The combined effects of ecological and disease characteristics are examined in eco-epidemiological models, which incorporate infectious illnesses into interaction models. We assumed in this article that the prey population is somewhat infected, and the predator benefits more from eating susceptible prey than from feeding on infected prey. Infected and susceptible prey are equally competitive for resources, and the predator consumes both at the same rate. We employed polar blow-up and time-scale desingularization techniques to tackle the singularity caused by frequency-dependent disease transmission at the origin in our model. For simplicity, we considered the linear functional response for interactions between prey and predators. We aimed to determine the influence of fear of predation on the eco-epidemiological system. According to our findings, there are two ways in which predation fear might support the coexistence of three populations: stable coexistence and oscillatory coexistence. Furthermore, our finding remained unchanged if we eliminated two presumptions: that susceptible and infected prey compete equally for resources and that predators consume both prey at identical rates. We also compared the outcomes by taking into account the growth with positive density dependency (Allee effect) and arrived at the same conclusion.
Citation: Rajesh Das, Sourav Kumar Sasmal. Fear induced coexistence in eco-epidemiological systems with infected prey[J]. Mathematical Biosciences and Engineering, 2025, 22(11): 2897-2922. doi: 10.3934/mbe.2025107
The combined effects of ecological and disease characteristics are examined in eco-epidemiological models, which incorporate infectious illnesses into interaction models. We assumed in this article that the prey population is somewhat infected, and the predator benefits more from eating susceptible prey than from feeding on infected prey. Infected and susceptible prey are equally competitive for resources, and the predator consumes both at the same rate. We employed polar blow-up and time-scale desingularization techniques to tackle the singularity caused by frequency-dependent disease transmission at the origin in our model. For simplicity, we considered the linear functional response for interactions between prey and predators. We aimed to determine the influence of fear of predation on the eco-epidemiological system. According to our findings, there are two ways in which predation fear might support the coexistence of three populations: stable coexistence and oscillatory coexistence. Furthermore, our finding remained unchanged if we eliminated two presumptions: that susceptible and infected prey compete equally for resources and that predators consume both prey at identical rates. We also compared the outcomes by taking into account the growth with positive density dependency (Allee effect) and arrived at the same conclusion.
| [1] | A. Lotka, Elements of Physical Biology, Nature, 116 (1925), 461. https://doi.org/10.1038/116461b0 |
| [2] |
V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0
|
| [3] |
S. L. Lima, L. M. Dill, Behavioral decisions made under the risk of predation: A review and prospectus, Can. J. Zool., 68 (1990), 619–640. https://doi.org/10.1139/z90-092 doi: 10.1139/z90-092
|
| [4] |
J. P. Suraci, M. Clinchy, L. M. Dill, D. Roberts, L. Y. Zanette, Fear of large carnivores causes a trophic cascade, Nat. Commun., 7 (2016), 10698. https://doi.org/10.1038/ncomms10698 doi: 10.1038/ncomms10698
|
| [5] |
S. K. Sasmal, Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense, J. Math. Anal. Appl., 481 (2020), 123471. https://doi.org/10.1016/j.jmaa.2019.123471 doi: 10.1016/j.jmaa.2019.123471
|
| [6] |
A. Sih, H. J. Chung, I. Neylan, C. Ortiz-Jimenez, O. Sakai, R. Szeligowski, Fear generalization and behavioral responses to multiple dangers, Trends Ecol. Evol., 38 (2023), 369–380. https://doi.org/10.1016/j.tree.2022.11.001 doi: 10.1016/j.tree.2022.11.001
|
| [7] |
K. Hadeler, H. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol., 27 (1989), 609–631. https://doi.org/10.1007/BF00276947 doi: 10.1007/BF00276947
|
| [8] |
J. Chattopadhyay, O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747–766. https://doi.org/10.1016/S0362-546X(98)00126-6 doi: 10.1016/S0362-546X(98)00126-6
|
| [9] |
J. Chattopadhyay, S. Pal, Viral infection on phytoplankton-zooplankton system—A mathematical model, Ecol. Modell., 151 (2002), 15–28. https://doi.org/10.1016/S0304-3800(01)00415-X doi: 10.1016/S0304-3800(01)00415-X
|
| [10] |
N. Bairagi, P. K. Roy, J. Chattopadhyay, Role of infection on the stability of a predator-prey system with several response functions—A comparative study, J. Theor. Biol., 248 (2007), 10–25. https://doi.org/10.1016/j.jtbi.2007.05.005 doi: 10.1016/j.jtbi.2007.05.005
|
| [11] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
|
| [12] |
A. P. Dobson, P. J. Hudson, Parasites, disease and the structure of ecological communities, Trends Ecol. Evol., 1 (1986), 11–15. https://doi.org/10.1016/0169-5347(86)90060-1 doi: 10.1016/0169-5347(86)90060-1
|
| [13] |
S. M. Moore, E. T. Borer, P. R. Hosseini, Predators indirectly control vector-borne disease: Linking predator-prey and host-pathogen models, J. R. Soc. Interface, 7 (2010), 161–176. https://doi.org/10.1098/rsif.2009.0131 doi: 10.1098/rsif.2009.0131
|
| [14] |
S. Creel, D. Christianson, Relationships between direct predation and risk effects, Trends Ecol. Evol., 23 (2008), 194–201. https://doi.org/10.1016/j.tree.2007.12.004 doi: 10.1016/j.tree.2007.12.004
|
| [15] |
W. Cresswell, Predation in bird populations, J. Ornithol., 152 (2011), 251–263. https://doi.org/10.1007/s10336-010-0638-1 doi: 10.1007/s10336-010-0638-1
|
| [16] |
L. Y. Zanette, A. F. White, M. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. https://doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908
|
| [17] |
C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
|
| [18] |
C. S. Holling, Some characteristics of simple types of predation and parasitism1, Can. Entomol., 91 (1959), 385–398. https://doi.org/10.4039/Ent91385-7 doi: 10.4039/Ent91385-7
|
| [19] | M. E. Gilpin, Do hares eat lynx?, Am. Nat., 107 (1973), 727–730. https://doi.org/10.1086/282870 |
| [20] |
V. Krivan, Effects of optimal antipredator behavior of prey on predator-prey dynamics: The role of refuges, Theor. Popul. Biol., 53 (1998), 131–142. https://doi.org/10.1006/tpbi.1998.1351 doi: 10.1006/tpbi.1998.1351
|
| [21] |
X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
|
| [22] |
S. K. Sasmal, Population dynamics with multiple Allee effects induced by fear factors—A mathematical study on prey-predator interactions, Appl. Math. Modell., 64 (2018), 1–14. https://doi.org/10.1016/j.apm.2018.07.021 doi: 10.1016/j.apm.2018.07.021
|
| [23] |
M. Hossain, N. Pal, S. Samanta, Impact of fear on an eco-epidemiological model, Chaos Solitons Fractals, 134 (2020), 109718. https://doi.org/10.1016/j.chaos.2020.109718 doi: 10.1016/j.chaos.2020.109718
|
| [24] |
K. Sarkar, S. Khajanchi, An eco-epidemiological model with the impact of fear, Chaos Int. J. Nonlinear Sci., 32 (2022), 83126. https://doi.org/10.1063/5.0099584 doi: 10.1063/5.0099584
|
| [25] |
