Research article

Mathematical modeling of the 2023 dengue outbreak in the Centre Region of Burkina Faso: Parameter estimation and assessment of control strategies

  • Received: 26 August 2025 Revised: 09 October 2025 Accepted: 22 October 2025 Published: 28 November 2025
  • Mathematical models are valuable tools in the fight against infectious diseases such as dengue. However, their use to guide public health strategies in sub-Saharan Africa, particularly in Burkina Faso, remains limited due to the scarcity of locally calibrated models. Moreover, no study has yet applied the African vulture optimization algorithm (AVOA) for dengue parameters in this context. In this study, we develop a compartmental model to evaluate the impact of control strategies on the 2023 dengue epidemic in the Centre Region of Burkina Faso. The model combines a susceptible–infected (SI) structure for the mosquitoes aquatic phase, a susceptible–exposed–infected (SEI) structure for adult mosquitoes, and a susceptible–exposed–infected–recovered (SEIR) framework for the human population. It incorporates key features, including vertical transmission in mosquitoes and a distinction between clinically detected and undetected human cases. After mathematical analysis, key epidemiological parameters were estimated by calibrating the model against weekly reported case data from June to December 2023 using AVOA. The basic reproduction number ($ \mathcal{R}_0 $) was estimated at 2.30, confirming the potential for sustained transmission. Sensitivity analysis identified the mosquito biting rate ($ b $), larval carrying capacity ($ k_A $), mosquito mortality ($ \mu_V $), and the recovery rate of undetected cases as the most influential parameters. Finally, numerical simulations assessed the impact of control measures recommended by the Ministry of Health of Burkina Faso. The results show that the effectiveness of dengue control strategies depends critically on their intensity and, most importantly, their duration, highlighting the need for integrated, intensive, and sustained vector control measures combined with individual protective actions for effective and long-term management of dengue transmission.

    Citation: Haoua Tinde, Wenddabo Olivier Sawadogo, Pegdwindé Ousséni Fabrice Ouedraogo, Adama Kiemtore. Mathematical modeling of the 2023 dengue outbreak in the Centre Region of Burkina Faso: Parameter estimation and assessment of control strategies[J]. Mathematical Biosciences and Engineering, 2026, 23(1): 40-75. doi: 10.3934/mbe.2026003

    Related Papers:

  • Mathematical models are valuable tools in the fight against infectious diseases such as dengue. However, their use to guide public health strategies in sub-Saharan Africa, particularly in Burkina Faso, remains limited due to the scarcity of locally calibrated models. Moreover, no study has yet applied the African vulture optimization algorithm (AVOA) for dengue parameters in this context. In this study, we develop a compartmental model to evaluate the impact of control strategies on the 2023 dengue epidemic in the Centre Region of Burkina Faso. The model combines a susceptible–infected (SI) structure for the mosquitoes aquatic phase, a susceptible–exposed–infected (SEI) structure for adult mosquitoes, and a susceptible–exposed–infected–recovered (SEIR) framework for the human population. It incorporates key features, including vertical transmission in mosquitoes and a distinction between clinically detected and undetected human cases. After mathematical analysis, key epidemiological parameters were estimated by calibrating the model against weekly reported case data from June to December 2023 using AVOA. The basic reproduction number ($ \mathcal{R}_0 $) was estimated at 2.30, confirming the potential for sustained transmission. Sensitivity analysis identified the mosquito biting rate ($ b $), larval carrying capacity ($ k_A $), mosquito mortality ($ \mu_V $), and the recovery rate of undetected cases as the most influential parameters. Finally, numerical simulations assessed the impact of control measures recommended by the Ministry of Health of Burkina Faso. The results show that the effectiveness of dengue control strategies depends critically on their intensity and, most importantly, their duration, highlighting the need for integrated, intensive, and sustained vector control measures combined with individual protective actions for effective and long-term management of dengue transmission.



    加载中


    [1] World Health Organization, Dengue – Global Situation, Disease Outbreak News, 2023. Available from: https://www.who.int/fr/emergencies/disease-outbreak-news/item/2023-DON498.
    [2] H. Abboubakar, A. K. Guidzavaï, J. Yangla, I. Damakoa, R. Mouangue, Mathematical modeling and projections of a vector-borne disease with optimal control strategies: A case study of the Chikungunya in Chad, Chaos, Solitons Fractals, 150 (2021), 111197. https://doi.org/10.1016/j.chaos.2021.111197 doi: 10.1016/j.chaos.2021.111197
    [3] M. Arquam, A. Singh, H. Cherifi, Impact of seasonal conditions on vector-borne epidemiological dynamics, IEEE Access, 8, (2020), 2995650. https://doi.org/10.1109/ACCESS.2020.2995650 doi: 10.1109/ACCESS.2020.2995650
    [4] M. A. Khan, Dengue infection modeling and its optimal control analysis in East Java, Indonesia, Heliyon, 7 (2021), e06023. https://doi.org/10.1016/j.heliyon.2021.e06023 doi: 10.1016/j.heliyon.2021.e06023
    [5] W. Wartono, M. Soleh, Y. Muda, Mathematical model of dengue control with control of mosquito larvae and mosquito affected by climate change, BAREKENG J. Ilmu Mat. Ter., 15 (2021), 417–426. https://doi.org/10.30598/barekengvol15iss3pp417-426 doi: 10.30598/barekengvol15iss3pp417-426
    [6] P. J. Witbooi, An SEIR model with infected immigrants and recovered emigrants, Adv. Differ. Equations, 2021 (2021), 1–15. https://doi.org/10.1186/s13662-021-03488-5 doi: 10.1186/s13662-021-03488-5
    [7] P. Pongsumpun, The dynamical model of dengue vertical transmission, Curr. Appl. Sci. Technol., 17 (2017), 48–61.
    [8] Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci. Numer. Simul., 121 (2023), 107221. https://doi.org/10.1016/j.cnsns.2023.107221 doi: 10.1016/j.cnsns.2023.107221
    [9] Y. Guo, T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283
    [10] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos, Solitons Fractals, 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
    [11] L. Zou, J. Chen, X. Feng, S. Ruan, Analysis of a dengue model with vertical transmission and application to the 2014 dengue outbreak in Guangdong Province, China, Bull. Math. Biol., 80 (2018), 2633–2651. https://doi.org/10.1007/s11538-018-0480-9 doi: 10.1007/s11538-018-0480-9
    [12] P. M. Luz, C. T. Codeço, E. Massad, C. J. Struchiner, Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil, Mem. Inst. Oswaldo Cruz, 98 (2003), 871–878.
    [13] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [14] Y. Dumont, F. Chiroleu, Vector control for the Chikungunya disease, Math. Biosci. Eng., 7 (2010), 313–345. https://doi.org/10.3934/mbe.2010.7.313 doi: 10.3934/mbe.2010.7.313
    [15] A. Khan, R. Zarin, I. Ahmed, A. Yusuf, U. W. Humphries, Numerical and theoretical analysis of rabies model under the harmonic mean type incidence rate, Results Phys., 29 (2021), 104652. https://doi.org/10.1016/j.rinp.2021.104652 doi: 10.1016/j.rinp.2021.104652
    [16] C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A. A. Yakubu, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, Springer Science & Business Media, 126 (2002).
    [17] C. Castillo-Chavez, On the computation of $R_0$ and its role on global stability, in Mathematical Approaches for Emerging and Re-emerging Infection Diseases: An Introduction, 125 (2002), 31–65.
    [18] B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems, Comput. Ind. Eng., 158 (2021), 107408. https://doi.org/10.1016/j.cie.2021.107408 doi: 10.1016/j.cie.2021.107408
    [19] H. Tinde, A. Kiemtore, W. O. Sawadogo, P. O. F. Ouedraogo, I. Zangré, Estimation of epidemiological parameters for COVID-19 cases in Burkina Faso using African vulture optimization algorithm (AVOA), Int. J. Anal. Appl., 22 (2024), 203. https://doi.org/10.28924/2291-8639-22-2024-203 doi: 10.28924/2291-8639-22-2024-203
    [20] World Health Organization, Dengue and Severe Dengue, 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
    [21] M. J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.
    [22] C. Rossier, A. Soura, B. Baya, G. Compaoré, B. Dabiré, Profile: The Ouagadougou health and demographic surveillance system, Int. J. Epidemiol., 41 (2012), 658–666. https://doi.org/10.1093/ije/dys090 doi: 10.1093/ije/dys090
    [23] Banque Mondiale, Espérance de vie à la Naissance, Total (Années) - Burkina Faso, 2024. Available from: https://donnees.banquemondiale.org/indicateur/SP.DYN.LE00.IN?locations = BF.
    [24] H. M. Yang, M. L. G. Macoris, K. C. Galvani, M. T. M. Andrighetti, D. M. V. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol. Infect., 137 (2009), 1188–1202. https://doi.org/10.1017/S0950268809002040 doi: 10.1017/S0950268809002040
    [25] D. A. Focks, D. G. Haile, E. Daniels, G. A. Mount, Dynamic life table model for Aedes aegypti (Diptera: Culicidae): Simulation results and validation, J. Med. Entomol., 30 (1993), 1018–1028. https://doi.org/10.1093/jmedent/30.6.1018 doi: 10.1093/jmedent/30.6.1018
    [26] M. Aguiar, V. Anam, K. B. Blyuss, C. D. S. Estadilla, B. V. Guerrero, D. Knopoff, et al., Mathematical models for dengue fever epidemiology: A 10-year systematic review, Phys. Life Rev., 40 (2022), 65–92. https://doi.org/10.1016/j.plrev.2022.02.001 doi: 10.1016/j.plrev.2022.02.001
    [27] O. J. Brady, N. Golding, D. M. Pigott, M. U. G. Kraemer, J. P. Messina, R. C. Reiner Jr, et al., Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission, Parasites Vectors, 7 (2014), 338. https://doi.org/10.1186/1756-3305-7-338 doi: 10.1186/1756-3305-7-338
    [28] Organisation Mondiale de la Santé (OMS), Dengue et Dengue Sévère, 2024. Available from: https://www.who.int/fr/news-room/fact-sheets/detail/dengue-and-severe-dengue.
    [29] Institut National de la Statistique et de la Démographie (INSD), Volume 4: Projections Démographiques 2020–2035, Recensement Général de la Population et de l'Habitation du Burkina Faso, INSD, 2023. Available from: https://www.insd.bf/publications.
    [30] World Health Organization, Dengue: Guidelines for diagnosis, treatment, prevention and control, 2009. Available from: https://www.who.int/publications/i/item/9789241547871.
    [31] D. J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microbiol. Rev., 11 (1998), 480–496. https://doi.org/10.1128/cmr.11.3.480 doi: 10.1128/cmr.11.3.480
    [32] S. Bhatt, P. Gething, O. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504–507. https://doi.org/10.1038/nature12060 doi: 10.1038/nature12060
    [33] B. Adams, M. Boots, How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model, Epidemics, 2 (2010), 1–10. https://doi.org/10.1016/j.epidem.2010.01.001 doi: 10.1016/j.epidem.2010.01.001
    [34] L. Zou, J. Chen, X. Feng, S. Ruan, Analysis of a dengue model with vertical transmission and application to the 2014 dengue outbreak in Guangdong Province, China, Bull. Math. Biol., 80 (2018), 2633–2651. https://doi.org/10.1007/s11538-018-0480-9 doi: 10.1007/s11538-018-0480-9
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(106) PDF downloads(14) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog