0014-x doi: 10.1007/s10237-005-0014-x
|
| [24] |
I. Tranoudis, N. Efron, Tensile properties of soft contact lens materials, Contact Lens Anterior Eye, 27 (2004), 177–191. https://doi.org/10.1016/j.clae.2004.08.002 doi: 10.1016/j.clae.2004.08.002
|
| [25] |
C. R. Horst, B. Brodland, L. W. Jones, G. W. Brodland, Measuring the modulus of silicone hydrogel contact lenses, Optom. Vision Sci., 89 (2012), 1468–1476. https://doi.org/10.1097/OPX.0b013e3182691454 doi: 10.1097/OPX.0b013e3182691454
|
| [26] |
G. Young, R. Garofalo, O. Harmer, S. Peters, The effect of soft contact lens care products on lens modulus, Contact Lens Anterior Eye, 33 (2010), 210–214. https://doi.org/10.1016/j.clae.2010.06.002 doi: 10.1016/j.clae.2010.06.002
|
| [27] |
Z. Quince, D. Alonso-Canerio, S. A. Read, M. J. Collins, Static compression optical coherence elastography to measure the mechanical properties of soft contact lens, Biomed. Opt. Express, 12 (2021), 1821–1833. https://doi.org/10.1364/BOE.419344 doi: 10.1364/BOE.419344
|
| [28] |
T. S. Bhamra, B. J. Tighe, Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development, Contact Lens Anterior Eye, 40 (2017), 70–81. https://doi.org/10.1016/j.clae.2016.11.005 doi: 10.1016/j.clae.2016.11.005
|
| [29] |
F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251–266. https://doi.org/10.1515/jnum-2012-0013 doi: 10.1515/jnum-2012-0013
|
| [30] | R. M. Jones, Deformation Theory of Plasticity, Bull Ridge Publishing, Blacksburg, Virginia, 2009. |
| [31] | L. Carichino, G. Guidoboni, Y. Arieli, B. A. Siesky, A. Harris, Effect of lamina cribrosa deformation on the hemodynamics of the central retinal artery: A mathematical model, Invest. Ophthalmol. Visual Sci., 53 (2012), 2836–2836. |
| [32] | W. A. Douthwaite, Contact Lens Optics and Lens Design, Elsevier Health Sciences, 2006. https://doi.org/10.1016/B978-0-7506-8879-6.50009-9 |
| [33] |
S. Srinivasan, L. N. Subbaraman, The science of contact lens discomfort: Here's what's happening behind the scenes of your patient's discomfort–and what you can do about it, Rev. Optom., 152 (2015), 34–38. https://doi.org/10.1002/rwm3.20304 doi: 10.1002/rwm3.20304
|
| [34] |
A. J. Shaw, M. J. Collins, B. A. Davis, L. G. Carney, Eyelid pressure and contact with the ocular surface, Invest. Ophthalmol. Visual Sci., 51 (2010), 1911–1917. https://doi.org/10.1167/iovs.09-4090 doi: 10.1167/iovs.09-4090
|
| [35] |
M. Yamaguchi, A. Shiraishi, Relationship between eyelid pressure and ocular surface disorders in patients with healthy and dry eyes, Invest. Ophthalmol. Visual Sci., 59 (2018), DES56–DES63. https://doi.org/10.1167/iovs.17-23586 doi: 10.1167/iovs.17-23586
|
| [36] |
M. Shen, L. Cui, C. Riley, M. R. Wang, J. Wang, Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography, Invest. Ophthalmol. Visual Sci., 52 (2011), 4091–4097. https://doi.org/10.1167/iovs.10-6507 doi: 10.1167/iovs.10-6507
|
| [37] |
H. Murgatroyd, J. Bembridge, Intraocular pressure, Contin. Educ. Anaesth. Crit. Care Pain, 8 (2008), 100–103. https://doi.org/10.1093/bjaceaccp/mkn015 doi: 10.1093/bjaceaccp/mkn015
|
| [38] | Y. Guo, C. Wang, N. Celi, S. Vukelic, Femtosecond laser collagen cross-linking without traditional photosensitizers, in Optical Interactions with Tissue and Cells XXVI, SPIE, 9321 (2015), 9–21. https://doi.org/10.1117/12.2079351 |
| [39] |
Y. A. Ashofteh, J. Melchor, J. Torres, I. Faris, A. Callejas, M. Gonzalez-Andrades, et al., Characterization of non-linear mechanical behavior of the cornea, Sci. Rep., 10 (2020), 11549. https://doi.org/10.1038/s41598-020-68391-7 doi: 10.1038/s41598-020-68391-7
|
| [40] | C. Boote, S. Dennis, Y. Huang, A. J. Quantock, K. M. Meek, Lamellar orientation in human cornea in relation to mechanical properties, J. Struct. Biol., 149 (2005), 1–6. |
| [41] |
H. A. Swarbrick, Orthokeratology review and update, Clin. Exp. Optom., 89 (2006), 124–143. https://doi.org/10.1111/j.1444-0938.2006.00044.x doi: 10.1111/j.1444-0938.2006.00044.x
|
| [42] |
J. D. Choo, P. J. Caroline, D. D. Harlin, E. B. Papas, B. A. Holden, Morphologic changes in cat epithelium following continuous wear of orthokeratology lenses: A pilot study, Contact Lens Anterior Eye, 31 (2008), 29–37. https://doi.org/10.1016/j.clae.2007.07.002 doi: 10.1016/j.clae.2007.07.002
|
| [43] |
D. Ramasubramanian, J. L. Hernández-Verdejo, J. M. López-Alonso, Contact lens fitting and changes in the tear film dynamics: Mathematical and computational models review, Graefe's Arch. Clin. Exp. Ophthalmol., 262 (2024), 2751–2764. https://doi.org/10.1007/s00417-024-06400-5 doi: 10.1007/s00417-024-06400-5
|
| [44] |
J. Wang, D. Fonn, T. L. Simpson, L. Jones, Precorneal and pre-and postlens tear film thickness measured indirectly with optical coherence tomography, Invest. Ophthalmol. Visual Sci., 44 (2003), 2524–2528. https://doi.org/10.1167/iovs.02-0731 doi: 10.1167/iovs.02-0731
|
| [45] |
J. Moore, B. T. Lopes, A. Eliasy, B. Geraghty, R. Wu, L. White, et al., Simulation of the effect of material properties on soft contact lens on-eye power, Bioengineering, 6 (2019), 94. https://doi.org/10.3390/bioengineering6040094 doi: 10.3390/bioengineering6040094
|
| [46] |
P. J. Missel, Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes, Pharm. Res., 29 (2012), 3251–3272. https://doi.org/10.1007/s11095-012-0721-9 doi: 10.1007/s11095-012-0721-9
|
| [47] |
G. J. Orssengo, D. C. Pye, Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo, Bull. Math. Biol., 61 (1999), 551–572. https://doi.org/10.1006/bulm.1999.0102 doi: 10.1006/bulm.1999.0102
|
| [48] |
C. E. Myers, B. E. Klein, S. M. Meuer, M. K. Swift, C. S. Chandler, Y. Huang, et al., Retinal thickness measured by spectral domain optical coherence tomography in eyes without retinal abnormalities: The beaver dam eye study, Am. J. Ophthalmol., 159 (2015), 445–456. https://doi.org/10.1016/j.ajo.2014.11.025 doi: 10.1016/j.ajo.2014.11.025
|
| [49] |
M. Entezari, S. Karimi, A. Ramezani, H. Nikkhah, Y. Fekri, B. Kheiri, Choroidal thickness in healthy subjects, J. Ophthalmic Vision Res., 13 (2018), 39–43. https://doi.org/10.4103/jovr.jovr_148_16 doi: 10.4103/jovr.jovr_148_16
|