M. Begon, M. Bennett, R. G. Bowers, N. P. French, S. Hazel, J. Turner, A clarification of transmission terms in host-microparasite models: Numbers, densities and areas, Epidemiol. Infect., 129 (2002), 147–153. https://doi.org/10.1017/s0950268802007148 doi: 10.1017/s0950268802007148
|
| [26] |
M. Krupa, P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), 286–314. https://doi.org/10.1137/S0036141099360919 doi: 10.1137/S0036141099360919
|
| [27] | F. Dumortier, J. Llibre, C. J. Artés, Qualitative Theory of Planar Differential Systems, Springer, 2006. https://doi.org/10.1007/978-3-540-32902-2 |
| [28] |
D. Xiao, S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268–290. https://doi.org/10.1007/s002850100097 doi: 10.1007/s002850100097
|
| [29] |
D. Bai, J. Wu, B. Zheng, J. Yu, Hydra effect and global dynamics of predation with strong Allee effect in prey and intraspecific competition in predator, J. Differ. Equations, 384 (2024), 120–164. https://doi.org/10.1016/j.jde.2023.11.017 doi: 10.1016/j.jde.2023.11.017
|
| [30] |
Y. Ichida, Y. Nakata, Global dynamics of a simple model for wild and sterile mosquitoes, Math. Biosci. Eng., 21 (2024), 7016–7039. https://doi.org/10.3934/mbe.2024308 doi: 10.3934/mbe.2024308
|
| [31] |
H. W. Hethcote, W. Wang, L. Han, Z. Ma, A predator-prey model with infected prey, Theor. Popul. Biol., 66 (2004), 259–268. https://doi.org/10.1016/j.tpb.2004.06.010 doi: 10.1016/j.tpb.2004.06.010
|
| [32] |
A. Deredec, F. Courchamp, Combined impacts of Allee effect and parasitism, Oikos, 112 (2006), 667–679. https://doi.org/10.1111/j.0030-1299.2006.14243.x doi: 10.1111/j.0030-1299.2006.14243.x
|
| [33] |
F. M. Hilker, M. Langlais, H. Malchow, The Allee effect and infectious diseases: Extinction, multistability, and the (dis-)appearance of oscillations, Am. Nat., 173 (2009), 72–88. https://doi.org/10.1086/593357 doi: 10.1086/593357
|
| [34] |
S. K. Sasmal, J. Chattopadhyay, An eco-epidemiological system with infected prey and predator subject to the weak Allee effect, Math. Biosci., 246 (2013), 260–271. https://doi.org/10.1016/j.mbs.2013.10.005 doi: 10.1016/j.mbs.2013.10.005
|
| [35] |
S. K. Sasmal, Y. Kang, J. Chattopadhyay, Intra-specific competition in predator can promote the coexistence of an eco-epidemiological model with strong Allee effects in prey, BioSystems, 137 (2015), 34–44. https://doi.org/10.1016/j.biosystems.2015.09.003 doi: 10.1016/j.biosystems.2015.09.003
|
| [36] |
Y. Kang, S. K. Sasmal, A. R. Bhowmick, J. Chattopadhyay, Dynamics of a predator-prey system with prey subject to Allee effects and disease, Math. Biosci. Eng., 11 (2014), 877–918. https://doi.org/10.3934/mbe.2014.11.877 doi: 10.3934/mbe.2014.11.877
|
| [37] |
J. Chattopadhyay, P. Srinivasu, N. Bairagi, Pelicans at risk in Salton Sea—An eco-epidemiological model-II, Ecol. Modell., 167 (2003), 199–211. https://doi.org/10.1016/S0304-3800(03)00187-X doi: 10.1016/S0304-3800(03)00187-X
|
| [38] | S. Jha, Grey Pelicans Die in Droves in Srikakulam, Down Earth, 2022. |
| [39] |
P. A. Abrams, H. Matsuda, The effect of adaptive change in the prey on the dynamics of an exploited predator population, Can. J. Fisher. Aquat. Sci., 62 (2005), 758–766. https://doi.org/10.1139/f05-051 doi: 10.1139/f05-051
|
| [40] |
P. A. Abrams, When does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect, Ecol. Lett., 12 (2009), 462–474. https://doi.org/10.1111/j.1461-0248.2009.01282.x doi: 10.1111/j.1461-0248.2009.01282.x
|
| [41] |
M. Sieber, F. M. Hilker, The hydra effect in predator-prey models, J. Math. Biol., 64 (2012), 341–360. https://doi.org/10.1007/s00285-011-0416-6 doi: 10.1007/s00285-011-0416-6
|
| [42] | J. Moore, Parasites and the Behavior of Animals, Oxford University Press, New York, 2002. https://doi.org/10.1093/oso/9780195084412.001.0001 |