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Abstract: We propose a new bioheat model for thermoregulation in the human body in response
to cold environments, with emphasis on hypothermia and frostbite in exposed extremities. The model
couples the bioheat transfer equation in the extremity with a differential equation that describes the core
temperature. We used simulations to illustrate the connection between microscale vascular exchange
and the effective perfusion term in the bioheat transfer equation. The nonlinear coupling proposed here
incorporates physiologically motivated feedback laws for local and reflex vasoconstriction, as well as
heat exchange with the environment. We illustrated the model numerically with realistic scenarios
of thermoregulation regarding the thermal response of the body, which involves preservation of core
temperature despite an increased frostbite risk. The model provides a robust framework for predictive
studies of cold-induced injuries.

Keywords: Thermoregulation; frostbite; hypothermia; coupled system; nonlinear boundary
conditions; finite elements; multiscale modeling

1. Introduction

Modeling heat transfer within biological tissues poses substantial mathematical and computational
challenges due to the complex, interconnected, and multiscale nature of human physiology.

Accurate modeling of body thermoregulation in response to cold and, in particular, of hypothermia
and cold-related frostbite injuries to the extremities requires capturing the dynamics of heat exchange
between the body’s core and peripheral regions such as the hands or feet. These thermoregulatory
processes involve intricate interactions between metabolic heat production, vascular heat convection,
and environmental heat losses through conduction, convection, radiation, and evaporation. In fact, the
body faces two threats: hypothermia affecting the body’s core, and frostbite affecting the extremities.
Interestingly, the extent of the latter can be partially attributed to the body’s strategy to prevent the
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former. This paper is devoted to the modeling of both threats.
Early bioheat transfer models, notably the Pennes model from [1], represent heat convection through

the vascular system with an averaged perfusion rate in the heat exchange term Ab(θ − θb), where θ
and θb are the tissue and blood temperature, respectively, and Ab = ρbcbωb is the product of blood
density, specific heat, and volumetric flow rate coefficients, respectively. Other early models, such
as [2, 3], attempted to explicitly account for bulk convective effects. In particular, in [3], the term
ρbcbωb(θ − θb) was replaced by ρbcbUh · ∇θ, where Uh is a certain weighted average of microscopic
blood flow velocities. Later, the authors of [4] were among the first to attempt to incorporate the effects
of microvascular physics of perfusion; their formulation of the bioheat transfer equation includes both
a perfusion term akin to that in [1] and a convection term as in [3].

That work was followed by [5, 6], which sought a rigorous explanation of the term Ab(θ − θb)
by developing its connection to the microscale structure of vasculature within tissues using two-scale
asymptotic homogenization. In particular, in [5], it was proved under the assumption of a periodically
distributed vascular network that the homogenized limit closely resembles the Pennes bioheat equation,
including the term Ab(θ−θb). However, the factor Ab is related to the geometry of the microvasculature
rather than the material properties and flow rate of blood. Notably, the homogenized model in [5] is
stationary. Some work has been done to extend the result of [5] to the parabolic setting, for exam-
ple, [6]. In Section 2 of this paper, we postulate another such parabolic extension and illustrate this
extension and the connection between the microstructure and Ab(θ − θb) using numerical examples.

In turn, another family of models in the work of Quarteroni et. al. [7] describe fluid flow through
vascularized tissue by treating vasculature as a coupled continuum–discrete network. Vascularized
tissue is represented as a series of 1D “cracks”, which represent the large blood vessels distributed
throughout a 3D porous continuum, with the pore-space representing microvasculature and the solid
matrix representing the solid tissue. In [8], a mixed finite element discretization of such systems
was described, while [9] provided a finite difference discretization. A method for overcoming the
computational challenges involved in using 1D sources was presented in [10]. These models inform
our general understanding of tissue and vascular networks.

We also note that in porous media literature, terms similar to Ab(θ − θb) are used to model over-
lapping continua, where θb solves a separate PDE, which captures the different dynamics of θ and
θb; see the well-known Barenblatt model [11]. More recently, [12] described a multiscale model for
heat transport in a doubly porous composite medium made of two interwoven high-conductivity flow
paths separated by a thin exchange layer, representing the kind of highly heterogeneous microgeom-
etry found, for example, in vascularized media. By applying two-scale homogenization, the authors
rigorously derived a distributed microstructure model that collapses, in the quasi-static limit, to an
anisotropic double-diffusion system with an explicit inter-continuum transfer coefficient, thereby fur-
nishing a first-principles justification of the classical Rubinstein–Barenblatt equations for coupled con-
tinua. See also [13], in which a two-grid finite element discretization of the double-diffusion system
was formulated and a numerical comparison between the micro and macro model was performed. The
analogy between the double-diffusion system and the bioheat model was explored in [14].

Exposure to extreme cold or heat can significantly change the physical properties of tissue, either by
freezing (as in frostbite) or melting (as in, e.g., tumor ablation). Models that incorporate such changes
can be found in, e.g., [15] for freezing or [16] for melting/ablation. We do not address this here.

In this paper, we focus on the dynamic coupling between peripheral and core body temperatures.
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The models mentioned above only describe the temperature at every point x. In turn, the dynamic
coupling between body compartments was discussed in the pioneering work of Stolwijk and Hardy
[17, 18]. This model is called the 25-node model since it divides the body into 25 lumped-parameter
compartments, including a centralized blood compartment that facilitates energy exchange between
the other 24 compartments. Many thermoregulation models have followed, most of which are either
lumped-parameter models or use idealized shapes (cylinders, spheres, circular cones, etc.) to represent
the different body parts; see [19] for a review. More recently, whole-body finite element thermoreg-
ulation models based on meshes reconstructed from high-resolution MRI data have been developed;
see, e.g., [20]. Such a model, however, is extremely complex computationally (see the information
provided in [20]).

In this paper, we propose a new coupled PDE-ODE system specifically designed to model the onset
of hypothermia and frostbite during extreme cold exposure. We note that our model was developed
independently of that in [20]. To focus on the dynamics of energy exchange between the core and
extremities during extreme cold exposure, we consider a two-compartment model with an ODE rep-
resenting the temperature in a well-insulated body core and a bioheat transfer PDE representing the
temperature in an extremity, which allows for the spatial resolution necessary to track frostbite during
cold exposure.

Specifically, let Ω ⊂ Rd with d ∈ {2, 3} represent an exposed extremity (e.g., a hand) and let the rest
of the body be represented by a zero-dimensional compartment. On time interval J = (0,T ], we seek
u : Ω × J → R in the hand and v : J → R in the core, such that

c(x) ∂tu − ∇ · (k(x)∇u) + r(x, t, u, v) = f , in Ω × J, (1.1a)

k(x)
∂u
∂n
= α(x, t, u, v), on ∂Ω × J, (1.1b)

u(x, 0) = uinit, x ∈ Ω. (1.1c)

In turn, we postulate that the function v = v(t) satisfies

κ
dv
dt
+ s(t, v, ⟨u⟩Ω) = g, 0 < t ≤ T, (1.2a)

v(0) = vinit, (1.2b)

where ⟨u⟩Ω is the average of u overΩ; the other coefficients and data for this model will be described in
Section 4. Through the (potentially) nonlinear coupling coefficients r(·) and s(·), this system explicitly
incorporates physiological feedback mechanisms, such as local and reflex vasoconstriction responses,
as functions of tissue and core temperatures. In Section 4, we will describe several choices for r(·), s(·),
and α(·), including a variant based on the model from [17, 18, 20]. In Section 5, we will demonstrate the
model and these choices numerically, and compare some of these choices to experimentally obtained
physiological data.

Our model also has a robust mathematical and computational foundation. In a forthcoming paper
[21], we prove its stability and we propose its numerical discretization with first-order Galerkin finite
elements and backward Euler time stepping and prove a priori error estimates for the system, given
mild assumptions on r(·), s(·), and α(·). Of note, all the choices of r(·), s(·), and α(·) illustrated in this
present paper fit these assumptions.

The main result of the present paper is that our proposed model is capable of replicating physiolog-
ically realistic scenarios under various thermal exposures, which we demonstrate through a series of
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simulations. These results not only validate the theoretical constructs of the model but also highlight
its potential applicability in medical predictions and interventions related to cold-induced injuries.

1.1. Outline

The paper is organized as follows: Section 2 introduces the bioheat models and provides illustra-
tions of the term Ab(θ − θb) using microscale and macroscale simulations. Section 3 provides essential
physiological information on a body’s thermoregulation and hypothermia. Section 4 then explains the
coupled PDE-ODE model in detail. In Section 5, we illustrate our model through numerical simu-
lations under various physiologically relevant scenarios and compare simulations of our model with
experimentally obtained data. Section 6 explores the sensitivity of the model to various data.

1.2. Mathematical notation

Let Ω ⊂ Rd, d ∈ {2, 3}, be an open bounded Lipschitz domain with boundary ∂Ω, with
x = (x1, . . . , xd) ∈ Ω. Let also t ∈ J = (0, T ] be the time variable. Let ∂iφ, ∂tφ denote the partial
derivative of φ with respect to xi and time t, and let ∇ϕ = (∂1ϕ, . . . ∂dϕ). All derivatives are in the sense
of distributions.

We will follow the usual notation of Lebesgue spaces Lp and Sobolev spaces Hk and H1
0 from [22].

In particular, let L2(Ω), L2(∂Ω) be associated with the inner product and the norms

(φ, ψ) =
∫
Ω

φψ dx, (φ, ψ)∂Ω =
∫
∂Ω

φψ ds, ∥ψ∥2 = (ψ, ψ), ∥ψ∥2∂Ω = (ψ, ψ)∂Ω.

We denote by |Ω| the Lebesgue measure ofΩ and denote by |∂Ω| the (d-1)-dimensional surface measure
of ∂Ω. For u ∈ L1(Ω), we denote its average as

⟨u⟩Ω :=
1
|Ω|

∫
Ω

u(x) dx.

2. Illustration of homogenized energy exchange

In this section, we briefly review the bioheat models derived by Pennes in [1] and by a
homogenization-based approach for an elliptic PDE model in [5]. We postulate a transient exten-
sion to the latter model that makes the PDE parabolic, and we illustrate the heat exchange term in this
equation, as well as the relationship between the micro- and macroscale models.

In this section, we work in a domain Ωbody representing the tissue in the human body.

2.1. The bioheat transfer equation

The heat equation is a well-known PDE derived from energy conservation coupled with Fourier’s
law of heat conduction, and solved for the temperature variable. In any material, the heat (thermal
energy) can also be convected by fluids and can be produced, consumed, or lost due to, e.g., radiation.

The heat in Ωbody is produced by the metabolism and is transferred by conduction and convection
through the vasculature, i.e., the network of blood vessels that has a complex, interconnected, and
multiscale nature. In particular, large blood vessels bifurcate into a complicated web of arterioles,
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Table 1. Parameters in Pennes equation (2.1). The unit of ωb should be interpreted as liter of
blood flow per liter of tissue per second.

symbol meaning units approx. value source
ctissue tissue specific heat J kg−1 ◦C−1 2274 to 3617 [24]
ρtissue tissue density kg m−3 911 to 1079 [24]
c = ctissue ρtissue tissue volumetric heat capacity J ◦C−1 m−3

k tissue thermal conductivity W m−1 ◦C−1 0.21 to 0.57 [24]
f tissue heat sources (e.g., metabolism) W m−3 0 to 1,200 [25]
cb blood specific heat J kg−1 ◦C−1 3617 [24]
ρb blood density kg m−3 1050 [24]
ωb blood specific flow rate s−1 0 to 5.0 × 10−3 [23]
Ab = cb ρb ωb heat transfer coefficient W m−3 ◦C−1

θb blood temperature ◦C

capillaries, and venules, together called the microvasculature. In principle, one can attempt to approx-
imate the convective effect of blood flow on tissue temperature, but the complexity of accounting for
the numerous small blood vessels across all scales is too large to be practical.

We recall two models that have tackled this exchange.

2.1.1. The Pennes bioheat model

The bioheat transfer equation describing the tissue temperature θ(x, t) depending on the temperature
of the circulating blood θb proposed in [1] is as follows:

c
∂θ

∂t
− ∇ · (k∇θ) + Ab(θ − θb) = f , x ∈ Ωbody, t > 0. (2.1)

This linear parabolic equation includes physical parameters c = c(x), k = k(x), whose values depend
on the type of tissue at x (e.g., bone, skin, or internal organs) and are given in Table 1. Of particular
interest is the coefficient Ab = cbρbωb, in the term Ab(θ − θb) which is postulated to approximate the
effect of blood convection through the vasculature on the tissue temperature through the rate of energy
transfer between blood and tissue in a specific volume of tissue. The factorωb represents the volumetric
blood perfusion rate and varies greatly with tissue type, thermal state, and activity rate, with greater
ωb directly proportional to greater approximate convective energy transfer. For example, in the hand
tissue, values of ωb ∈ [3.3 × 10−5, 5.0 × 10−3] were given in [23]. We note that this data range spans
two orders of magnitude; this wide range of values motivates some of our modeling postulates to be
developed.

For well posedness, the model (2.1) must be supplemented with some boundary and initial data.

2.2. Explanation of the heat exchange term through homogenization

In [1], the term Ab(θ − θb) and the value of Ab are postulated heuristically. However, its role can be
explained through homogenization theory, as shown in [5].

Homogenization theory is a powerful mathematical tool that helps to connect the scales present in
PDE models. In one of the first monographs devoted to homogenization [26], one learns how to derive
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Figure 1. Domain Ωbody = Ωε ∪ Qε for the microscale model in [5], which is a union of
scaled copies of the unit cell Y , which features an inclusion Q representing the pores (small
blood vessels) in Qε, with solid tissue in Y \ Q and Ωε.

an effective PDE model posed at a macroscale, e.g., on a scale of order of meters, from a microscale
problem defined at, say, a scale of millimeters. A classical and well-explored example is that of an
elliptic (stationary) PDE for heat conduction in a composite material with periodically varying coef-
ficients at a microscale. After averaging, one obtains a macroscale PDE with effective coefficients,
which are calculated from those at the microscale coefficients through an auxiliary problem. Another
example is that of a PDE defined on a domain with perforations, such as the case in [5]. The mathe-
matical techniques to derive the effective model and its coefficients include asymptotic expansions as
well as the theory of weak and two-scale convergence.

For parabolic problems, especially those with coefficients of largely disparate values, for a good
agreement between macroscale solutions and the averages of microscale solutions, one may incorporate
additional terms in the homogenized PDE, or maintain the two-scales as proved in [12] and illustrated
in [13].

Below, we focus on the specific application of homogenization theory to the blood perfusion. In
[5], the following stationary microscale problem is considered

−∆θε = fε, in Ωε,
θε = 0, on ∂Ω,

−
∂θε
∂n

= εa(θε − θεb), on ∂Qε,

where Ωε = Ωbody \ Qε represents tissue perforated by small blood vessels represented by Qε and
arranged periodically. The domain Q ⊂ Y is the inclusion from which Qε is defined, and Y is the
periodic unit cell, with Y∗ = Y \ Q; see Figure 1. The heat conductivity is k = 1 or is absorbed in fε.

The outward normal vector n is involved with the Robin exchange term between the perforations
in the microvasculature and the tissue on ∂Qε, with the coefficient εa representing the scaled rate of
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energy transfer across the vessel walls ∂Qε per degree difference between tissue temperature θε and
blood temperature θεb.

The results of [5] show that the projections of θε to H1
0(Ω) converge weakly in H1

0(Ω) to the solution
θ to the macroscale problem

−∇ · (K∇θ) + a
|∂Q|
|Y |

(θ − θb) =
|Y∗|
|Y |

f , in Ω, (2.3a)

θ = 0, on ∂Ω. (2.3b)

Here, θb is the weak limit in H1
0(Ω) of θεb, f is the limit in L2(Ω) of fε, and K = (ki j)i j is the standard

homogenized (upscaled) conductivity, a positive definite matrix calculated by homogenization using
an auxiliary PDE; details are given in Section 2.3.

We see that (2.3) is a stationary version of (2.1). The Helmholtz exchange term a |∂Q|
|Y | (θ−θb), derived

from homogenization, involves the product of a and the specific surface area factor |∂Q|/|Y | of the
microvessel Q. Its role is similar to Ab = cbρbωb in (2.1); both represent the volumetric rate at which
heat is exchanged between blood and tissue. Because perfusion is governed chiefly by vasoconstriction
or dilation of precapillary arterioles [25, 27], widening these vessels can be viewed either as increasing
the perfusion rate ωb in (2.1) or as enlarging the interfacial-area ratio |∂Q|/|Y | in (2.3), with both
interpretations leading to a larger energy-exchange term.

We now explain the connection between the microstructure and macroscale parameters. Assume
that Ω ⊂ R2 is circular with radius R. We can calculate R = |∂Q|/2π, and the radius of each perforation
in Qε is εR. This microstructure radius εR links the scale parameter ε and the ratio |∂Q|/|Y |. When
ε → 0, we have more, smaller vessels perfusing the tissue, while |∂Q|/|Y | represents the vessels’
relative dilation or constriction within the tissue. The effect of changing either ε or |∂Q|/|Y | is illustrated
in Section 2.3.1.

We note that homogenization theory does not require that Q be circular. It is, however, convenient
to assume so in the numerical illustrations below.

2.3. Micro- to macroscale simulations inspired by [5]

We illustrate now the effect of the exchange term Ab (θ− θb), where Ab = a |∂Q|
|Y | is derived by homog-

enization.
Our illustrations extend the theoretical results of [5] in several ways. We treat the transient version

of the problem. We also partition ∂Ωbody into ∂ΩD, where we impose a Dirichlet condition θD, and
∂ΩN , where we impose a homogeneous Neumann condition. Our model uses the physical parameter
k, which was set to unity in [5], as well as the parameter c in a term absent in [5]

Let Ωbody = (0, x′1) × (0, x′2), let Y = (0, 1)2, and let Q be a disk centered in Y representing a
perforation. For ε > 0, define τ(εQ) :=

⋃
ℓ∈Z2 ε(ℓ + Q), Qε := Ωbody \ τ(εQ), and Ωε := Ωbody \ Qε.

Let ε be chosen so that τ(εQ) ∩ ∂Ωbody = ∅. See Figure 1 for an illustration of Y , Q, Qε, and Ωε in a
generic domain. Let ∂Ωbody = ∂ΩD ∪ ∂ΩN where ∂ΩD ∩ ∂ΩN = ∅.

We consider the microscale problem on a domain with perforations Qε:

c
∂θε
∂t
− ∇ · (k∇θε) = fε, in Ωε × (0, T ], (2.4a)

θε = θD, on ∂ΩD × (0, T ], (2.4b)

Mathematical Biosciences and Engineering Volume 23, Issue 1, 210–241.



217

∂θε
∂n

= 0, on ∂ΩN × (0, T ], (2.4c)

−k
∂θε
∂n

= εab (θε − θεb) on ∂Qε × (0, T ], (2.4d)

θε(x, 0) = θεinit(x), in Ωε. (2.4e)

We postulate that the solutions θε are well approximated by the solution θ to the macroscale problem:

c
|Y∗|
|Y |

∂θ

∂t
− ∇ · (K ∇θ) + ab

|∂Q|
|Y |

(θ − θb) =
|Y∗|
|Y |

f , in Ω × (0, T ], (2.5a)

θ = θD, on ∂ΩD × (0, T ], (2.5b)
∂θ

∂n
= 0, on ∂ΩN × (0, T ], (2.5c)

θ(x, 0) = θinit(x), in Ω, (2.5d)

where, for simplicity, we assume that c, k, ab, θ
ε
b, and θb are positive constants, and θεb = θb for all

choices of ε. The tensor K = (ki j)i j is given by

ki j = k
(
|Y∗|
|Y |

δi j −
1
|Y |

∫
Y∗

∂χ j

∂yi
dy

)
, (2.6)

where δi j is the Dirac delta, and functions χ j are the solutions to an auxiliary PDE

−∆yχ
j = 0, in Y∗, (2.7a)

∂(χ j − y j)
∂n

= 0, on ∂Q, (2.7b)

χ j Y-periodic, (2.7c)

where y = (y1, y2) = x/ε, and y j denotes the j-th coordinate function. We refer to [13, 26, 28] for the
theoretical derivations of the formulas (2.6) and (2.7) for these homogenized coefficients.

We illustrate the microscale and macroscale solutions numerically. For numerical illustrations, we
discretize (2.4), (2.5), and (2.7) using P1 Lagrange finite elements (mesh size h = x′1 × 10−6) with
backward Euler time stepping.

We set up two scenarios: in Section 2.3.1, we consider the problem with a constant θb and physiolog-
ically relevant coefficients. In Section 2.3.2, we consider a problem with strongly varying (oscillating)
θb and with unit coefficients.

2.3.1. Scenario with physiologically meaningful data

Let x′1 = 0.03, x′2 = 0.01 so that Ωbody represents a rectangular 1 cm × 3 cm patch of tissue. Let

∂ΩD = {x ∈ ∂Ωbody : x1 = 0 or x1 = x′1},

∂ΩN = ∂Ωbody \ ∂ΩD,

and T = 1000 s with timestep τ = 1 s. We use physiologically relevant data, i.e., c = 3.5 × 103 J kg−1

◦C−1, k = 0.42 W m−1 ◦C−1, ab = 4.2 × 103 W m−3 ◦C−1, θb = 37 ◦C. These data are similar to those
used in other examples in this paper; see Table 7.
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Table 2. Convergence rates for experiments in Section 2.3.1.

|∂Q| / |Y | = 0.5

ε errabs errrel × 10−2 rate

1 1.07 1.67 –
1/3 0.562 8.85 0.587
1/6 0.359 5.66 0.646
1/9 0.250 3.94 0.893

|∂Q| / |Y | = 1.0

ε errabs errrel × 10−2 rate

1 2.92 4.75 –
1/3 1.74 2.83 0.470
1/6 1.10 1.79 0.659
1/9 0.811 1.32 0.759

|∂Q| / |Y | = 1.5

ε errabs errrel × 10−2 rate

1 4.84 8.33 –
1/3 2.96 5.09 0.448
1/6 1.91 3.28 0.637
1/9 1.37 2.36 0.813

This scenario simulates the tissue Ωbody touching a cold object on its east edge and connected to the
body core on its west edge. Specifically, we let θcold = −40 ◦C, θinit = θb, and we choose

θD =

θb, x1 = 0,
θcold, x1 = x′1.

We simulate solutions to both the microscale and macroscale (homogenized) models. In the mi-
croscale problem, the tissue is warmed by perfusing blood through the Robin condition (2.4d). In
the macroscale problem, the tissue temperature responds to θb through the homogenized bulk energy
exchange term a |∂Q|

|Y | (θ − θb) given in (2.5a).
The illustration in Figure 2 shows both the effect of changing ε and changing |∂Q|/|Y |. Comparing

the left and middle panels, ε is reduced from ε = 1 to ε = 1/5, while |∂Q|/|Y | = 1.5 in both. In both
panels, the overall trend of θ and θε is similar. However, with larger ε = 1, θε exhibits noticeable local
distortion near the inclusions. With smaller ε = 1/5, these local gradients are reduced, along with the
maximum deviation between θ and θε.

Convergence data, presented in Table 2, support this observation. For each choice of |∂Q|/|Y | ∈
{0.5, 1.0, 1.5} and ε ∈ {1, 1

3 ,
1
6 ,

1
9 }, we calculate

errabs = max
1≤n≤1000

∥θn − θn
ε∥L2(Ωε), errrel = max

1≤n≤1000
∥θn − θn

ε∥L2(Ωε)/∥θ
n∥L2(Ωε).

As expected, these errors decrease as ε decreases, suggesting that the microscale and homogenized
temperature fields become increasingly indistinguishable at all measured time points as the character-
istic vessel scale ε decreases. Also, the homogenized model accurately represents the effective heat
transfer in densely perfused tissue. Moreover, the observed decay of the error as ε → 0 supports the
conjecture that the convergence results proven in [5] for the elliptic formulation may extend to the
time-dependent parabolic problem.

Figure 2 also illustrates the effect of |∂Q|/|Y |. The middle panel shows |∂Q|/|Y | = 1.5, and the right
panel |∂Q|/|Y | = 0.5, with ε = 1/5 in each. For the choice |∂Q|/|Y | = 0.5, Table 2 again demonstrates
good agreement through time between the micro- and macroscale solutions. Reducing |∂Q|/|Y | to
|∂Q|/|Y | = 0.5 causes a reduction in temperature at each comparable point of the domain, compared to
|∂Q|/|Y | = 1.5. Physically, this could be interpreted as vasoconstriction resulting in less blood-tissue
energy exchange and leading to a reduced tissue temperature.

2.3.2. Scenario driven by an oscillating θb, with simplified material constants

We now present a scenario where the microscale solution θε has a local behavior with strong vari-
ability but its average is similar to θ. In this scenario, a “pulse” of heat energy imposed by θb has a rate
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Figure 2. Numerical solutions for Section 2.3.1. Plots of solutions at t = T to macroscale
problems (2.5) onΩ (top) and to the corresponding microscale problems (2.4) onΩε (middle)
with micro- and macroscale solution profiles (bottom), which represent the solution along the
horizontal black line x2 = 0.5. Pictured are the solutions when ε = 1 and |∂Q|/|Y | = 1.5 (left),
ε = 1/5 and |∂Q|/|Y | = 1.5 (center), and ε = 1/5 and |∂Q|/|Y | = 0.5 (right). The vertical grey
bars in the bottom row correspond to the inclusions, i.e., the regions where the microscale
solution is undefined.

that is fast compared to the speed at which heat disperses through Ωbody. As a result, the microscale
and macroscale solutions are not immediately close. The oscillatory forcing from θb in this illustration
is not intended to represent a physiological pulse, i.e., a heartbeat, but rather to test the proposed exten-
sion (2.5) under strong, rapid transients beyond the scope of the elliptic homogenization theory of [5].
We note, however, that some studies do treat θb as a prescribed forcing function, for instance, during
therapeutic blood cooling as in [29].

Let x′1 = 0.01, x′2 = 0.01. Let ∂ΩD = ∂Ωbody so that ∂ΩN = ∅ and use θD = 0. Let T = 1 with
τ = 0.01. We set c = 102, k = 0.1, ab = 1, f = 0, θ(·, 0) = 0, θε(·, 0) = 0. These coefficients are
chosen to emphasize the differences between the microscale and homogenized models, rather than for
physiological realism.

The focus of this example is on θb, which varies significantly with amplitude A = 50 and period
P = 1 according to

θb(x, y, t) = A θspace(x, y) θtime(t),

θspace(x, y) = max
{
0, 1 −

[
(x − xc)2 + (y − yc)2

]1/2
/R

}
, θtime(t) = max{0, sin(2πt/P)},

where (xc, yc) = (0.5, 0.5) and R = 0.4. We also let θεb be the trace of this function on ∂Qε.
We fix |∂Q|/|Y | = 1, and vary ε ∈

{
1, 1

7 ,
1

11 ,
1
15

}
. Figure 3 shows results at t = 0.4, just after the

pulse peak and before the delivered heat had sufficient time to diffuse through the microscale domain,
thereby highlighting the transient boundary-layer effects present in the microscale model. For all ε,
the profile of θ(·, t) is similar to the profile of θb, reflecting that, for the homogenized solution, the
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Figure 3. Numerical solutions for experiments in Section 2.3.2 with ε = 1/7 (left), ε = 1/11
(middle), and ε = 1/15 (right). Shown are the macroscale solutions (top row), microscale
solutions (middle row), and solution profiles (bottom row), which are taken along the black
line depicted in the top and middle rows. In the middle row, we clip the color scale for θε(x)
at 0.25 to facilitate comparison of the macroscale and microscale plots.

effect of θb is distributed evenly within its support in Ωbody. However, the microscale solution θε shows
large spikes, where ∂Qε is within the support of θb, which appear because the heat builds up along ∂Qε

faster than it can dissipate into Ωε. As ε→ 0, the overall profile of θε increasingly resembles that of θ,
although localized oscillations near the micro-interfaces remain visible.

While the parameters in this example were chosen for illustration rather than realism, time-
dependent effects of this kind may naturally arise in physiological settings. This example thus aims to
illustrate potential limitations of the postulated time-varying extension given by equations (2.5) when
very strong transients are present.
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Table 3. Stages and symptoms of hypothermia; adapted from [30].

v ◦C stage symptoms
33 to 35 mild muscle weakness, disorientation, extreme vasoconstriction, and shivering
32 to 33 moderate diminished cardiac output, breathing rate, and shivering
30 to 32 severe loss of consciousness, imperceptible pulse, shivering stops
28 to 29 death cardiac fibrillation, usually resulting in death

Table 4. Heat production sources as in [25].

source energy contribution
basal 85 W

shivering [0, 350] W
physical activity [0, 1200] W

3. Temperature regulation in the human body

In this section, we summarize physiological mechanisms involved in human thermoregulation and
specifically in the body’s responses to cold exposure. We also clarify limitations of existing models
and motivate the need for our new model to involve the thermal regulation in the body coupled to that
in the extremities (hands and feet) when exposed to the cold.

3.1. Realistic thermal conditions for a human body

We first provide some background based on [25, 30]. The average human body temperature θ(t) is
around ≈ 37 ◦C in its core, a situation known as normothermia. The body cannot tolerate large changes
away from normothermia.

In particular, the condition of hyperthermia, when θ ≥ 38 ◦C [25], may lead to life threatening heat
stroke. In turn, if θ drops below 35 ◦C, the body enters hypothermia, which is of particular interest in
this paper. In Table 3, we recall physiological details of this condition.

3.2. General mechanisms of thermoregulation

Now, we revisit the terms in (2.1) as they relate to thermoregulation. The human body attempts to
regulate its temperature θ by maintaining a stable heat content S (t) =

∫
V

cρθ in some arbitrary control
volume V , where c = c(x) and ρ = ρ(x), when V contains different tissue types. This is done by
balancing metabolic heat production M within V , represented in (2.1) by its density f , against the
heat transfer due to conductive fluxes K = −k∇θ and convective fluxes C = qθ across ∂V; those
fluxes associated with the perfusion and blood flow are represented in (2.1) through the exchange term
Ab(θ−θb), with q ≈ ωb. When in contact with the environment, there is also radiation R and evaporation
E, represented by boundary conditions [25, 30, 31, 32]. In this paper, we are most interested in the
connection between different portions of S (t) and its regulation in the body and in the extremities in
near hypothermia conditions.

Heat is brought to the skin by conduction and convection via cutaneous blood flow, with flow rates
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Table 5. Blood flow rates ωb in the hand, foot, and skin, compared to total cardiac output,
i.e., the total flow rate leaving the heart. Basal rates are for the body at rest during normoth-
ermia. Minimal and maximal rates correspond to extreme hypothermia and hyperthermia,
respectively. Units are L min−1.

hand foot skin total cardiac output
basal 0.026 0.024 0.25 5

minimal 0.0015 0.0017 6 to 8 2.5
maximal 0.11 0.15 ∼0 13

given in Table 5. In normothermia, the skin dissipates heat at a rate of ∼100 W, roughly matching the
basal (typical) metabolic rate M [33]. In hyperthermia, the skin blood flow and sweating increase E
until the heat generation and dissipation are equal [33]. For example, a sweat rate of 1 L hr−1 leads to
E at a rate of 675 W [30].

Hypothermia results if M < E+R+C+K for some time; see Table 3. To prevent hypothermia during
cold exposure, the body reduces skin blood flow rate in order to limit R and C, which together con-
stitute about 75% of heat loss [33, 27]. The body also initiates shivering and behavioral changes, i.e.,
increased physical activity [25, 30]; see Table 4. However, the disorientation at even mild hypothermia
may lead to a cessation of physical activity, and the loss of consciousness below 32 ◦C is accompanied
by both complete cessation of shivering and physical activity [30], underscoring that survival of an
individual exposed to the cold requires maintaining θ in a narrow window.

3.3. Heat regulation in the core and in the extremities (hands and feet)

Now we discuss different portions of Ωbody. To regulate the core body temperature in addition to the
mechanisms listed in Section 3.2, the body utilizes cutaneous blood flow to facilitate environmental
energy exchange prevalent in the extremities. The extremities (hands and feet) substantially facilitate
this thermal regulation, especially when the body’s core is insulated with protective clothing.

The hands and feet are excellent radiators, evaporators, and insulators, having a significantly larger
surface-area-to-mass ratio (980 cm2 kg−1) compared to that of the body (240 cm2 kg−1) [23]. Special-
ized vasculature allows a wide range of volumetric blood flow rates within the hands and feet, which
allows a wide range of energy exchange rates with the environment; see Tables 5 and 6.

Therefore, we focus on the coreΩcore (trunk, head, and limbs) and the extremities (hands and feet)Ω
(note that we use no subscript for simplicity of subsequent notation). We set

v(t) ≈ ⟨θ(·, t)⟩Ωcore , u = θ|Ω. (3.1)

We provide an illustration in Figure 4.
We are primarily interested in the energy exchange between v = v(t) and u = u(x, t), x ∈ Ω. In

model development, we first argue that the heat transfer within Ωcore is fast relative to that in Ω, so that
it makes sense to neglect the effects of heat conduction in Ωcore. Second, we believe it is important to
model temperature in Ω pointwise, since the extremities are particularly susceptible to the cold due to
their distance from the body core and the fact that the hands and feet have little ability to generate heat
locally [23].
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Table 6. Maximal and minimal energy dissipation rates in the hand and foot [23] with units
of W. Rates for R and C correspond to a 1 ◦C difference between tissue and air.

hand foot
Maximal R and C 6.0 8.5
Minimal R and C below 0.1 below 0.1

Maximal E 67 46
Minimal E below 0.1 below 0

3.4. Reaction of the body to significant cold exposure

During cold exposure, the body aims to protect its core from hypothermia by drastically reducing
the blood flow within the extremities. In particular, this process limits the cooling effects of severely
cooled blood returning from extremities. However, this strategy creates the risk of a cold-induced
injury called frostbite caused by tissue freezing [34], which can develop in a matter of minutes or even
seconds [30].

The reduction of blood flow follows from cutaneous vasoconstriction of two forms:

1. Reflex vasoconstriction. Signals from thermoreceptors in the skin, deep body tissue, and brain
aggregate in the posterior hypothalamus, triggering whole-body reflex vasoconstriction, resulting
in a systemic reduction of blood flow to the skin and extremities [27, 31, 35]. Venous compliance
(“stretchiness”) allows storage of blood in deep-body veins during reflex vasoconstriction [23].

2. Local vasoconstriction. Local cooling causes local vasoconstriction, which is mediated by several
pathways, both neuronal and non-neuronal [31, 33, 35]. In particular, local vasoconstriction is
mediated in part by paracrine (“local, non-neuronal”) signaling within the tissue itself, and thus
does not necessarily require input from the nervous system [35].

Reflex and local vasoconstriction accelerate the onset of frostbite by depriving skin of its main heat
source (i.e., cutaneous blood flow) [34]. In fact, in [23], the authors demonstrate experimentally that
reflex (whole-body) vascular control dominates local vascular control; in particular, for v < 37.0 ◦C,
the blood flow through the hand is depressed compared to normal, and increases only slightly as hand
temperature ⟨u⟩Ω is increased from 6.0 to 40.1 ◦C.

Below we postulate a model of the dynamics between u(x, t) and v(t).

4. Proposed PDE-ODE model for thermoregulation

The bioheat transfer model (2.1) describes the connection between the tissue temperature θ(x, t)
and the convective effects of blood with temperature θb flowing through microvasculature embedded
in the tissue. In this paper, we extend this model by focusing on the evolution of, and the relationship
between, the local tissue temperature in the extremities and the core body temperature, as driven by
thermoregulatory responses to extreme cold that substantially alter blood flow patterns. We postulate
our model based on the observations from physiological literature recalled in Section 3.
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Figure 4. Illustration of blood flow between the body’s core and an extremity (hand). ∂Ωwrist

represents the connection between the hand and the core; ∂Ωair represents the portion of the
hand exposed to the air. The red arrow shows warm blood flowing to the hand; the blue arrow
shows cooled blood returning to the core.

4.1. Two-compartment model

We consider the decomposition of the human bodyΩbody = Ωcore∪Ω into two compartments, where
Ω is a set of extremities (hands and feet). For simplicity, we only consider one extremity, the hand Ω.
We also treat the core Ωcore as a zero-dimensional compartment.

Recalling (3.1), we now postulate the model for the local tissue temperature in the hand u : Ω× J →
R and the core body temperature v : J → R, which together describe the thermoregulatory response to
extreme cold, including the resulting substantial change in blood flow patterns. The model we propose
extends (2.1) to a system with nonlinear terms; these extend our previous work [14] on the scalar
model.

We consider the following initial boundary value problem for the nonlinear extension of (2.1)

c(x)∂tu − ∇ · (k(x)∇u) + r(x, t, u, v) = f , in Ω × J, (4.1a)

k(x)
∂u
∂n
= α(x, t, u, v), on ∂Ω × J, (4.1b)

u(x, 0) = uinit, x ∈ Ω. (4.1c)

In turn, we postulate that the function v = v(t) satisfies

κ
dv
dt
+ s(t, v, ⟨u⟩Ω) = g, 0 < t ≤ T, (4.2a)

v(0) = vinit. (4.2b)

Based on the discussion in Section 3.3, we disregard conduction in Ωcore, assuming it is dominated by
the blood flow, and so the average temperature v(t) only responds to the average temperature ⟨u⟩Ω in
the hand, while it provides the source of blood temperature in the hand. These are modeled by the
coupling terms r(·) in (4.1), s(·) in (4.2a), and the boundary term α(·) in (4.1b), which are given below.

The coupling terms r(·), s(·) aim to capture the key features of physiologically realistic energy
exchange in the underlying biological system including the vasoconstriction, core-to-extremity heat
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Figure 5. Illustration of activation functions from Section 4.2. Left: plot of σramp(uL, uR; u),
σramp(vL, vR; v) with uL, uR, vL, vR as in Table 7. Right: comparison between σsmooth(û1, u0; u)
and σsmooth(û2, u0; u) against σramp(uL, uR; u). Here, u0 =

1
2 (uL + uR) and û1 is chosen to

minimize the L2 error between σsmooth(û1, u0; u) and σramp(uL, uR; u), and û2 := 4 û1.

exchange, and extremity-to-environment heat exchange discussed in Section 3.3. These can be defined
in several ways, and we give some particular choices.

We note that our analysis of this system, which will appear in a future paper [21], allows other
choices as long as they satisfy certain smoothness, monotonicity, and bound properties. Our analysis
relies only on these mathematical properties rather than on the specific choices made here.

4.2. Auxiliary functions

We begin by defining auxiliary functions σ that satisfy

(P1) σ : R→ [0, 1] is Lipschitz continuous and monotonically non-decreasing on R, and
(P2) limx→+∞ σ(x) = 1 and limx→−∞ σ(x) = 0.

Let a < b, v ∈ R. We define the ramp-like function σramp(a, b; v)

σramp(a, b; v) =
v − a
b − a

H(v − a) −
v − b
b − a

H(v − b),

where H is the Heaviside step function.
Let also v̂ > 0, v0 ∈ R and define σsmooth(v̂, v0; v) based on the logistics function

σsmooth(v̂, v0; v) =
1

1 + e−v̂(v−v0) ,

which is a smooth approximation of σramp(a, b; v) if v0 =
a+b

2 .
Clearly, each σramp(a, b; v) and σsmooth(v̂, v0; v) satisfies (P1) and (P2). In addition, σsmooth(v̂, v0; v)

is smooth with the Lipschitz constant dependent on v̂. The ramp model reduces to a constant on
(−∞, a] ∪ [b,∞), but the smooth model does not, while it remains bounded. We illustrate these two
functions in Figure 5.
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4.3. Exchange terms

Now we identify physically motivated choices of r(·), s(·), and α(·). Let Ab = cbρbωb, and let Bb be
given, where typically Bb ≪ Ab to model the fact that the hand has a much smaller blood volume than
the rest of the body [23].

4.3.1. Constant coefficient model

Let
r(u, v) = Ab (u − v), s(⟨u⟩Ω, v) = Bb (v − ⟨u⟩Ω). (C)

This choice of r(·) is the same as in (2.1), and s(·) represents the linear Fourier condition.

4.3.2. Ramp models

Let uL < uR and vL < vR be given. We define three variants of r(·) and s(·).r = Ab σramp(vL, vR; v) (u − v),
s = Bb σramp(vL, vR; v) (v − ⟨u⟩Ω),

(R1)

r = Ab σramp(uL, uR; u) (u − v),
s = Bb σramp(uL, uR; ⟨u⟩Ω) (v − ⟨u⟩Ω),

(R2)

r = Ab σramp(uL, uR; u)σramp(vL, vR; v) (u − v),
s = Bb σramp(uL, uR; ⟨u⟩Ω)σramp(vL, vR; v) (v − ⟨u⟩Ω).

(R3)

The models (R1), (R2), and (R3) describe the effects of the body’s independent systemic and local
thermoregulation mechanisms described in Section 3.4.

In particular, the function r(·) in (R3) is the most general: if u(x, t) < uR at some x ∈ Ω, the heat
exchange between the tissue and blood is suppressed near that point. Similarly, the exchange of heat
is suppressed throughout Ω if v(t) < vR. In turn, s(·) in (R3) uses average hand temperature ⟨u⟩Ω to
approximate the temperature of the blood returning to the body from the hand. With this, we postulate
that reduced warm blood flow from the core to the hand corresponds to the reduced cooled return flow.
In fact, in experiments, we take Bb = 0.07Ab to account for the fact that the hand contains about 7% of
total blood volume [23].

The models (R1) and (R2) are special cases of (R3) when uR and vR are chosen significantly below
the expected range of u and v, respectively. Their use allows isolating the effects of the systemic or
local thermoregulation, respectively.

The models (R1) through (R3) reduce to case (C) when both u(x, t) > uR and v(t) > vR.

4.3.3. Smooth models

Let û, u0 and v̂, v0 be given. We define smooth versions of (R1), (R2), and (R3).r = Ab σsmooth(v̂, v0; v) (u − v),
s = Bb σsmooth(v̂, v0; v) (v − ⟨u⟩Ω),

(S1)
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227r = Ab σsmooth(û, u0; u) (u − v),
s = Bb σsmooth(û, u0; ⟨u⟩Ω) (v − ⟨u⟩Ω),

(S2)

r = Ab σsmooth(û, u0; u)σsmooth(v̂, v0; v) (u − v),
s = Bb σsmooth(û, u0; ⟨u⟩Ω)σsmooth(v̂, v0; v) (v − ⟨u⟩Ω).

(S3)

The term r(·) in (S3) behaves similarly to (R3) and models the effects of the exchange of heat
between Ωbody and Ω, which is significantly suppressed below vR, uR. The models (S1) and (S2) play
the same role for (R1) and (R2), respectively.

4.3.4. SHC model

Now we consider a heuristic model proposed in [17, 18], which we adopt to define the terms r(·)
and s(·); similar as in [20]. We use the acronym SHC to acknowledge the lead authors of these papers.
Here, the body attempts to maintain temperatures uset = 34 ◦C, vset = 37 ◦C in Ω, Ωcore; this is achieved
based on the sensors distributed throughout these compartments. We define

∆v(t) = v(t) − vset(t) and ∆u(x, t) = u(x, t) − uset(x, t),

and with this r = ρbcb ωs(u, v) (u − v),
s = 0.02ρbcb ωs(⟨u⟩Ω, v) (v − ⟨u⟩Ω),

(SHC)

where
ωs(u, v) =

ω0 + 0.134 DI
1 +CS

,

where ω0 = 4.39 × 10−4 s−1 is the normothermic blood flow rate, and the vasodilation term DI and
vasoconstriction term CS are given by

DI = max{0, 28424∆v + 4870∆u},

CS = max{0,−1.1(∆v + 3∆u)}.

We note that we copied verbatim the specific coefficient values in the functions DI, CS , and ωs from
[20].

4.4. The model for the boundary conditions on ∂Ω

It remains to define α(·) in (4.1b). We partition ∂Ω as ∂Ω = ∂Ωwrist ∪ ∂Ωair, where ∂Ωwrist and ∂Ωair

represent the disjoint portions of the boundary of the hand connected to the wrist and exposed to the
air, respectively.

In this paper, we consider a linear Robin boundary condition based on Robin conditions

α(x, t, u, v) =

awrist(u − v), on ∂Ωwrist × J,

aair(u − uair), on ∂Ωair × J,
(4.3)

where awrist, aair > 0 and uair ∈ R.
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4.5. Model summary

The model (4.1)-(4.2) with any of the choices (C) through (S3) complemented by the choice of α in
(4.3) is now complete.

5. Numerical results

In this section, we set up and carry out numerical experiments to illustrate the model’s dynamic
response with physiologically motivated parameters.

5.1. Numerical experiments

Now we conduct simulations designed to illustrate the effects of different choices of energy ex-
change terms r(·), s(·), α(·).

We consider the following base scenario from a hypothetical real-life situation: A mountaineer in
uair = −40 ◦C attempts self-rescue having lost a glove. We set uinit = 34 ◦C and vinit = 37 ◦C and
metabolic rate g = 700 W m−3, which is consistent with extensive shivering combined with moderate
physical activity [25]. In this scenario, frostbite (i.e., u < 0) should begin within minutes [30], but the
core body temperature should remain in a survivable range (i.e., 30 < v < 37) for all t ∈ (0, T ], where
T = 40 min.

5.1.1. Model data

We let Ω ⊂ R2 be a hand-shaped domain of diameter ≈ 24 cm in height obtained from a photo of
one of the authors’ hands; see Figure 6. We also have ∂Ω = ∂Ωwrist ∪ ∂Ωair partitioned as

∂Ωwrist = {(x, y) ∈ ∂Ω : y = 0},
∂Ωair = ∂Ω \ ∂Ωwrist.

We use coefficients from Table 7 and boundary condition (4.3).

5.1.2. Model discretization

In each simulation, we approximate the solution (u, v) to (4.1), (4.2) by (U,V) obtained by discretiz-
ing (4.1), (4.2) using P1 Galerkin finite elements and backward Euler timestepping on a triangulation
Th of Ω created by Gmsh with h ≈ 2−8 (12,081 elements with minimum interior angle of 34◦) and
τ = 1 s (NT = 2400). The time step is chosen for the reason of accuracy to be studied in [21]. Solu-
tions were generated using backslashPDE2d, a MATLAB software package written by the authors.

5.1.3. Solving the nonlinear system

We resolve the nonlinearity in (4.1), (4.2) by Newton’s method with iteration lagging. That is, for
(Un,k,Vn,k) representing the k-th iteration of the n-th timestep, we set (Un,0,Vn,0) = (Un−1,Vn−1) where
(Un−1,Vn−1) represents the resolved solution at the previous timestep. We iterate so that, in the k-th
iteration, Vn,k−1 is used to find Un,k, and Un,k is subsequently used to find Vn,k. We stop the Newton
iteration when the absolute error in the L2 norm is below 10−10.

In practical simulations, we also impose the constraint v ≤ v∗ := 37 ◦C through a constraint operator
that is equivalent in implementation to the use of a Lagrange multiplier; see, e.g., [36, 37].

Mathematical Biosciences and Engineering Volume 23, Issue 1, 210–241.



229

Figure 6. Illustration of Ω with h = 1 cm.

5.1.4. Postprocessing the solution

After the simulation is completed, we mark element K as frostbitten if ⟨U(t)⟩K < 0 for any tn = nτ ∈
J. For each tn ∈ (0,T ], we define

F (tn) := {K ∈ Th : ⟨U(tn)⟩K < 0} ,

and we denote the fraction of cells that are frostbitten at time tn ∈ (0,T ] by

ϕFB(tn) :=
∑

K∈F (tn) |K|
|Ω|

. (5.2)

5.1.5. Comparison of (C) and (R3)

We first set r(·), s(·) as in case (C) or as in case (R3); see Section 4.2.
In case (C), v(t) traces ⟨u(t)⟩Ω closely since there is no regulation of energy exchange between

the core and extremity compartments. By contrast, in (R3), an initial drop in v(t) throttles energy
exchange, allowing v(t) to recover due to metabolism but causing slightly higher ϕFB(t), cf. (5.2), and
lower ⟨u(t)⟩Ω at each t ∈ (0,T ]. These results are shown in Figure 7.

We comment now on the practical significance of these simulations. While we are not aware of
controlled studies of the body’s reaction to this scenario, there are case studies from extreme sports
accidents wherein an athlete’s hand is exposed to extreme cold while the core remains well-insulated,
for example [38, 39, 40]. In these works, athletes were accidentally exposed to ucold = −3,−25, or
−30 ◦C for 30 minutes or more. In all cases, the athlete survived the ordeal but sustained moderate
to severe frostbite injuries, some requiring amputation. While solutions to models (R3) and (C) both
exhibit extensive frostbite, the extreme and rapid drop in v(t) shown in model (C) does not agree with
such clinical observations.

5.1.6. Comparison of (R1), (R2), and (R3)

We now compare the different ramp coefficient models by setting r(·), s(·) as in cases (R1), (R2), or
(R3).

Mathematical Biosciences and Engineering Volume 23, Issue 1, 210–241.



230

Table 7. Coefficients for experiments in Section 5 and 6. Empirical parameters are those
taken directly from literature. Semi-empirical parameters are those that are chosen from a
range of literature values; for example, g = 700 W m−3 is a heuristic choice, but is chosen
from within the range of metabolic heat generation rates reported in [25]. Ad hoc parameters
are unique to this model and are therefore not available from literature but rather are chosen
by us.

Coefficient Value Units Motivation

E
m

pi
ri

ca
l

ctissue 3.5 × 103 J kg−1 ◦C−1 heat capacity, muscle [24]
cb 3617 J kg−1 ◦C−1 heat capacity, blood [24]
k 0.42 W m−1 ◦C−1 thermal conductivity, muscle [24]
ρb 1050 kg m−3 density of blood [24]
ωb 1.1 × 10−3 s−1 normothermic hand blood flow rate [23]
Ab cbρbωb W m−3 ◦C−1 coefficient from Pennes equation [1]

Se
m

i-
E

m
pi

ri
ca

l u0 34 ◦C approximate mean skin temperature [23]
v0 37 ◦C normothermic deep body temperature [23]
f 0 W m−3 hands produce little internal heat [23]
g 700 W m−3 maximal shivering metabolic heat generation rate [25]

aair 136 W m−2 ◦C−1 energy dissipation coefficient from [23]
uair −40 ◦C external temp. where exposed skin freezes in seconds [30]

A
d

H
oc

u1 10 ◦C little or no local blood flow for u < 10 ◦C skin temp. [30]
u2 32 ◦C presumed normothermic local blood flow for u > 32 ◦C
v1 28 ◦C presumed cessation of extremity blood flow for v < 28 ◦C
v2 37 ◦C presumed normothermic extremity blood flow for v = 37 ◦C

awrist 100 W m−2 ◦C−1 ad hoc, see Section 6.4
Bb 0.07 Ab W m−3 ◦C−1 ad hoc, see Section 6.5

Cases (R2) and (R3), in which control of energy exchange involves u, perform similarly in terms
of v(t), ⟨u(t)⟩Ω, and ϕFB(t). For both cases (R2) and (R3), v(t) → v0 after a brief drop away from this
temperature. However, the two cases are not identical; for example, the minimum value of v(t) is 35.9
◦C for case (R2) and 35.7 ◦C for (R3).

By contrast, case (R1) displays a quite different behavior with v(t) → vL asymptotically. This
phenomenon is explained as follows: In (R1), energy exchange is controlled by v alone, and so energy
continues to flow from the core to the extremity even as ⟨u(t)⟩Ω drops, causing v(t) to decrease in turn,
until v(t) drops low enough to stop energy exchange. These results are shown in Figure 8.

5.1.7. Comparison of (R3) and (S3)

We now set r(u, v) and s(⟨u⟩Ω, v) as in either (R3) or (S3). In order to demonstrate that (S3) performs
similarly to (R3), we choose û = û1 to minimize the functional

J(ξ) :=
∫
R

[
σramp(uL, uR; u) − σsmooth(ξ, u0; u)

]2
du, (5.3)
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Figure 7. Comparison of simulation results for cases (C) and (R3) for the example in Sec-
tion 5.1.5. Shown are a plot of v(t) and ⟨u(t)⟩Ω (left), u(x, t) at t = T (middle), and F at t = T
(right).

where uL, uR are given in Table 7 and u0 := 1
2 (uL + uR) ensures that σramp and σsmooth have the same

half-maximum point, i.e., that σramp(uL, uR; u∗) = 1
2 and σsmooth(û, u0; u∗) = 1

2 for the same u∗. We
choose v̂ = v̂1 and v0 similarly. We call these choices (S3fit). We also choose û2 = 4 û1 and v̂2 := 4 v̂1,
which we call (S3steep). These choices are summarized in Table 8. See Figure 5 for illustration. All
other parameters are chosen as in Table 7.

The plots of ⟨u(t)⟩Ω and ϕFB(t) are indistinguishable for (R3), (S3fit), and (S3steep). However, while
the plots of v(t) for these cases exhibit the same trend, v(t) → v0 fastest for (S3steep) and slowest for
(S3fit). See Figure 9. These results suggest that, as expected, the specific choice of σ has an influence
on the solutions of the model.

5.2. Comparison to physiological data

We now compare the simulation results of our model results to the experimental data presented in
[20, 41]. In the experiments reported in these papers, test subjects sat in a 0.5± 0.5 ◦C environment for
120 min while wearing heavy, insulating clothing on their entire body (including face and head), but
with their hands exposed. This condition closely matches the scenario our model is meant to simulate.
Temperature sensors were placed at various locations on the subjects’ bodies, including a sensor on the
back of the hand and on the ring finger. Body core temperature was also recorded.

For our simulations, we set uinit = 34 ◦C, vinit = 37 ◦C, and g = 350 W / m3, which is consistent
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Figure 8. Comparison of simulation results for cases (R1), (R2), and (R3) for the example
in Section 5.1.6. Shown are v(t) (left), ⟨u(t)⟩Ω (middle), and ϕFB(t) (right).

Table 8. Parameters chosen to specify cases (S3fit) and (S3steep). The value v̂1 minimizes
functional (5.3), for vL, vR as in Table 7 and v0 := 1

2 (vL + vR). The value v̂2 := 4v̂1. The values
û1, û2, and u0 are chosen similarly.

parameter (S3fit) (S3steep)
v̂ v̂1 = 0.58901 v̂2 = 2.3561
û û1 = 0.24096 û2 = 0.96384
v0 32.5 32.5
u0 21.0 21.0

with moderate shivering at rest; see Table 4. We use boundary and initial conditions, mesh (including
h), and τ as described in Section 5.1.1. We set r(·) and s(·) according to either (R3) or (SHC). All other
coefficients are as in Table 7. Lastly, we let uair = 0.5 ◦C and T = 120 min (NT = 7200).

In Figure 10, we report v(t) as well as ⟨u⟩Ωhand and ⟨u⟩Ωfingers where Ωfingers is the portion of Ω corre-
sponding to the fingers and Ωhand = Ω \Ωfingers. Within Ωcore, both (R3) and (SHC) maintain v(t) within
the reported physiological ranges.

WithinΩhand, both (R3) and (SHC) overestimate ⟨u(t)⟩Ωhand relative to reported physiological ranges.
This may be in part due to the decision to average the temperature across this region, which includes
temperatures near the wrist, which is maintained near 34 ◦C throughout the simulation due to the
boundary condition on ∂Ωwrist.

Lastly, within Ωfingers, model (SHC) maintains ⟨u(t)⟩Ωfingers at temperatures significantly closer to the
reported physiological ranges than does model (R3), which consistently underestimates temperatures
from about t = 10 min onward.

6. Sensitivity of the model

In this section, we illustrate the sensitivity to different data of the model (4.1), (4.2) with r(·) and
s(·) given either by cases (C) or (R3) and boundary condition (4.3). Except when indicated, we use
initial and boundary conditions and discretization as given in Section 5 and use parameters as given in
Table 7. We enforce that v ≤ v∗ := 37 ◦C; see Section 5.1.3.
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Figure 9. Comparison of simulation results for cases (R3), (S3fit), and (S3steep) for the exam-
ple in Section 5.1.7: plots of v(t) (left), ⟨u(t)⟩Ω (middle), and ϕFB(t) (right).

We often observe
lim
t→∞

(⟨u(t)⟩Ω, v(t)) = (ucold, vcold) (6.1)

where, despite the tendency of the exterior boundary temperature uair to draw both ⟨u⟩Ω and v down to
uair, the persistent source term g injects enough heat that the eventual state lies strictly above uair:

uair < ucold < 0, uair < vcold < 0.

The actual value of ucold, vcold depends on the particular choice of parameters and initial data in each
experiment; our aim in this section is to study the trend exhibited on the way toward equilibrium,
rather than any specific equilibrium value. Hence, we do not specify (ucold, vcold) and simply regard this
pair as a “cold-state” equilibrium induced by the source g. Note also that (6.1) is only a hypothetical
equilibrium since the model becomes irrelevant once v(t) < 28 ◦C in real world applications.

6.1. Different domains Ω

In this section, we study the dependence of the results on the particular hand geometry. We obtain
photographs of four hands of various sizes and process each to be used as domain Ω. We refer to these
as (G1) through (G4), numbered from smallest to largest total area; see Figure 11 for illustration and
Table 9 for details. For each case, we use model (R3) for r(·) and s(·) as well as parameters from
Table 7.

In these simulations, the smaller domains (G1) and (G2) were associated with lower ⟨u(t)⟩Ω and
higher ϕFB(t) but also with higher v(t) at each t. The larger domains (G3) and (G4) showed the opposite
trend. This suggests that domain size does influence model performance. However, the highest ⟨u(t)⟩Ω
and lowest v(t) were actually associated with geometry (G3), not (G4), suggesting that domain shape
may also matter. These results are shown in Figure 12.

6.2. Varying initial conditions

We either fix uinit and vary vinit or vice versa. Specifically, we fix uinit = 35 and test with vinit ∈

{5, 10, 15, 20, 25, 30, 35}. We also consider uinit ∈ {5, 10, 15, 20, 25, 30, 35} and vinit = 5. With these
initial conditions, we simulate the model (4.1), (4.2).
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Figure 10. Comparison of models (R3) and (SHC) with data from literature for the scenario
in Section 5.2. Error bars indicate ranges of experimentally obtained data, transcribed manu-
ally from [20, Figures 5 and 6]. Shown are (a) v(t) and data from the sensor in the body core
(top group, in blue); (b) ⟨u(t)⟩hand and data from the sensor on the back of the hand (middle
group; in green); (c) ⟨u(t)⟩fingers and data from the sensor on the finger (bottom group, in red).

Table 9. Geometry data for (G1) through (G4).

height cm width cm
(G1) 17 10.5
(G2) 19 14.5
(G3) 22 15.5
(G4) 24 20

For all choices of (uinit, vinit), we observe (⟨u⟩Ω, v) → (ucold, vcold) for case (C) and (⟨u⟩Ω, v) →
(ucold, v∗) for case (R3). Figure 13 shows these results.

6.3. Varying metabolic rate

We test the seven cases corresponding to g = {200n : n ∈ N and 0 ≤ n ≤ 6}. These values represent
the entire range of physiologically realistic values of g; see Table 4.

For case (C), (⟨u⟩Ω, v)→ (ucold, vcold), independent of the choice of g. Without the ability to regulate
core-extremity exchange, energy flows from body to hand to environment at a rate greater than can be
replaced by g for any of the tested values of g.

In case (R2), when g > 0, (⟨u⟩Ω, v) → (ucold, v∗). We observe an initial drop in v(t), triggering a
reduction of core-extremity exchange, allowing v(t)→ v∗ due to g. But v(t) reaches a lower minimum
and takes longer to recover when g is smaller. When g = 0, (⟨u⟩Ω, v) → (ucold, veq), veq ≈ 34.9 ◦C.
Here, the core-extremity exchange is shut off and there is no heat input. So v(t) neither recovers toward
v∗ nor drops all the way to vcold.

Figure 14 shows these results; note that the vertical axes on the left and right are not set to the same
scale.
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Figure 11. Plots of u(x, T ) for geometries (G1) through (G4) in Section 6.1.

Figure 12. Plots of v(t) (left), ⟨u(t)⟩Ω (middle), and ϕFB(t) (right) comparing simulations on
geometries (G1) through (G4) for the example in Section 6.1. The cutaway zooms in on the
region of interest, expanding the v-axis to highlight local behavior.

6.4. Varying awrist

To specify the boundary conditions when ∂Ωwrist , ∅, we must specify awrist. However, to our
knowledge, an appropriate range for awrist does not exist in the literature; the choice is at present ad
hoc. Here, we demonstrate that the model is not very sensitive to the choice of awrist.

We set the coefficient awrist to be one of {0, 10, 102, 103, 104, 105, 106} and plot the corresponding
results in Figure 15. We observe that, although awrist has a strong local influence on u(x, t) near ∂Ωwrist,
it appears to have almost no influence on the dynamics between v and ⟨u⟩Ω as shown in Figure 16; note
that the vertical axes on the left and right are not set to the same scale.

6.5. Varying Bb

To specify model (4.1), (4.2) with r(·) and s(·) given by any choice of (C), (R1) through (R3), or
(S1) through (S3), we must choose Bb, which determines the strength of the coupling in (4.2). As in
Section 6.4, this choice is ad hoc. Here, we demonstrate that the performance of the model is sensitive
to the choice of Bb.

We let Bb = µAb where µ ∈ {2n/5 : n ∈ N and 0 ≤ n ≤ 5}.
For case (C), (⟨u⟩Ω, v)→ (ucold, vcold) as t → ∞ for any Bb > 0. Note though that when B = 0, v = v∗

throughout the simulation, as (4.2) no longer depends on ⟨u⟩Ω.
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Figure 13. Phase plot of v against ⟨u⟩Ω illustrating sensitivity to initial conditions in
the example in Section 6.2. (Left) Trajectories starting from uinit = 35 and vinit =

{5, 10, 15, 20, 25, 30, 35}. (Right) Trajectories starting from uinit = {5, 10, 15, 20, 25, 30, 35}
and vinit = 5.

Figure 14. Phase plot of v against ⟨u⟩Ω illustrating sensitivity to g for the example in Sec-
tion 6.3. Markers (a) through (g) correspond to the values g = 0 through g = 1200. (Left)
Trajectories for case (C). (Right) Trajectories for case (R3).

For case (R2), we see (⟨u⟩Ω, v) → (ucold, v∗), with a drop in v(t) leading to a reduction of core-
extremity exchange, and a subsequent recovery of v → v∗. But the trajectories show significant sensi-
tivity to Bb, with lower minima and longer recovery times associated with greater values of Bb.

Figure 17 presents these results. It is interesting to note that, physiologically, the difference between
a small and large value of Bb corresponds to the difference between an unpleasant experience and a
life-threatening one.

7. Summary and conclusion

In this paper, we presented a new coupled PDE-ODE bioheat model for simulating the thermoreg-
ulatory interaction between core body temperature and extremity temperature during cold exposure,
with specific application to hypothermia and frostbite. The PDE describes transient heat conduction
in an extremity, while the ODE models spatially averaged core temperature. The model incorporates
nonlinear, physiologically motivated coupling terms representing local and reflex vasoconstriction, as
well as environmental heat exchange.
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Figure 15. Plot of u(x, t) in Ω at t = T for awrist = 10 (left), awrist = 103 (center), and
awrist = 106 (right) for the example in Section 6.4.

Figure 16. Phase plot of v against ⟨u⟩Ω illustrating insensitivity to awrist for the example in
Section 6.4. Trajectories for the values awrist = 0 through awrist = 106 are plotted, but no at-
tempt has been made to label individual curves, as these curves are too close to disambiguate,
despite orders of magnitude difference in awrist. (Left) Trajectories for case (C). (Right) Tra-
jectories for case (R3).

Our numerical results illustrated the model’s ability to reproduce physiologically realistic scenar-
ios. We compared different coupling laws (constant, ramp, smooth, SHC) which, in particular, demon-
strated the need for nonlinear coupling to obtain physiologically realistic simulations. We also con-
ducted sensitivity studies to explore the impact of geometric variation, initial conditions, metabolic
heat production, and coupling/boundary parameters. These studies showed that while some ad hoc
parameters (e.g., awrist in (4.3)) have minimal influence, others (e.g., Bb in (C), (R1) through (R3), and
(S1) through (S3)) can dramatically alter outcomes.

The proposed framework thus provides a physiologically relevant tool for studying cold-induced
injuries. We also see potential for extensions.

First, our model could be extended to include more than one compartment and extremity.
Second, in our simulations, we restricted attention to relatively simple forms of the nonlinear cou-

pling and to linear (Robin) boundary conditions. But the model could be further developed to account
for additional physiological details and to include radiation boundary conditions.

Third, the parameter Bb is at present entirely ad hoc. Given the sensitivity to this parameter that we
have demonstrated in Section 6.5, further study is warranted.
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Figure 17. Phase plot of v against ⟨u⟩Ω illustrating their sensitivity to Bb in the example in
Section 6.5. Left: trajectories for case (C). Right: trajectories for case (R3). Markers (a)
through (f) correspond to the values Bb = 0 through Bb = 2Ab.

Finally, we note that in a forthcoming paper [21], under certain reasonable assumptions on the data
and coefficients, we prove a stability estimate for this model and also for a P1 Lagrange finite element
discretization of the model with backward Euler time stepping. We also prove an a priori error estimate
for the discrete model, and provide numerical validation of the a priori estimate. We note that all of
the choices of r(·), s(·), and α(·) in the current paper meet the assumptions used in these proofs in [21].
Thus, our model is both physiologically relevant and mathematically rigorous.
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