We propose a new bioheat model for thermoregulation in the human body in response to cold environments, with emphasis on hypothermia and frostbite in exposed extremities. The model couples the bioheat transfer equation in the extremity with a differential equation that describes the core temperature. We used simulations to illustrate the connection between microscale vascular exchange and the effective perfusion term in the bioheat transfer equation. The nonlinear coupling proposed here incorporates physiologically motivated feedback laws for local and reflex vasoconstriction, as well as heat exchange with the environment. We illustrated the model numerically with realistic scenarios of thermoregulation regarding the thermal response of the body, which involves preservation of core temperature despite an increased frostbite risk. The model provides a robust framework for predictive studies of cold‐induced injuries.
Citation: Tyler Fara, Malgorzata Peszynska. Nonlinear bioheat model for dynamics of hypothermia and frostbite. Ⅰ. Modeling aspects[J]. Mathematical Biosciences and Engineering, 2026, 23(1): 210-241. doi: 10.3934/mbe.2026009
We propose a new bioheat model for thermoregulation in the human body in response to cold environments, with emphasis on hypothermia and frostbite in exposed extremities. The model couples the bioheat transfer equation in the extremity with a differential equation that describes the core temperature. We used simulations to illustrate the connection between microscale vascular exchange and the effective perfusion term in the bioheat transfer equation. The nonlinear coupling proposed here incorporates physiologically motivated feedback laws for local and reflex vasoconstriction, as well as heat exchange with the environment. We illustrated the model numerically with realistic scenarios of thermoregulation regarding the thermal response of the body, which involves preservation of core temperature despite an increased frostbite risk. The model provides a robust framework for predictive studies of cold‐induced injuries.
| [1] |
H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol., 1 (1948), 93–122. https://doi.org/10.1152/jappl.1998.85.1.5 doi: 10.1152/jappl.1998.85.1.5
|
| [2] |
H. Klinger, Heat transfer in perfused biological tissue—Ⅰ: General theory, Bull. Math. Biol., 36 (1974), 403–415. https://doi.org/10.1007/bf02464617 doi: 10.1007/bf02464617
|
| [3] |
W. Wulff, The energy conservation equation for living tissue, IEEE Trans. Biomed. Eng., 6 (2007), 494–495. https://doi.org/10.1109/tbme.1974.324342 doi: 10.1109/tbme.1974.324342
|
| [4] |
M. M. Chen, K. R. Holmes, Microvascular contributions in tissue heat transfer, Ann. N. Y. Acad. Sci., 335 (1980), 137–150. https://doi.org/10.1111/j.1749-6632.1980.tb50742.x doi: 10.1111/j.1749-6632.1980.tb50742.x
|
| [5] |
P. Deuflhard, R. Hochmuth, Multiscale analysis of thermoregulation in the human microvascular system, Math. Method Appl. Sci., 27 (2004), 971–989. https://doi.org/10.1002/mma.499 doi: 10.1002/mma.499
|
| [6] | C. Timofte, Homogenization results for dynamical heat transfer problems in heterogeneous biological tissues, Bull. Transilv. Univ. Brasov, Ser. III, Math. Comput. Sci., 2 (2009), 143–148. |
| [7] |
C. D'angelo, A. Quarteroni, On the coupling of 1d and 3d diffusion-reaction equations: Application to tissue perfusion problems, Math. Models Methods Appl. Sci., 18 (2008), 1481–1504. https://doi.org/10.1142/s0218202508003108 doi: 10.1142/s0218202508003108
|
| [8] |
I. G. Gjerde, K. Kumar, J. M. Nordbotten, A mixed approach to the Poisson problem with line sources, SIAM J. Numer. Anal., 59 (2021), 1117–1139. https://doi.org/10.1137/19m1296549 doi: 10.1137/19m1296549
|
| [9] |
Z.-Z. He, J. Liu, A coupled continuum-discrete bioheat transfer model for vascularized tissue, Int. J. Heat Mass Transf., 107 (2017), 544–556. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.053 doi: 10.1016/j.ijheatmasstransfer.2016.11.053
|
| [10] | D. Notaro, L. Cattaneo, L. Formaggia, A. Scotti, P. Zunino, A mixed finite element method for modeling the fluid exchange between microcirculation and tissue interstitium, in Advances in Discretization Methods: Discontinuities, Virtual Elements, Fictitious Domain Methods, 12 (2016) 3–25. https://doi.org/10.1007/978-3-319-41246-7_1 |
| [11] |
G. I. Barenblatt, I. P. Zheltov, I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata), J. Appl. Math. Mech., 24 (1960), 1286–1303. https://doi.org/10.1016/0021-8928(60)90107-6 doi: 10.1016/0021-8928(60)90107-6
|
| [12] | R. E. Showalter, D. B. Visarraga, Double-diffusion models from a highly-heterogeneous medium, J. Math. Anal. Appl., 295 (2004), 191–210. |
| [13] |
V. Klein, M. Peszynska, Adaptive double-diffusion model and comparison to a highly heterogenous micro-model, J. Appl. Math., 2012 (2012). https://doi.org/10.1016/s0022-247x(04)00244-6 doi: 10.1016/s0022-247x(04)00244-6
|
| [14] | M. Peszynska, T. Fara, M. Phelps, N. Zhang, Mixed dimensional modeling with overlapping continua on Cartesian grids for complex applications, in Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems 432 (2023), 129–145. https://doi.org/10.1007/978-3-031-40864-9_8 |
| [15] |
E. Majchrzak, B. Mochnacki, M. Dziewoński, M. Jasiński, Numerical modeling of hyperthermia and hypothermia processes, Adv. Mater. Res., 268 (2011), 257–262. https://doi.org/10.4028/www.scientific.net/amr.268-270.257 doi: 10.4028/www.scientific.net/amr.268-270.257
|
| [16] |
J. Chiang, P. Wang, C. L. Brace, Computational modelling of microwave tumour ablations, Int. J. Hyperth., 29 (2013), 308–317. https://doi.org/10.3109/02656736.2013.799295 doi: 10.3109/02656736.2013.799295
|
| [17] | J. A. Stolwijk, A mathematical model of physiological temperature regulation in man, Technical report, NASA, 1971. |
| [18] |
J. A. Stolwijk, J. D. Hardy, Control of body temperature, Compr. Physiol., (1977), 45–68. https://doi.org/10.1002/cphy.cp090104 doi: 10.1002/cphy.cp090104
|
| [19] |
X. Xu, T. P. Rioux, M. P. Castellani, Three dimensional models of human thermoregulation: A review, J. Therm. Biol., 112 (2023). https://doi.org/10.1016/j.jtherbio.2023.103491 doi: 10.1016/j.jtherbio.2023.103491
|
| [20] |
M. P. Castellani, T. P. Rioux, J. W. Castellani, A. W. Potter, X. Xu, A geometrically accurate 3 dimensional model of human thermoregulation for transient cold and hot environments, Comput. Biol. Med., 138 (2021). https://doi.org/10.1016/j.compbiomed.2021.104892 doi: 10.1016/j.compbiomed.2021.104892
|
| [21] | T. Fara, M. Peszynska, Nonlinear bioheat model for dynamics of hypothermia and frostbite. Ⅱ. Stability analysis and finite element discretization. (2025) Manuscript in preparation. |
| [22] | K. Atkinson, W. Han, Theoretical Numerical Analysis, 3$^{rd}$ edition, Springer, Dordrecht, 2009. https://doi.org/10.1007/978-0-387-28769-0 |
| [23] |
N. A. Taylor, C. A. Machado-Moreira, A. M. van den Heuvel, J. N. Caldwell, Hands and feet: Physiological insulators, radiators and evaporators, Eur. J. Appl. Physiol., 114 (2014), 2037–2060. https://doi.org/10.1007/s00421-014-2940-8 doi: 10.1007/s00421-014-2940-8
|
| [24] | P. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. C. Gosselin, et al., IT'IS Database for thermal and electromagnetic parameters of biological tissues, Version 4.1, https://doi.org/10.13099/VIP21000-04-1 |
| [25] | W. F. Boron, E. L. Boulpaep, Medical Physiology, 2$^{nd}$ edition, Elsevier Health Sciences, 2012. |
| [26] | A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Publishing Co., Amsterdam, 1978. |
| [27] | J. E. Hall, M. E. Hall, Guyton and Hall Textbook of Medical Physiology E-Book, Elsevier Health Sciences, 2020. |
| [28] | M. Peszynska, R. E. Showalter, Multiscale elliptic-parabolic systems for flow and transport, Electr. J. Differ. Equ., 2007 (2007). |
| [29] |
P. Orlowski, F. K. McConnell, S. Payne, A mathematical model of cellular metabolism during ischemic stroke and hypothermia, IEEE Trans. Biomed. Eng., 61 (2013), 484–490. https://doi.org/10.1109/tbme.2013.2282603 doi: 10.1109/tbme.2013.2282603
|
| [30] | K. Collins, Hypothermia: The Facts, Oxford University Press, 1983. |
| [31] |
J. W. Castellani, A. J. Young, Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure, Auton. Neurosci., 196 (2016), 63–74. https://doi.org/10.1016/j.autneu.2016.02.009 doi: 10.1016/j.autneu.2016.02.009
|
| [32] |
M. N. Cramer, D. Gagnon, O. Laitano, C. G. Crandall, Human temperature regulation under heat stress in health, disease, and injury, Physiol. Rev., 102 (2022), 1907–1989. https://doi.org/10.1152/physrev.00047.2021 doi: 10.1152/physrev.00047.2021
|
| [33] | N. Charkoudian, Skin blood flow in adult human thermoregulation: how it works, when it does not, and why, in Mayo Clin. Proc., 78 (2003), 603–612. https://doi.org/10.4065/78.5.603 |
| [34] |
H. T. Meryman, Tissue freezing and local cold injury, Physiol. Rev., 37 (1957), 233–251. https://doi.org/10.1152/physrev.1957.37.2.233 doi: 10.1152/physrev.1957.37.2.233
|
| [35] |
B. K. Alba, J. W. Castellani, N. Charkoudian, Cold-induced cutaneous vasoconstriction in humans: Function, dysfunction and the distinctly counterproductive, Exp. Physiol., 104 (2019), 1202–1214. https://doi.org/10.1113/ep087718 doi: 10.1113/ep087718
|
| [36] |
A. Alhammali, M. Peszynska, C. Shin, Numerical analysis of a mixed finite element approximation of a coupled system modeling biofilm growth in porous media with simulations, Int. J. Numer. Anal. Model., 21 (2024), 20–64. https://doi.org/10.4208/ijnam2024-1002 doi: 10.4208/ijnam2024-1002
|
| [37] |
C. Shin, A. Alhammali, L. Bigler, N. Vohra, M. Peszynska, Coupled flow and biomass-nutrient growth at pore-scale with permeable biofilm, adaptive singularity and multiple species, Math. Biosci. Eng., 18 (2021), 2097–2149, https://doi.org/10.3934/mbe.2021108 doi: 10.3934/mbe.2021108
|
| [38] |
A. J. Q. Alfaro, I. J. R. Acosta, J. D. Cardona, A. F. H. Ortiz, J. D. C. Ortegón, Severe frostbite due to extreme altitude climbing in South America: A case report, Cureus, 14 (2022). https://doi.org/10.7759/cureus.27771 doi: 10.7759/cureus.27771
|
| [39] |
P. Jud, F. Hafner, M. Brodmann, Frostbite of the hands after paragliding: A chilling experience, The Lancet, 394 (2019), 2282. https://doi.org/10.1016/s0140-6736(19)32960-5 doi: 10.1016/s0140-6736(19)32960-5
|
| [40] |
D. M.-A. Magnan, M. Gelsomino, P. Louge, R. Pignel, Successful delayed hyperbaric oxygen therapy and iloprost treatment on severe frostbite at high altitude, High Alt. Med. Biol., 23 (2022), 294–297. https://doi.org/10.1089/ham.2021.0172 doi: 10.1089/ham.2021.0172
|
| [41] |
J. W. Castellani, B. R. Yurkevicius, M. L. Jones, T. J. Driscoll, C. M. Cowell, L. Smith, et al., Effect of localized microclimate heating on peripheral skin temperatures and manual dexterity during cold exposure, J. Appl. Physiol., 125 (2018), 1498–1510. https://doi.org/10.1152/japplphysiol.00513.2018 doi: 10.1152/japplphysiol.00513.2018
|