Research article Special Issues

Behavior-induced oscillations in epidemic outbreaks with distributed memory: Beyond the linear chain trick using numerical methods

  • Received: 29 July 2025 Revised: 16 October 2025 Accepted: 18 November 2025 Published: 28 November 2025
  • We considered a model for an infectious disease outbreak, when the depletion of susceptible individuals is negligible, and assumed that individuals adapt their behavior according to the information they receive about new cases. In line with the information index approach, we supposed that individuals react to past information according to a memory kernel that is continuously distributed in the past. We analyzed equilibria and their stability, with analytical results for selected cases. Thanks to the recently developed pseudospectral approximation of delay equations, we studied numerically the long-term dynamics of the model for memory kernels defined by gamma distributions with a general non-integer shape parameter, extending the analysis beyond what is allowed by the linear chain trick. In agreement with previous studies, we showed that behavior adaptation alone can cause sustained waves of infections even in an outbreak scenario, and notably in the absence of other processes like demographic turnover, seasonality, or waning immunity. Our analysis gives a more general insight into how the period and peak of epidemic waves depend on the shape of the memory kernel and how the level of minimal contact impacts the stability of the behavior-induced positive equilibrium.

    Citation: Alessia Andò, Simone De Reggi, Francesca Scarabel, Rossana Vermiglio, Jianhong Wu. Behavior-induced oscillations in epidemic outbreaks with distributed memory: Beyond the linear chain trick using numerical methods[J]. Mathematical Biosciences and Engineering, 2026, 23(1): 76-96. doi: 10.3934/mbe.2026004

    Related Papers:

  • We considered a model for an infectious disease outbreak, when the depletion of susceptible individuals is negligible, and assumed that individuals adapt their behavior according to the information they receive about new cases. In line with the information index approach, we supposed that individuals react to past information according to a memory kernel that is continuously distributed in the past. We analyzed equilibria and their stability, with analytical results for selected cases. Thanks to the recently developed pseudospectral approximation of delay equations, we studied numerically the long-term dynamics of the model for memory kernels defined by gamma distributions with a general non-integer shape parameter, extending the analysis beyond what is allowed by the linear chain trick. In agreement with previous studies, we showed that behavior adaptation alone can cause sustained waves of infections even in an outbreak scenario, and notably in the absence of other processes like demographic turnover, seasonality, or waning immunity. Our analysis gives a more general insight into how the period and peak of epidemic waves depend on the shape of the memory kernel and how the level of minimal contact impacts the stability of the behavior-induced positive equilibrium.



    加载中


    [1] J. Bedson, L. A. Skri, D. Pedi, S. Abramowitz, S. Carter, M. F. Jalloh, et al., A review and agenda for integrated disease models including social and behavioural factors, Nat. Hum. Behav., 5 (2021), 834–846. https://doi.org/10.1038/s41562-021-01136-2 doi: 10.1038/s41562-021-01136-2
    [2] S. Funk, M. Salathé, V. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface, 7 (2010), 1247–1256. https://doi.org/10.1098/rsif.2010.0142 doi: 10.1098/rsif.2010.0142
    [3] Z. Wang, C. T. Bauch, S. Bhattacharyya, A. d'Onofrio, P. Manfredi, M. Perc, et al., Statistical physics of vaccination, Phys. Rep., 664 (2016), 1–113. https://doi.org/10.1016/j.physrep.2016.10.006 doi: 10.1016/j.physrep.2016.10.006
    [4] P. Manfredi, A. d'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer New York, 2013. https://doi.org/10.1007/978-1-4614-5474-8
    [5] V. Capasso, G. Serio, A generalization of the Kermack–McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
    [6] A. d'Onofrio, P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J. Theor. Biol., 256 (2009), 473–478. https://doi.org/10.1016/j.jtbi.2008.10.005 doi: 10.1016/j.jtbi.2008.10.005
    [7] A. d'Onofrio, P. Manfredi, Vaccine demand driven by vaccine side effects: Dynamic implications for SIR diseases, J. Theor. Biol., 264 (2010), 237–252. https://doi.org/10.1016/j.jtbi.2010.02.007 doi: 10.1016/j.jtbi.2010.02.007
    [8] A. d'Onofrio, P. Manfredi, E. Salinelli, Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theor. Popul. Biol., 71 (2007), 301–317. https://doi.org/10.1016/j.tpb.2007.01.001 doi: 10.1016/j.tpb.2007.01.001
    [9] A. d'Onofrio, P. Manfredi, Behavioural SIR models with incidence-based social distancing, Chaos Solit. Fractals, 159 (2022), 112072. https://doi.org/10.1016/j.chaos.2022.112072 doi: 10.1016/j.chaos.2022.112072
    [10] A. Andò, D. Breda, G. Gava, How fast is the linear chain trick? A rigorous analysis in the context of behavioral epidemiology, Math. Biosci. Eng., 17 (2020), 5059–5084. https://doi.org/10.3934/mbe.2020273 doi: 10.3934/mbe.2020273
    [11] I. M. Bulai, F. Montefusco, M. G. Pedersen, Stability analysis of a model of epidemic dynamics with nonlinear feedback producing recurrent infection waves, Appl. Math. Lett., 136 (2023). https://doi.org/10.1016/j.aml.2022.108455 doi: 10.1016/j.aml.2022.108455
    [12] B. Buonomo, R. Della Marca, Effects of information-induced behavioural changes during the COVID-19 lockdowns: The case of Italy, R. Soc. Open Sci., 7 (2020), 201635. https://doi.org/10.1098/rsos.201635 doi: 10.1098/rsos.201635
    [13] F. Montefusco, A. Procopio, I. M. Bulai, F. Amato, M. G. Pedersen, C. Cosentino, Interacting with COVID-19: How population behavior, feedback and memory shaped recurrent waves of the epidemic, IEEE Control Syst. Lett., 7 (2023), 583–588. https://doi.org/10.1109/LCSYS.2022.3204627 doi: 10.1109/LCSYS.2022.3204627
    [14] B. Buonomo, A. Giacobbe, Oscillations in SIR behavioural epidemic models: The interplay between behaviour and overexposure to infection, Chaos Solit. Fractals, 174 (2023), 113782. https://doi.org/10.1016/j.chaos.2023.113782 doi: 10.1016/j.chaos.2023.113782
    [15] S. S. Sharbayta, B. Buonomo, A. d'Onofrio, T. Abdi, 'Period doubling' induced by optimal control in a behavioral SIR epidemic model, Chaos Solit. Fractals, 161 (2022), 112347. https://doi.org/10.1016/j.chaos.2022.112347 doi: 10.1016/j.chaos.2022.112347
    [16] X. Zhang, F. Scarabel, K. Murty, J. Wu, Renewal equations for delayed population behaviour adaptation coupled with disease transmission dynamics: A mechanism for multiple waves of emerging infections, Math. Biosci., 365 (2023), 109068. https://doi.org/10.1016/j.mbs.2023.109068 doi: 10.1016/j.mbs.2023.109068
    [17] T. Cheng, J. Wu, Recurrent patterns of disease spread post the acute phase of a pandemic: Insights from a coupled system of a differential equation for disease transmission and a delayed algebraic equation for behavioural adaptation, Math. Biosci., 387 (2025), 109480. https://doi.org/10.1016/j.mbs.2025.109480 doi: 10.1016/j.mbs.2025.109480
    [18] A. d'Onofrio, P. Manfredi, M. Iannelli, Dynamics of partially mitigated multi-phasic epidemics at low susceptible depletion: Phases of COVID-19 control in Italy as case study. Math. Biosci., 340 (2021), 108671. https://doi.org/10.1016/j.mbs.2021.108671 doi: 10.1016/j.mbs.2021.108671
    [19] O. Diekmann, M. Gyllenberg, Equations with infinite delay: Blending the abstract and the concrete, J. Differ. Equ., 252 (2012), 819–851. https://doi.org/10.1016/j.jde.2011.09.038 doi: 10.1016/j.jde.2011.09.038
    [20] T. Cassidy, P. Gillich, A. R. Humphries, C. H. van Dorp, Numerical methods and hypoexponential approximations for gamma distributed delay differential equations, IMA J. Appl. Math., 87 (2022), 1043–1089. https://doi.org/10.1093/imamat/hxac027 doi: 10.1093/imamat/hxac027
    [21] M. Gyllenberg, F. Scarabel, R. Vermiglio, Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization, Appl. Math. Comput., 333 (2018), 490–505. https://doi.org/10.1016/j.amc.2018.03.104 doi: 10.1016/j.amc.2018.03.104
    [22] F. Scarabel, R. Vermiglio, Equations with infinite delay: Pseudospectral discretization for numerical stability and bifurcation in an abstract framework, SIAM J. Numer. Anal., 62 (2024), 1736–1758. https://doi.org/10.1137/23M1581133 doi: 10.1137/23M1581133
    [23] F. Scarabel, R. Vermiglio, Equations with infinite delay: Numerical stability via truncated Laguerre formulas, IFAC-PapersOnLine, 59 (2025), 105–110. https://doi.org/10.1016/j.ifacol.2025.10.019 doi: 10.1016/j.ifacol.2025.10.019
    [24] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer, B. Sautois, New features of the software MatCont for bifurcation analysis of dynamical system, Math. Comp. Model. Dyn. Syst., 14 (2008), 147–175. https://doi.org/10.1080/13873950701742754 doi: 10.1080/13873950701742754
    [25] D. Liessi, E. Santi, R. Vermiglio, M. Thakur, H. G. E. Meijer, F. Scarabel, New functionalities in MatCont: Delay equations and Lyapunov exponents, submitted for publication, arXiv, arXiv: 2504.12785.
    [26] O. Diekmann, F. Scarabel, Size-structured population dynamics, submitted for publication, arXiv, arXiv: 2411.16254.
    [27] G. Mastroianni, G. V. Milovanović, Interpolation Processes: Basic Theory and Applications, Springer Monogr. Math., Springer, Berlin, 2008. https://doi.org/10.1007/978-3-540-68349-0
    [28] J. A. Weideman, S. C. Reddy, A MATLAB differentiation matrix suite, ACM Trans. Math. Software, 26 (2000), 465–519. https://doi.org/10.1145/365723.365727 doi: 10.1145/365723.365727
    [29] L. Pellis, F. Scarabel, H. B. Stage, C. E. Overton, E. Christopher, L. H. K Chappell, et al., Challenges in control of COVID-19: Short doubling time and long delay to effect of interventions, Phil. Trans. R. Soc. B, 376 (2021), 20200264. https://doi.org/10.1098/rstb.2020.0264 doi: 10.1098/rstb.2020.0264
    [30] A. Bellen, S. Maset, Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems, Numer. Math., 84 (2000), 351–374. https://doi.org/10.1007/s002110050001 doi: 10.1007/s002110050001
    [31] H. Brunner, The numerical analysis of functional integral and integro-differential equations of Volterra type, Acta Numer., 13 (2004), 55–145. https://doi.org/10.1017/CBO9780511569975.002 doi: 10.1017/CBO9780511569975.002
    [32] B. Buonomo, E. Messina, C. Panico, Minimal epidemic models with information index: from compartmental to integral formulation, Boll. Unione Mat. Ital., 18 (2025), 1181–1202. https://doi.org/10.1007/s40574-025-00473-8 doi: 10.1007/s40574-025-00473-8
    [33] B. Buonomo, E. Messina, C. Panico, A. Vecchio, A stable numerical method for integral epidemic models with behavioral changes in contact patterns, Electron. Trans. Numer. Anal., 61 (2024), 137–156. https://doi.org/10.1553/etna_vol61s137 doi: 10.1553/etna_vol61s137
    [34] B. Buonomo, E. Messina, C. Panico, A. Vecchio, An integral renewal equation approach to behavioural epidemic models with information index, J. Math. Biol., 90 (2025), 8. https://doi.org/10.1007/s00285-024-02172-y doi: 10.1007/s00285-024-02172-y
    [35] A. Andò, R. Vermiglio, Exponential Runge–Kutta methods for delay equations in the sun-star abstract framework, Discr. Cont. Dyn. Syst. B, 30 (2025), 1842–1858. https://doi.org/10.3934/dcdsb.2024139 doi: 10.3934/dcdsb.2024139
    [36] A. Andò, R. Vermiglio, Exponential time integration for delay differential equations via pseudospectral discretization, IFAC-PapersOnLine, 58 (2024), 190–195. https://doi.org/10.1016/j.ifacol.2024.10.322 doi: 10.1016/j.ifacol.2024.10.322
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(120) PDF downloads(17) Cited by(0)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog