Research article

On models of shared resource competition, coexistence and traveling waves

  • Received: 16 September 2025 Revised: 01 November 2025 Accepted: 19 November 2025 Published: 24 November 2025
  • We investigate a two-species competition model in which both populations exploit a common standing resource. The dynamics are governed by a system of nonlinear differential equations admitting three equilibrium classes: extinction, competitive exclusion, and coexistence. Analytical conditions on the biological parameters ensuring the existence and asymptotic stability of these equilibria are derived, with particular emphasis on the coexistence equilibrium, representing the stable persistence of both species under shared-resource competition. In the corresponding reaction-diffusion model posed on an unbounded spatial domain, we further examine the stability of the coexistence equilibrium via traveling wavefronts. Using the upper–lower solution method, we establish the existence of traveling wave solutions connecting the extinction or single-dominance states to the coexistence state for a continuum of wave speeds exceeding a biologically determined minimal value, which depends explicitly on equilibrium magnitudes and other key parameters. Numerical simulations are provided to corroborate the theoretical results and to illustrate dynamic transitions from dominance to stable coexistence.

    Citation: Wei Feng, Xin Lu, Karen Ward. On models of shared resource competition, coexistence and traveling waves[J]. Mathematical Biosciences and Engineering, 2026, 23(1): 22-39. doi: 10.3934/mbe.2026002

    Related Papers:

  • We investigate a two-species competition model in which both populations exploit a common standing resource. The dynamics are governed by a system of nonlinear differential equations admitting three equilibrium classes: extinction, competitive exclusion, and coexistence. Analytical conditions on the biological parameters ensuring the existence and asymptotic stability of these equilibria are derived, with particular emphasis on the coexistence equilibrium, representing the stable persistence of both species under shared-resource competition. In the corresponding reaction-diffusion model posed on an unbounded spatial domain, we further examine the stability of the coexistence equilibrium via traveling wavefronts. Using the upper–lower solution method, we establish the existence of traveling wave solutions connecting the extinction or single-dominance states to the coexistence state for a continuum of wave speeds exceeding a biologically determined minimal value, which depends explicitly on equilibrium magnitudes and other key parameters. Numerical simulations are provided to corroborate the theoretical results and to illustrate dynamic transitions from dominance to stable coexistence.



    加载中


    [1] Z. A. Wang, L. Wu, Lotka-Volterra diffusion–advection competition system with a dynamical resource, Discrete Contin. Dyn. Syst Ser. B, 28 (2023), 3322–3348. https://doi.org/10.3934/dcdsb.2022220 doi: 10.3934/dcdsb.2022220
    [2] Z. A. Wang, J. Xu, On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion, J. Math. Biol., 82 (2021), 7. https://doi.org/10.1007/s00285-021-01562-w doi: 10.1007/s00285-021-01562-w
    [3] W. Feng, X. Lu, Traveling waves and competitive exclusion in models of resource competition and mating interference, J. Math. Anal. Appl., 424 (2015), 542–562. https://doi.org/10.1016/j.jmaa.2014.11.027 doi: 10.1016/j.jmaa.2014.11.027
    [4] W. Feng, M. Freeze, X. Lu, On competition models under Allee effect: Asymptotic behavior and traveling waves, Commun. Pure Appl. Anal., 19 (2020), 5609–5626. https://doi.org/10.3934cpaa.2020256
    [5] S. Ahmad, A. Lazer, An elementary approach to traveling front solutions to a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), 893–901. https://doi.org/10.1016/0362-546X(91)90152-Q doi: 10.1016/0362-546X(91)90152-Q
    [6] X. Bao, Z. C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differ. Equations, 255 (2013), 2402–2435. https://doi.org/10.1016/j.jde.2013.06.024 doi: 10.1016/j.jde.2013.06.024
    [7] X. Bao, W. T. Li, Z. C. Wang, Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system, Commun. Pure Appl. Anal., 19 (2020), 253–277. https://doi.org/10.3934/cpaa.2020014 doi: 10.3934/cpaa.2020014
    [8] Y. Lou, X. Q. Zhao, P. Zhou, Global dynamics of a Lotka-Volterra competition–diffusion-advection system in heterogeneous environments, J. Math. Pures Appl., 121 (2019), 47–82. https://doi.org/10.1016/j.matpur.2018.06.010 doi: 10.1016/j.matpur.2018.06.010
    [9] M. A. Lewis, B. Li, H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219–233. https://doi.org/10.1007/s002850200144 doi: 10.1007/s002850200144
    [10] D. A. Goldman, A. D. Letten, S. E. Champer, H. Lee, Z. A. Wang, W. Zhang, et al., Competition for shared resources increases dependence on initial population size during coalescence of gut microbial communities, Proc. Natl. Acad. Sci., 122 (2025), e2322440122. https://doi.org/10.1073/pnas.2322440122 doi: 10.1073/pnas.2322440122
    [11] X. He, W. M. Ni, Global dynamics of the Lotka–Volterra competition–diffusion system with equal amount of total resources, Ⅱ, Calculus Var. Partial Differ. Equations, 55 (2016), 1–20. https://doi.org/10.1007/s00526-016-0964-0 doi: 10.1007/s00526-016-0964-0
    [12] P. Grindrod, Models of individual aggregation or clustering in single and multi-species communities, J. Math. Biol., 26 (1988), 651–660. https://doi.org/10.1007/BF00276146 doi: 10.1007/BF00276146
    [13] J. T. Rowell, Tactical population movements and distributions for ideally motivated competitors, Am. Nat., 176 (2010), 638–650. https://doi.org/10.1086/656494 doi: 10.1086/656494
    [14] J. T. Rowell, The limitation of species range: a consequence of searching along resource gradients, Theor. Popul. Biol., 75 (2009), 216–227. https://doi.org/10.1016/j.tpb.2009.03.001 doi: 10.1016/j.tpb.2009.03.001
    [15] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866
    [16] D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for trophic interaction, Ecology, 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298
    [17] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, 1st edition, Plenum Press, 1992.
    [18] W. Feng, W. Ruan, X. Lu, On existence of wavefront solutions in mixed monotone reaction-diffusion systems, Discrete Cont. Dyn. B, 21 (2016), 815–836. https://doi.org/10.3934/dcdsb.2016.21.815 doi: 10.3934/dcdsb.2016.21.815
    [19] W. Ruan, W. Feng, X. Lu, On traveling wave solutions in general reaction-diffusion systems with time delays, J. Math. Anal. Appl., 448 (2017), 376–400. https://doi.org/10.1016/j.jmaa.2016.10.070 doi: 10.1016/j.jmaa.2016.10.070
    [20] W. Ruan, W. Feng, X. Lu, Wavefront solutions of quasilinear reaction-diffusion systems with mixed quasimonotonicity, Appl. Anal., 98 (2019), 934–968. https://doi.org/10.1080/00036811.2017.1408077 doi: 10.1080/00036811.2017.1408077
    [21] P. Ashwin, M. V. Bartuccelli, T. J. Bridges, S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay. Z. Angew. Math. Phys., 53 (2002), 103–122. https://doi.org/10.1007/s00033-002-8145-8 doi: 10.1007/s00033-002-8145-8
    [22] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312–355. https://doi.org/10.1016/0001-8708(76)90098-0 doi: 10.1016/0001-8708(76)90098-0
    [23] X. Lu, Monotone method and convergence acceleration for finite-difference solutions of parabolic problems with time delays, Numer. Methods Partial Differ. Equations, 11 (1995), 591–602. https://doi.org/10.1002/num.1690110605 doi: 10.1002/num.1690110605
    [24] C. V. Pao, Numerical methods for semilinear parabolic equations, SIAM J. Numer. Anal., 24 (1987), 24–35. https://doi.org/10.1137/0724003 doi: 10.1137/0724003
    [25] C. V. Pao, X. Lu, Block monotone iterative methods for numerical solutions of nonlinear parabolic equations, SIAM J. Numer. Anal., 47 (2010), 4581–4606. https://doi.org/10.1137/090748706 doi: 10.1137/090748706
    [26] J. Wu, X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equations, 13 (2001), 651–687. https://doi.org/10.1023/A:1016690424892 doi: 10.1023/A:1016690424892
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(172) PDF downloads(20) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog