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Abstract: The combined effects of ecological and disease characteristics are examined in eco-
epidemiological models, which incorporate infectious illnesses into interaction models. We assumed
in this article that the prey population is somewhat infected, and the predator benefits more from
eating susceptible prey than from feeding on infected prey. Infected and susceptible prey are equally
competitive for resources, and the predator consumes both at the same rate. We employed polar blow-
up and time-scale desingularization techniques to tackle the singularity caused by frequency-dependent
disease transmission at the origin in our model. For simplicity, we considered the linear functional
response for interactions between prey and predators. We aimed to determine the influence of fear of
predation on the eco-epidemiological system. According to our findings, there are two ways in which
predation fear might support the coexistence of three populations: stable coexistence and oscillatory
coexistence. Furthermore, our finding remained unchanged if we eliminated two presumptions: that
susceptible and infected prey compete equally for resources and that predators consume both prey at
identical rates. We also compared the outcomes by taking into account the growth with positive density
dependency (Allee effect) and arrived at the same conclusion.

Keywords: eco-epidemiological system; coexistence; fear effect; polar blow-up; time-scale
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1. Introduction

In ecology, Lotka [1] and Volterra [2] laid the groundwork for understanding the interactions
between resource-consumer/prey-predator. This field has significantly enhanced with the addition of
ecological complexity, which includes behavioral responses, spatial dynamics, and indirect effects. In
the past few decades, researchers have concentrated on how non-consumptive effects influence
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prey-predator dynamics [3–6]. Over the past century, many biological aspects have been incorporated
into prey-predator interaction models. As an expansion of conventional ecological models,
eco-epidemiological models incorporate disease dynamics into the investigation of species
associations. The eco-epidemiological model was first introduced by Hadeler and Freedman [7].
After that, many works [8–10] have enriched this field. By decreasing prey populations or lowering
predator fitness, diseases can drastically change predator-prey dynamics [11]. On the other hand,
through modifications to host density, movement, and interaction variations, ecological interactions
affect the rates at which diseases are transmitted [12, 13]. Eco-epidemiological models offer a
thorough framework for comprehending the twin roles of disease and predation in forming
ecosystems by merging ecological and epidemiological principles. These models are especially
essential in the context of newly developing infectious diseases, which represent serious risks to
ecosystem stability and biodiversity.

In “ecological and mathematical modeling”, the fear effect, a non-consumptive impact of predators
on prey has gained a lot of attention. In addition to direct predation, prey is frightened by predators,
which changes their behavior, reproduction, foraging habits, and habitat utilization. These indirect
impacts weigh equally with or even outweigh the direct consequences of predation [14–16], which can
significantly impact population dynamics and ecological stability. Mathematical models that integrate
the fear effect provide significant new insights into these complex interactions. Holling [17] established
the foundation for integrating behavioral changes, including anxiety, into mathematical models with
his early work [18] on functional response ideas. Indirectly predator impacts on prey populations,
such as behavioral changes, were subsequently highlighted by Gilpin [19]. The investigation of fear
dynamics in prey-predator interactions was made possible by these pioneering works. Krivan [20]
created a two-patch prey-predator model that included habitat-switching (anti-predator) behavior of
prey to illustrate the trade-offs between resource availability and safety. Wang et al. [21] introduced the
fear effect in prey-predator dynamics by considering a reduction of the prey birth rate as a function of
predator density. By incorporating the fear effect in the growth of prey populations subject to the Allee
effect in an eco-epidemiological model, Sasmal [22] expanded and demonstrated how fear stabilizes or
destabilizes system dynamics. Some recent works [23,24] incorporated fear in the eco-epidemiological
system. These findings highlight how crucial it is to simulate fear effects in prey-predator systems
because they offer vital information for managing resources, preserving biodiversity, and maintaining
ecological stability.

How the disease spreads from the infected class to the susceptible class depends on social patterns
and structures within the host population. Two categories of disease transmission rates exist in
epidemiology, specifically the frequency-dependent transmission rate

[
ϕ(x) = β

]
and

density-dependent transmission rate
[
ϕ(x) = βx

]
[11, 25], where β is the disease transmission rate and

x is the host population density. In this study, we examine the frequency-dependent transmission of
diseases. We employ a combination of time-scale desingularization and polar coordinate blow-up
approaches to investigate the behavior of the system close to the extinction equilibrium at the origin,
where the frequency-dependent transmission term leads to the singularity of the system. The blow-up
transformation allows for a regular and thorough phase-space investigation around the origin by
replacing a family of directions for the singular point. In this new framework, the transformed system
is kept smooth and well-defined by a subsequent time parametrization, called time-scale
desingularization. These mathematical methods have been successfully used in the study of
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degenerate dynamics in planar systems and the desingularization of non-hyperbolic points [26, 27].
Additionally, they are relevant to ecological models that have boundary singularities or extinction,
like ratio-dependent predator-prey systems [28], systems with Allee and hydra effects [29], and
structured mosquito population models with singular behaviors [30]. Here, we use a comparable
framework to verify the qualitative behavior of solutions close to the origin and conduct a thorough
analysis of the extinction stage.

Another essential component of mathematical modeling that affects dynamics is functional
response. Three categories of functional responses, namely, type I (linear), type II (hyperbolic), and
type III (sigmoidal), were provided by Holling [18], which are widely used in the literature. For
simplicity, we consider the Holling type I or the linear functional response in this study.

Hethcote et al. [31] assumed that infected prey is easier for predators to capture and demonstrated
that, depending on the Allee effect in the predator, susceptible prey, infected prey, and predator can
survive together under certain conditions. However, Sasmal and Chattopadhyay [34] studied a similar
model with the belief that, even though the infected prey is easier for predators to acquire, it
contributes less (or even negatively) to the growth of the predator than the consumption of susceptible
prey. They demonstrated that, regardless of the Allee effects, coexistence between susceptible prey,
infected prey, and predator is not possible, under such an assumption. The coexistence of susceptible
prey, infected prey, and predator can be encouraged by intraspecific competition in predators [35],
which is considered because of limited resources. Sasmal [22] concluded that fear can either produce
an oscillating cohabitation between the susceptible prey, infected prey, and predator or stabilize the
system at its interior equilibrium. In this article, our goal is to answer the following three questions:

1) Can fear of predators stabilize and promote the coexistence of susceptible prey and infected prey
alongside predators in such a system?

2) What if we consider the Allee effect in the growth of the predator population?

3) What would happen if we relaxed the presumptions of equal resource competitiveness of preys
and equal predator intakes of susceptible and diseased prey?

For this, we first consider the model studied by Sasmal et al. [35], without the Allee effect and
where intraspecific competition induces additional death of predators, including fear of predators that
reduces the birth rate of prey populations. We also discuss the results incorporating the Allee effect in
the predator population, and remove the assumptions of equal resource competition of susceptible and
infected prey and their equal consumption rates by the predator.

In Section 2, we develop our model based on the aforementioned assumptions. It also contains the
boundedness and positivity of the suggested system, along with the table, which provides a quick
overview of the model parameters and their default values for numerical simulation. The work is then
aligned by considering two key ideas in Section 3, which are the disease-free demographic
reproduction number of predators (Rd) and the basic reproduction number (R0). Section 3 provides a
detailed equilibrium analysis for the proposed system. We eliminate the origin’s singularity and
examine its stability using time-scale desingularization and polar blow-up techniques. In Section 4,
we provide a detailed numerical simulation and validate our analytical findings. Also, we sum up all
existence and stability regions of equilibria of our system and show the effect of the cost of fear of
predators by bifurcation diagrams with respect to the fear coefficient. Lastly, we wrap up and discuss
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our results with a few published research articles in Section 5. We also consider the positive density
dependence growth of predators in our model and remove the assumptions of equal resource
competition of susceptible prey and infected prey and their equal consumption rates by the predator.
We conclude by providing the answers to the questions raised above in Section 6.

2. Model formulation

The prey population (N) is separated into two classes: susceptible prey (S ) and infected prey (I),
i.e., N = S + I. We assume that in the absence of infection, the prey population develops logistically

with a birth rate r, natural death rate d1, and carrying capacity K =
r − d1

d2
. Thus in the absence of

infection and predation, the prey population follows the following equation:

dN
dt
= (r − d1)N

(
1 −

N
K

)
=⇒

dS
dt
= S (r − d1 − d2S ),

since N = S + I = S , as I = 0. d2 is the death rate due to intraspecies competition in the susceptible
prey population. Our model relies on the realistic assumption that only healthy, susceptible species
can reproduce, as the physiological load of infection distracts an individual’s energy from reproductive
activities, whereas the competitive effect of infected individuals is captured indirectly by reducing
resource availability for the reproducing members of the population. As the total population increases
and moves only through the susceptible class, the mathematical formulation for this idea is given as:

dS
dt
= S

(
r − d1 − d2(S + I)

)
.

We consider frequency-dependent disease transmission with disease transmission rate β, and

β
I
N

S =
βS I

S + I
is the new infections per individual infected prey. It is assumed that the infection does

not transmit vertically, and µI is the combined death of infected prey that includes natural death and
death induced by the disease. Hence in the absence of predation, the above equation can be modified
to the following system of equations for susceptible prey and infected prey:

dS
dt

= S
(
r − d1 − d2 (S + I) −

βI
S + I

)
,

dI
dt

= I
(
βS

S + I
− µ

)
.

According to our model, susceptible prey are the only group that contributes to the population’s
reproductive output, whereas the infected prey are not able to reproduce because of physiological or
behavioral abnormalities brought on by the disease. Nevertheless, the same limited natural resources,
including food and space, are used by both susceptible individuals and individuals with illnesses.
Therefore, by using resources that would otherwise be used for reproduction, infected prey have an
indirect impact on the growth of susceptible prey species. The competition term, which is dependent
on the overall prey density, is included in the growth equation of the susceptible prey, rather than
directly contributing to the death of the diseased class, whose mortality is already dominated by the
infection. A realistic ecological situation, where infected individuals create ecological pressure
without aiding in population reproduction, is captured by this formulation [32–36].

Mathematical Biosciences and Engineering Volume 22, Issue 11, 2897–2922.



2901

Now, we assume that the birth rate (r) of the prey is reduced because of the predation fear by

incorporating the fear function f (k, P) =
1

1 + kP
, where k is the fear strength, P is the density of

predator, and the function f (k, P) satisfies the six properties of fear functions discussed by Sasmal [22].
For simplicity, we consider that the predator population consumes both susceptible prey and infected
prey at the same rate a (predators do not distinguish between infected prey and susceptible prey),
and both interactions follow the mass action law with a linear functional response. Moreover, we
presume that predator gain is higher by consuming the susceptible prey, compared to consuming the
infected prey, and sometimes predator loss is there (negative effect) due to the consumption of infected
prey [34–36]. For instance, in California, over 50,000 pelican birds perished between 1994–1996 as
a result of consuming fish contaminated with a vibrio class of bacteria in the Salton Sea [37]. Also,
eating fish infected with roundworms like Contracaecum caused malnourishment, weakened immunity,
and digestive problems, which led to the deaths of several grey pelican birds around 2022 in India [38].
Under the above assumptions, the dynamics of the eco-epidemiological system can be governed by the
following system of nonlinear first-order ordinary differential equations:

dS
dt

= S
( r
1 + kP

− d1 − d2(S + I) −
βI

S + I
− aP

)
,

dI
dt

= I
(
βS

S + I
− aP − µ

)
,

dP
dt

= P
(
bS + αI − d3

)
.

(1)

Here d3 is the natural death rate of the predator population. b = ca and α = c′a, where c (> 0)
and c′ (can be negative) are the biomass conversion efficiencies from susceptible and infected prey to
predator, respectively. We assume −∞ < c′ ≤ c, and consequently α ∈ (−∞, b] where b > 0. α and
b are net gains of the predator by consuming infected prey and susceptible prey, respectively. That
is, the gain of predators is more for consuming susceptible prey than the infected prey. For biological
interpretations of the parameters used in system (1), and their default values for numerical simulation,
see Table 1.

Table 1. Description of model parameters and their default values (for numerical simulation)
for model (1).

Parameter Biological interpretation Value
r Birth rate of susceptible prey 0.60
d1 Natural death rate of susceptible prey 0.05
d2 Death rate of prey due to intra-species/inter-species competition 0.05
d3 Natural death rate of predators 0.40
µ Death rate (natural + infected induced) of infected prey 0.45
β Infection rate 0.90
a Attack rate of predators 0.80
k Coefficient of fear effect acting on the growth of susceptible prey 1.00
b Net gain of predator for consuming susceptible prey 0.45
α Net gain of predator for consuming infected prey 0.25
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Theorem 2.1 (Positivity and boundedness of solutions). Assume the following conditions:

d3 > 0, r > d1, −∞ < α ≤ b, with b > 0.

Then system (1) is positively invariant and uniformly ultimately bounded in R3
+ with the following

properties:

lim supt→∞

{
S (t)

}
≤

r − d1

d2
,

lim supt→∞

{
S (t) + I(t)

}
≤

(r − d1)(r − d1 + µ)
µd2

,

lim supt→∞

{
S (t) + I(t) + P(t)

}
≤

(r − d1)(r − d1 + µ)(d3 + µ)
µd2d3

.

Proof. The solutions to the system
dS
dt

∣∣∣∣∣∣
S=0

= 0,
dI
dt

∣∣∣∣∣∣
I=0

= 0,
dP
dt

∣∣∣∣∣∣
P=0

= 0 show that S = 0, I = 0, P = 0

are invariant manifolds. The continuity of the system implies system (1) is positively invariant in R3
+.

Now, for any (S , I, P) ∈ R3
+, and S >

r − d1

d2
, using the positive invariant property of system (1), we

can write
dS
dt

∣∣∣∣∣∣S> r − d1

d2


≤ S

[
(r − d1) − d2S − d2I −

βI
S + I

− aP
]
< 0.

Also,
dS
dt

∣∣∣∣∣∣S= r − d1

d2
, I = 0, P = 0


= 0, and

dS
dt

∣∣∣∣∣∣S= r − d1

d2
, I + P > 0


< 0.

This together implies

lim sup
t→∞

S (t) ≤
r − d1

d2
. (2)

Considering N(t) = S (t) + I(t), from the first two equations of system (1), we can write

dN
dt
≤ (r − d1 + µ)S − µN.

From the limit (2), we can say that for any ε > 0, ∃ T (> 0) such that for all t > T, we have

S (t) ≤
r − d1

d2
+ ε. This gives

dN
dt
≤ (r − d1 + µ)

(
r − d1

d2
+ ε

)
− µN.

Now using the theory of differential inequality, and making ε→ 0, we write

lim sup
t→∞

N(t) ≤
(r − d1 + µ)

(
r − d1

d2

)
µ

=
(r − d1)(r − d1 + µ)

µd2
. (3)
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Now considering Z(t) = N(t) + P(t), from the equations of system (1), we can write

dZ
dt
≤ (r − d1 + µ)S + d3N − d3Z.

Limit (3) implies that for ε > 0, ∃ T ′ > 0, such that for all t > T ′, N(t) ≤
(r − d1)(r − d1 + µ)

µd2
+ ε.

Thus combining the results obtained from the limits (2) and (3), and taking T1 = max {T,T ′}, we can
say that for all t > T1,

dZ
dt
≤ (r − d1 + µ)

[
r − d1

d2
+ ε

]
+ d3

[
(r − d1)(r − d1 + µ)

µd2
+ ε

]
− d3Z.

Now, using the theory of differential inequality, and making ε→ 0, we can write

lim sup
t→∞

Z(t) ≤
(r − d1)(r − d1 + µ)(d3 + µ)

µd3d3
.

Thus the theorem follows.

3. Mathematical analysis

A key concept in epidemiological models is the basic reproduction number R0 =
β

µ
, which is the

ratio of secondary infections per unit time (β) over an average infectious period (µ). If R0 < 1, the
infection cannot spread; but, if R0 > 1, it can spread over the population. The infection gets harder to

control as R0 increases. The disease-free demographic reproduction number [22] of predators, Rd =
b
d3

,

is another threshold parameter that is taken into account. This metric determines the proportion of
expected offspring of typical individual predators throughout the course of their lives. In our further

analysis, we will employ
β

µ
= R0 and

b
d3
= Rd. In this section, we will present an in-depth investigation

of the system (1).

Theorem 3.1 (Existence of equilibria). System (1) has five different types of equilibria, namely,

1) The extinction equilibrium, E0 = (0, 0, 0) , which always exists.

2) The susceptible prey only equilibrium, ES =

(
r − d1

d2
, 0, 0

)
, which exists if r > d1.

3) The infected prey free equilibrium, ES P =

(
1

Rd
, 0, P1

)
, which exists if Rd >

d2

r − d1
where

P1 =
− [aRd + k (d1Rd + d2)] +

√
[aRd − k (d1Rd + d2)]2 + 4akrR2

d

2akRd
.

4) The predator free equilibrium, ES I =
(
S 1, (R0 − 1)S 1, 0

)
, which exists if 1 < R0 < 1 +

r − d1

µ
,

where S 1 =
(r − d1) − µ(R0 − 1)

d2R0
.
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5) The coexistence equilibria, E∗ = (S ∗, I∗, P∗) , where

S ∗ =
1 − αX∗

Rd
, I∗ =

bX∗

Rd
, P∗ =

µ

a

[
R0(1 − αX∗)

1 + (b − α)X∗
− 1

]
, (4)

and X∗ is the root of the quadratic equation

Ax2 + Bx +C = 0, (5)

where
A = d2 (b − α)

[
b(a − µk) − aα − αkµ(R0 − 1)

]
,

B = −µ2αkRd (R0 − 1)2
− µ

[
{k (bµ + αd1) − a(b − α)}Rd − kd2 (b − 2α)

]
(R0 − 1)

− {a(b − α)(r − d1) + bd1µk}Rd + d2
[
2a(b − α) − bµk

]
,

C = µ2kRd (R0 − 1)2 + µ {kd2 + Rd (a + d1k)} (R0 − 1) − a {(r − d1) Rd − d2} .

Now, if 0 < X∗ <
R0 − 1

b + α(R0 − 1)
, then the coexistence equilibrium (E∗) exists.

Proof. System (1), can be written as

dS
dt
= S × F(1)(S , I, P),

dI
dt
= I × F(2)(S , I, P),

dP
dt
= P × F(3)(S , I, P),

where
F(1)(S , I, P) =

r
1 + kP

− d1 − d2(S + I) −
βI

S + I
− aP,

F(2)(S , I, P) =
βS

S + I
− aP − µ, and

F(3)(S , I, P) = bS + αI − d3.

(i) Clearly, E0 = (0, 0, 0) always exists.

(ii) For ES , we have F(1)(S , 0, 0) = 0 =⇒ S =
r − d1

d2
, which exists if r > d1.

(iii) For ES P, we have F(1)(S , 0, P) = 0 and F(3)(S , 0, P) = 0, which give S =
1

Rd
, and P is the positive

root of the quadratic equation

akRd x2 + [d2k + Rd(a + d1k)] x + [d2 − (r − d1)Rd] = 0.

The above equation has a unique positive root if d2 − (r − d1)Rd < 0, i.e., iff Rd >
d2

r − d1
.

(iv) For ES I we have F(1)(S , I, 0) = 0 and F(2)(S , I, 0) = 0. This give S =
(r − d1) − µ(R0 − 1)

d2R0
= S 1

(say), and I = (R0 − 1)S 1. Thus the equilibrium ES I exists iff 1 < R0 < 1 +
r − d1

µ
.

(v) Now, for the coexisting equilibrium E∗, we have the equation F(i)(S , I, P) = 0, for i = 1, 2, 3. By
some mathematical calculations, we have the expressions for S ∗, I∗, and P∗ given in Theorem 3.1,
where X∗ is the positive root of Eq (5), which can have zero, one, or two positive roots depending
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on its coefficients. The explicit conditions for the signs of the coefficients A, B, C of Eq (5) are
given in Appendix A.

Now, for positive roots X∗ of Eq (5), the existence of E∗ required X∗ <
1
α

and X∗ <
R0 − 1

b + α(R0 − 1)
,

(for the positivity of S ∗ and P∗).

If α > 0, then clearly E∗ exists if X∗ < min
{

1
α
,

R0 − 1
b + α(R0 − 1)

}
=

R0 − 1
b + α(R0 − 1)

. Also, if

α < 0, then S ∗ and I∗ are always positive, and consequently the interior equilibrium E∗ exists

for X∗ <
R0 − 1

b + α(R0 − 1)
. Thus, for −∞ < α ≤ b, the interior equilibrium E∗ exists if 0 < X∗ <

R0 − 1
b + α(R0 − 1)

.

Theorem 3.2 (Stability of extinction equilibrium). The extinction equilibrium E0 is globally
asymptotically stable if r ≤ d1, and a saddle point if r > d1.

Proof. To study the stability of the extinction equilibrium E0, we first consider the
predator-free system:

dS
dt

= S
(
r − d1 − d2(S + I) −

βI
S + I

)
,

dI
dt

= I
(
βS

S + I
− µ

)
.

(6)

As (S , I) = (0, 0) is a singular point of system (6), we cannot use linear stability analysis at the point.

To tackle this, we use the time-scale desingularization
dτ
dt
= (S + I)−1. This changes system (6) to

dS
dτ

= (r − d1)S 2 + (r − d1 + β)S I − d2S (S + I)2,

dI
dτ

= (β − µ)S I − µI2.
(7)

Previously the singular point in system (6), (S , I) = (0, 0), became an equilibrium point of system (7).
For system (7), only the vector field is multiplied by (S + I); nevertheless, for systems (6) and (7), the
solutions are unchanged. Since there are no linear terms of S , I in the right-hand side of system (7),
the eigenvalues of the Jacobian at (0, 0) are both zero, and we must employ some blow-up approach to
further analyze the stability at (0, 0).

We use the polar blow-up technique for which we take the coordinate transformations S = ρcosθ

and I = ρsinθ, which yield ρ2 = S 2 + I2 and θ = tan−1
( I
S

)
. Differentiating with respect to τ, and

writing
d
dτ
= (˙), we obtain the relations ρ̇ = cosθṠ + sinθİ and θ̇ =

1
ρ

(
cosθİ − sinθṠ

)
. System (7)

becomes

ρ̇ =
[
cos2θ (sinθ + cosθ) (r − d1 − β + µ) + (β − µ)cosθ − µsinθ

]
ρ2 − d2cos2θ (1 + sin2θ) ρ3,

θ̇ = −sinθcosθ (sinθ + cosθ)
[
(r − d1 − b + µ) ρ − d2 (cosθ + sinθ) ρ2

]
.
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Using the time-scale transformation
dη
dτ
= ρ (which multiplies the vector field of the above system by

ρ), and writing
d
dη
= (′), we have

ρ′ =
[
cos2θ (sinθ + cosθ) (r − d1 − β + µ) + (β − µ)cosθ − µsinθ

]
ρ − d2cos2θ (1 + sin2θ) ρ2,

θ′ = −sinθcosθ (sinθ + cosθ)
[
(r − d1 − b + µ) − d2 (cosθ + sinθ) ρ

]
.

The singular directions of the above system are given by θ′ = 0. While 0 < ρ << 1, we can write

θ′ = 0 =⇒ sinθcosθ (sinθ + cosθ) = 0. We are interested for θ ∈
[
0,
π

2

]
in the positivity of S and I.

We obtain θ1 = 0 and θ2 =
π

2
.

Now, along θ = θ1, ρ′ = (r − d1)ρ − d2ρ
2 ≈ (r − d1)ρ, since 0 < ρ << 1. Then we have ρ′ < 0 if

r ≤ d1, and ρ′ > 0 if r > d1. Again, along θ = θ2, ρ′ = −µρ, which is always negative.

This leads us to the conclusion that if r ≤ d1, there will be attracting parabolic trajectories in
the first quadrant R2

+, which will proceed to (0, 0) (see Figure 1 (a),(c)). Also, if r > d1, there are
elliptic trajectories in the first quadrant, which will go outward from the origin along the S -axis, and
be attracted to the origin along the I-axis. This suggests that (0, 0) is a saddle point when r > d1 and
globally asymptotically stable if r ≤ d1.

(a) Blow-up case for r ≤ d1. (b) Blow-up case for r > d1. (c) Blow-down case for r ≤ d1. (d) Blow-down case for r > d1.

Figure 1. The blow-up and blow-down scenarios for the origin of the S I system. The origin
is stable if r ≤ d1, and a saddle for r > d1.

Now for the extinction equilibrium E0 of system (1), consider S = 0, I = 0, and then the third

equation becomes
dP
dt
= −dP. This shows that the predator will decay and go extinct in the absence of

prey. Therefore, we conclude that if r ≤ d1, E0 is globally asymptotically stable in R3
+, and a saddle if

r > d1.

Theorem 3.3 (Stability of boundary equilibria). The stability conditions for the boundary equilibria
of system (1) are given as follows:

i. The susceptible prey only equilibrium (ES ) is locally asymptotically stable (LAS) if R0 < 1 and

Rd <
d2

r − d1
.
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ii. The infection free equilibrium (ES P) is LAS if R0 < 1 +
aP1

µ
.

iii. The predator free equilibrium (ES I) is LAS if

R0 > 1 and Rd <
bd2R0

[b + α(R0 − 1)]
[
(r − d1) − µ(R0 − 1)

] .
Proof. To prove the stability of boundary and interior equilibria, we use the following Jacobian:

J =


F(1) + S × F(1)

S S × F(1)
I S × F(1)

P
I × F(2)

S F(2) + I × F(2)
I I × F(2)

P
P × F(3)

S P × F(3)
I F(3) + P × F(3)

P

 , (8)

where F(i)
S =

∂

∂S

[
F(i)(S , I, P)

]
, F(i)

I =
∂

∂I

[
F(i)(S , I, P)

]
, and F(i)

P =
∂

∂P

[
F(i)(S , I, P)

]
, for i = 1, 2, 3. The

elements of the above Jacobian are given in Appendix B.

i. At the susceptible prey only equilibrium ES , the eigenvalues of Jacobian (8) are −(r − d1) (<

0), µ(R0 − 1), and b
[
(r − d1)

d2
−

1
Rd

]
; Clearly, if R0 < 1 and Rd <

d2

r − d1
, the equilibrium ES is

locally asymptotically stable.

ii. At the infection free equilibrium ES P, one eigenvalue is µ(R0 − 1) − aP1, and the other two
eigenvalues are the roots of the quadratic equation

λ2 +
d2

Rd
λ +

bP1

Rd

[
a +

rk
(1 + kP1)2

]
= 0,

where P1 =
− [aRd + k (d1Rd + d2)] +

√
[aRd − k (d1Rd + d2)]2 + 4akrR2

d

2akRd
. Both the roots of the

above equation are always negative (negative real parts). Thus the equilibrium ES P is locally
asymptotically stable if

µ(R0 − 1) − aP1 < 0 ⇐⇒ R0 < 1 +
aP1

µ
.

iii. For the predator free equilibrium ES I , we have α(R0 − 1)S 1 + bS 1 −
b

Rd
as one eigenvalue of

Jacobian (8), and the other two eigenvalues are the roots of the quadratic equation

λ2 + d2S 1λ + d2µ(R0 − 1)S 1 = 0.

Both the roots of the above equation have negative real parts if R0 > 1. Thus the equilibrium ES I

is locally asymptotically stable if

R0 > 1 and S 1 <
b

Rd [b + α(R0 − 1)]

i.e., iff R0 > 1 and Rd <
bd2R0

[b + α(R0 − 1)]
[
(r − d1) − µ(R0 − 1)

] .
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Theorem 3.4 (Stability of coexistence equilibrium). The coexisting equilibrium E∗ is locally
asymptotically stable if

S ∗
[
brkµR0I∗P∗ − d2Rd(S ∗ + I∗)

{
brkP∗(S ∗ + I∗) + µd2R0I∗(1 + kP∗)2

}]
abd2RdP∗(S ∗ + I∗)

<
[
(S ∗ + I∗)(1 + kP∗)

]2 <
brkµR0

ad2Rd(b − α)
.

Proof. To prove the stability conditions of the coexistence equilibrium E∗, we have the characteristic
equation of the Jacobian matrix (8):

λ3 + A1λ
2 + A2λ + A3 = 0,

where
A1 = d2S ∗ (> 0),

A2 =
abP∗

Rd
+

brkS ∗P∗

(1 + kP∗)2 +
µd2R0S ∗I∗

(S ∗ + I∗)
(> 0),

A3 = S ∗I∗P∗
[

brkµR0

Rd [(S ∗ + I∗)(1 + kP∗)]2 − ad2(b − α)
]
.

According to the Routh-Hurwitz criteria, E∗ is locally asymptotically stable if A3 > 0 and A1A2 − A3 >

0.
A3 > 0 =⇒ [(S ∗ + I∗)(1 + kP∗)]2 <

brkµR0

ad2Rd(b − α)
.

A1A2 − A3 = S ∗
[
d2(S ∗ + I∗)

{
abP∗ +

d2µR0S ∗I∗

(S ∗ + I∗)2

}
+

bd2rkS ∗P∗

(1 + kP∗)2 −
brkµR0I∗P∗

Rd(S ∗ + I∗)2(1 + kP∗)2

]
.

Thus,

A1A2 − A3 > 0 =⇒
brkµR0I∗P∗

Rd(S ∗ + I∗)2(1 + kP∗)2 < d2(S ∗ + I∗)
{

abP∗ +
d2µR0S ∗I∗

(S ∗ + I∗)2

}
+

bd2rkS ∗P∗

(1 + kP∗)2 ,

which gives

[(S ∗ + I∗)(1 + kP∗)]2 >
S ∗

[
brkµR0I∗P∗ − d2Rd (S ∗ + I∗)

{
brkP∗(S ∗ + I∗) + µd2R0I∗(1 + kP∗)2

}]
abd2RdP∗(S ∗ + I∗)

.

4. Numerical simulation

In this section, we provide some numerical simulations to validate our analytical results. We plotted
a variety of graphs using MATLAB software.

The existence and stability of various equilibria of system (1) are shown in Figure 2 on the R0 versus
Rd parametric plane. We divided the entire plane into nine regions according to our analytical findings.

In Figure 2, the magenta-colored horizontal line represents Rd =
d2

r − d1
, the left cyan-colored vertical
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line represents R0 = 1, and the right cyan-colored vertical line represents R0 = 1 +
r − d1

µ
. The blue-

colored curve represents R0 = 1 +
aP1

µ
, where P1 is given in Theorem 3.1, and the red-colored curve

represents Rd =
bd2R0

[b + α(R0 − 1)]
[
r − d1 − µ(R0 − 1)

] . As the axial equilibrium (ES ) exists for r > d1, it

exists in all nine regions but is stable only in region 1 since we are taking default parameter values from
Table 1, where r > d1. The predator free equilibrium ES I exists in regions 2, 4, and 6–8 but is stable
only in regions 2 and 4. Similarly, the infection free equilibrium ES P exists in regions 4–9, however,
it is only stable in regions 8 and 9. Region 6 represents the oscillatory coexistence of susceptible prey,
infected prey, and predator. In contrast, region 7 represents the stable coexistence between susceptible
prey, infected prey, and predator. In region 3, ES exists but is unstable and in region 5, ES P exists but
is unstable.

Figure 2. The existence and stability regions of different equilibria of system (1) in the R0 vs.
Rd plane, where all other parameters are taken from Table 1. In the figure, region 1 represents
the existence and stability of ES , whereas in regions 2 and 4, ES I exists and is stable. In
regions 8 and 9, ES P exists and is stable. The black region 7 represents the existence and
stability of E∗, whereas region 6 represents oscillatory coexistence. Region 3 represents the
unstable existence of ES , and region 5 represents the unstable existence of ES P.

Figure 3 shows the bifurcation diagram of populations of system (1) with respect to the cost of fear
of predators (k) as the bifurcating parameter. Initially, when the strength of fear is small, ES P is stable.
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As we increase the strength of fear, stable interior E∗ appears. However, if we increase it further, the
interior will lose its stability via Hopf bifurcation and oscillatory coexistence. System (1) experiences
a supercritical Hopf bifurcation with respect to the bifurcating parameter k.

The Hopf bifurcation in a three-dimensional system is difficult to investigate mathematically due
to the complicated nature of the system’s solution expressions and other considerations. Although it is
challenging to determine the critical value of k at which the Hopf bifurcation occurs, we can
numerically validate the bifurcation conditions and their transversality requirement for the parameters
used in the numerical simulation, as specified in the paper. When the Routh-Hurwitz determinant
disappears and the Jacobian at the interior has two purely imaginary eigenvalues and one eigenvalue
with a negative real portion, the Hopf bifurcation will take place in a three-dimensional system. To
guarantee that the pair of imaginary eigenvalues crosses the imaginary axis with nonzero speed and
does not stay on the imaginary axis, the transversality condition is crucial for the Hopf bifurcation.
Appendix C contains a detailed mathematical analysis and numerical verification of the required
conditions for the Hopf bifurcation.

0.00 0.25 0.50 0.75 1.00

0

1

2

3

4

5

(a) Bifurcation diagram of susceptible
prey (S ) w.r.t. cost of fear (k).

0.00 0.25 0.50 0.75 1.00

0.00

0.45
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(b) Bifurcation diagram of infected prey
(I) w.r.t. cost of fear (k).
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0.0

0.4
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(c) Bifurcation diagram of predator (P)
w.r.t. cost of fear (k).

Figure 3. System (1) experiences a supercritical Hopf bifurcation as the interior loses its
stability when we increase k. All other parameters are taken from Table 1.

5. Discussion

Fear of predators lowers the prey’s birth rate in a general prey-predator system where the prey
population is infected. Finding the effect of dread on the coexistence of such an eco-epidemiological
system is our goal. The available research [34–36] demonstrates that stable coexistence between
susceptible prey, infected prey, and the predator is possible when the predator benefits more from the
consumption of infected prey than the susceptible. However, since we believe that eating diseased
prey is less advantageous for the predator than eating susceptible prey, it can occasionally have a
detrimental effect on the predator’s health (e.g., in California, a significant number of pelican birds
perished after eating contaminated seafood between 1992–1996). Sasmal [22] demonstrated that the
coexistence of such an eco-epidemiological system is also improved and aided by the dread
of predators.

The dynamical results of system (1) will now be compared with those of other models, either by
removing or incorporating certain important components. These include the elimination of the cost
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of fear (subsection 5.1), incorporating the Allee effect in predator population growth (5.2), and the
relaxation of certain assumptions in system (1) to a more generic version of it (5.3). The purpose of the
following subsections is to validate and generalize the system (1) outcomes and answer the questions
addressed in the introduction.

5.1. System (1) without the cost of fear

The dynamical result of system (1) is verified when there is no fear effect of predators on prey,
as our primary focus is on the influence of predator fear in an eco-epidemiological model. When we
eliminate the cost of fear from the prey population’s growth, system (1) becomes

dS
dt

= S
(
r − d1 − d2(S + I) −

βI
S + I

− aP
)
,

dI
dt

= I
(
βS

S + I
− aP − µ

)
,

dP
dt

= P
(
bS + αI − d3

)
.

(9)

System (9) has four non-zero equilibria. The existence and stability conditions of those are listed in
Table 2.

Table 2. Existence and stability conditions for the equilibria of the system (9).
Equilibrium Existence conditions Stability conditions

ES =

(
r − d1

d2
, 0, 0

)
r > d1 R0 < 1 & Rd <

d2

r − d1

ES I = (µS 2, µ(R0 − 1)S 2, 0) 1 < R0 < 1 +
r − d1

µ
max

{
1,RS I

0

}
< R0 < 1 +

r − d1

µ

ES P =

(
1

Rd
, 0,

(r − d1)Rd − d2

aRd

)
Rd >

d2

r − d1
Rd > max

{
d2

r − d1
,

d2

r − d1 − µ(R0 − 1)

}
E∗ =

(
S ∗1, I

∗
1 , P

∗
1

)
d2 < Rd

[
r − d1 − µ(R0 − 1)

]
<

bd3R0

b + α(R0 − 1)
Never stable

where S 2 =
r − d1 − µ(R0 − 1)

µd2R0
, S ∗1 =

bd2 − αRd
[
r − d1 − µ(R0 − 1)

]
d2Rd(b − α)

,

I∗1 =
b
[
Rd {r − d1 − µ(R0 − 1)} − d2

]
d2Rd(b − α)

, P∗1 =
µ
[
bd2R0 − Rd {b + α(R0 − 1)} {r − d1 − µ(R0 − 1)}

]
aRd(b − α)

[
r − d1 − µ(R0 − 1)

] , and

RS I
0 is the positive root of the quadratic equation

αµRdR2
0 +

[
b (µRd + d2) + aRd (r − d1 − 2µ)

]
R0 + Rd

[
α(µ − r + d1) − b(µ + r − d1)

]
= 0.

From Table 2, it is seen that when there is no fear of predators, a stable coexistence of susceptible
prey, infected prey, and predator is impossible, but the incorporation of fear of predators can
significantly change the stability of the coexistence equilibrium of such an eco-epidemiological
system as system (1) has stable coexistence equilibrium. According to biology, in the absence of
predator fear, the system either converges to a state devoid of infections or predators, as cohabitation
is unstable, even with positive starting population densities of susceptible prey, diseased prey, and
predator. Being free of infections is desirable, while being devoid of predators is undesirable. An
eco-epidemiological system that incorporates fear of predators can help maintain population
cohabitation, which is crucial to avoiding such a situation.
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5.2. System (1) with a weak Allee effect in the predator

Sasmal and Chattopadhyay [34] considered the weak Allee effect in the growth of predator
population and concluded that with or without the Allee effect, stable coexistence between susceptible
prey, infected prey, and predator is impossible. Kang et al. [36] considered a strong Allee effect in the
growth of prey population and concluded a similar result, that with or without the Allee effect, stable
coexistence of such an eco-epidemiological system is impossible. Sasmal et al. [35] modified the
system of Kang et al. [36] by considering that intraspecific competition induced additional deaths of
predators which caused the hydra effect [39–41] that can increase the population density of the
predator at the equilibrium with an increase in the mortality (in [35], the mortality is the intraspecfic
death of predators) promoting the coexistence of such eco-epidemiological systems with susceptible
prey, infected prey, and predator.

In this subsection, we compare our studied system (1) in the presence of a weak Allee effect in the
growth of the predator population. For that, we have considered the following system:

dS
dt

= S
[ r
1 + kP

− d1 − d2

(
S + I

)
−
βI

S + I
− aP

]
,

dI
dt

= I
[
βS

S + I
− aP − µ

]
,

dP
dt

= P
[(

bS + αI
) ( P

P + θ

)
− d3

]
.

(10)

Here θ is the weak Allee parameter. If we neglect θ (that is, if θ = 0), then system (10) transforms
to system (1), and the coexistence equilibrium follows the dynamics as described in Theorems 3.1
and 3.4. But whenever θ , 0, system (10) has one stable interior equilibrium (see Figure 4) out of
two interior equilibria that exist. We can consider system (10) as a modification of the system studied
in [34] with the incorporation of the cost of fear in the birth rate of prey. As Sasmal et al. [35] showed
that the hydra effect can promote the coexistence of such eco-epidemiological models, we show that
the fear effect can also promote the coexistence of such eco-epidemiological systems.

From Figure 4, we can conclude that the stable coexistence between susceptible prey, infected prey,
and predator is promoted when we incorporate the cost of fear of predators in the growth of prey, and
this result will not alter if, additionally, we add Allee effects in the predator population.

Interestingly, even though susceptible prey, infected prey, and predators coexist in both the
system (1) and the system studied in [35], the dynamics of the former are simpler than those of the
latter since the former does not support any multistability between the system’s equilibria and has
unique interior equilibrium, while the latter supports bistability between infection-free equilibrium
and predator-free equilibrium and provides two interior equilibria. Since the Allee effect does not
influence the stability of the coexistence equilibrium, such complexity may arise due to the inclusion
of the Allee effect. In biology, if a system exhibits bistability between two equilibria, it can reach any
of those stable equilibria under the same parametric conditions, based on the initial population
densities. In contrast, under specific parametric conditions, the system should converge to a single
stable equilibrium. Therefore, in such an eco-epidemiological system, including fear of predators can
greatly improve species preservation policy.

Mathematical Biosciences and Engineering Volume 22, Issue 11, 2897–2922.



2913

0 500 1000 1500

0

1

2

3

4

Figure 4. Time series of susceptible prey (blue), infected prey (green), and predator (red)
of the system (10) with parameters θ = 0.001, R0 = 1.5, Rd = 1.0, k = 5.0, and all other
parameters are taken from Table 1. System (10) converges to stable interior equilibrium for
initial condition (S , I, P) = (0.1, 0.1, 0.1).

5.3. System (1) with different capture rates and different inter-specific competitions for susceptible
prey and infected prey

Here we present an expanded version of system (1), in which susceptible prey and infected prey
are not constrained by factors like equal resource competition or equal predator’s capture rate of
susceptible and infected prey. Some literature suggests that the infected prey are easier to catch
compared to susceptible prey [31, 42]. But in general, susceptible prey are more competitive in
resource consumption than infected prey as the disease physically weakens them. Thus we modify
system (1) as

dS
dt

= S
[ r
1 + kP

− d1 − d2

(
S + δI

)
−
βI

S + I
− a1P

]
,

dI
dt

= I
[
βS

S + I
− a2P − µ

]
,

dP
dt

= P
[
bS + αI − d3

]
.

(11)

Here a1, a2 (a1 ≤ a2) denotes the capture rates for susceptible prey and infected prey by the predators,
respectively, and δ (≤ 1) is the coefficient that takes into account the reduced competition for resources
between the infected and susceptible prey populations. If δ = 1 and a1 = a2 = a, system (11) will
reduce to our studied system (1).
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(a) Region of existence of interior for
system (11) when k = 0.

(b) Region of existence of interior(s) for
system (11) when k = 1.

(c) Region of stability of interior for
system (11) when k = 1.

Figure 5. The existence and stability of the interior of system (11) for a1(= 0.6) ≤ a2(=
0.9), b(= 0.45) ≥ α(= 0.25), δ ≤ 1, and all other parameters are taken from Table 1. When
there is no fear (i.e., k = 0), there exists a unique unstable interior (Figure 5(a)) but when
there is fear of predators (k = 1), there exist one (green) or two (blue) interiors (Figure 5(b)),
one of which is stable (red region in Figure 5(c)).

Case I: Suppose that the net gain of predators for devouring susceptible prey (b) is greater than the net
gain for consuming the population of diseased prey (α), that is, b ≥ α (i.e., −∞ < α ≤ b), even if the
capture rate of infected prey is larger than that of susceptible prey (a1 ≤ a2). Also, we consider δ ≤ 1,
that is, the infected prey competes less or equally with the susceptible prey for resources. Then we
obtain the following outcomes regarding the stability of equilibria.

1) There exists a unique interior, which is always unstable without the influence of predator fear
(k = 0). The green region in Figure 5(a) represents the region of existence of unique unstable
equilibrium.

2) In the presence of predator fear (k = 1), there exist two interiors. The blue and green regions in
Figure 5(b) represent the region of existence of two and one interior(s), respectively. Also, now
there is a stable interior (the red region in Figure 5(c)) equilibrium.

From Figure 5, we can conclude that the cost of fear can promote the coexistence of susceptible
prey, infected prey, along with the predator in a complex eco-epidemiological system either by
creating new interior(s) or changing the stability from unstable to stable.

Case II: We now examine the scenario in which the net benefit of eating infected prey is greater than
that of eating susceptible prey because infected prey is easier to catch—that is, a1 < a2 and c′ is always
positive, with c′ ≤ c (i.e., the conversion efficiency is still lower for infected prey than susceptible
prey); however, c′a2 > ca1, i.e., α > b. Then there are two interiors, one of which is always steady,
whether or not the cost is the dread of predators. However, as the intensity of anxiety grows, so does
the zone of stability (see Figure 6).

The expansion of the region of stability, which indicates the stability of the interior for greater
ranges of the parameters involved, or the transformation of the unstable equilibrium into a stable one,
implies that the cost of predation fear can facilitate the cohabitation of the three populations. Here,
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the three populations’ coexistence is possible without fear if predator gain from the higher competitive
prey is lower than the other [31, 34, 36]. However, fear can increase the region of stability. In contrast
to system (1), this subsection illustrates the predator fear in a broader eco-epidemiological system. It
has been demonstrated that, regardless of the predator’s gain from susceptible and diseased prey and
their capturing rate, predator fear may always improve the stability and existence of the coexisting
equilibrium of such systems.

(a) Region of existence of interior(s) for
system (11) when k = 0.

(b) Region of stability of interior(s) for
system (11) when k = 0.

(c) Region of stability of interior for
system (11) when k = 1.

Figure 6. The existence and stability of the interior(s) of system (11) for a1(= 0.6) < a2(=
0.9), b(= 0.25) < α(= 0.45), δ(= 0.5) ≤ 1, and all other parameters are taken from Table 1.
Without the cost of fear (i.e., k = 0), there exists one (green) or two (blue) interiors depicted
in Figure 6(a), and the stability region for k = 0 is given in Figure 6(b). But when k = 1, the
stability region is increased and given in Figure 6(c).

Although this study focuses on the role of predator-induced fear under simplified assumptions,
such as Holling type I functional response, and later compared with weak Allee effects, we
acknowledge that more realistic ecological complexities may significantly improve the system
complexity. Adopting Holling type II or III functional responses could introduce saturation or
nonlinear prey handling dynamics, which can potentially give richer dynamics. However, the
stabilizing role of fear on the eco-epidemiological system will not change with Holling type II/III
functional response. Richer dynamical studies with more complex functional responses can be a
potential future direction. Moreover, the interaction of fear with other ecological parameters,
including disease transmission rates, predator mortality, and resource competition, may require deeper
investigation and provide different outcomes. Additionally, analyzing strong Allee effects and their
interaction with fear could uncover important thresholds for persistence and extinction of species.
These aspects represent promising directions for future research to enrich the ecological relevance and
generality of such eco-epidemiological models.

6. Conclusions

We analyze a general eco-epidemiological system with infection in the prey population. We assume
that our proposed system (1) follows the frequency-dependent disease transmission law and that the
infected prey population has no contribution to the new births, but the infected prey equally competes
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for resources with susceptible prey. Also, we consider that the net gain of predators for consuming
infected prey is lesser than consuming susceptible prey. We incorporate the cost of fear of predators
into the birth of the prey. Accessing the system’s behavior at the origin is not easy in such a system,
since the systems connected to the ratio-dependent transmission rate are not defined there. We have
used time-scale desingularization and polar blow-up techniques to remove the singularity of the origin
and analyze the dynamical behavior of the extinction equilibrium of system (1). Additionally, we
analyze the stability of each equilibrium of system (1), where the cost of fear (k), the basic reproduction
number (R0), and the disease-free demographic reproduction number of predators (Rd) play crucial
roles. System (1) has unique coexistence equilibrium which can be locally asymptotically stable or it
can have oscillatory coexistence. By analyzing and numerically verifying system (1), and by discussing
and comparing the results obtained with the outcomes from models (9)–(11), we answer the questions
raised in the introduction.

From Table 2, we can say that without the cost of fear, system (9) has no stable coexistence between
susceptible prey, infected prey, and predator. In contrast, after adding the cost of fear into the birth of
prey population, system (1) exhibits oscillatory coexistence and stable coexistence between the species.
From this, we can conclude that the cost of fear of predators can promote the coexistence of such an
eco-epidemiological system, which answers the first question.

We study system (10), which exhibits stable coexistence, whereas Sasmal and Chattopadhyay [34]
showed that without the cost of fear, system (10) could not have stable coexistence in such an
eco-epidemiological system. Thus, we conclude that with or without the Allee effect, the cost of fear
of predators can promote coexistence in such an eco-epidemiological system, which answers the
second question.

Our conclusion is the same, i.e., fear can promote the three species’ coexistence even if we remove
the two vital assumptions, equal competitive abilities of susceptible and infected prey, and equal
capture rates of both prey by predator. By studying the more general model (11), we answer the
third question.

This research offers important ecological insights into how long-term species dynamics may be
impacted by behavioral reactions to predation, particularly the decrease in prey birth rates carried on by
fear. The model shows how fear, a non-lethal but significant ecological element, may make otherwise
unstable systems stable and encourage the existence of all interacting populations. The results of
coexistence are noteworthy because they show how resilient fear-driven processes are, even when
traditional presumptions like predator feeding preferences or prey competitiveness are loosened. These
results highlight how behavioral ecology should be incorporated into eco-epidemiological models to
better understand the stability of real-world ecosystems.
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Appendix

Appendix A

The signs of the coefficients of Eq (5) are as follows:

A = d2 (b − α)
[
b(a − µk) − aα − αkµ(R0 − 1)

]
=⇒ A < 0 ⇐⇒ R0 − 1 >

a(b − α) − bµk
αµk

.

B is the following quadratic function of R0 − 1 :

ϕB(R0 − 1) = −µ2αkRd (R0 − 1)2
− µ

[
{k (bµ + αd1) − a(b − α)}Rd − kd2 (b − 2α)

]
(R0 − 1)

− {a(b − α)(r − d1) + bd1µk}Rd + d2
[
2a(b − α) − bµk

]
,
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= −µ2αkRd(R0 − 1)2 + B1(R0 − 1) + B2 (say),

Then B2
1 + 4αµ2kRdB2 ≤ 0 =⇒ B < 0.

If B2
1 + 4αµ2kRdB2 > 0, then there are the following scenarios:

• B2 > 0: The equation ϕB(R0 − 1) = 0 has one positive root R(2)
0 (say), consequently, B > 0 if

1 < R0 < 1 + R(2)
0 , and B < 0 if R0 > 1 + R(2)

0 .

• B2 ≤ 0 and B1 ≤ 0 : =⇒ B < 0 for R0 > 1.
• B2 < 0 and B1 > 0: The equation ϕB(R0 − 1) = 0 has two positive roots R(1)

0 ,R
(2)
0 (say), and

consequently, B > 0 if 1 + R(1)
0 < R0 < 1 + R(2)

0 , and B < 0 if 1 < R0 < 1 + R(1)
0 , or R0 > 1 + R(2)

0 .

• B2 = 0 and B1 > 0: The root R(1)
0 merges to zero, and consequently, B > 0 if 1 < R0 < 1 + R(2)

0 ,

and B < 0 if R0 > 1 + R(2)
0 .

Here, B1 < 0 ⇐⇒ Rd >
kd2(b − 2α)

k(bµ + αd1) − a(b − α)
, and

B2 < 0 ⇐⇒ Rd >
d2

[
2a(b − α) − bµk

]
bµkd1 + a(b − α)(r − d1)

.

And R(1),(2)
0 =

−B1 ±

√
B2

1 + 4αµ2kRdB2

−2αµ2kRd
, [R(1)

0 < R(2)
0 ] provided B2

1 + 4αµ2kRdB2 > 0.

Now, B2
1 + 4αµ2kRdB2 = µ

2
[
{k(αd1 − bµ) + a(b − α)}2 − 4akαr(b − α)

]
R2

d

−2µ2d2k
[
α(2α − b)(a − d1k) + b2(µk − a)

]
Rd + µ

2k2d2
2(2α − b)2,

alternatively, = µ2
[
{α(a − d1k)Rd − kd2(2α − b)}2 + {b(µk − a)Rd − µkbd2}

2
]

+µ2
[
2
{
bkµ(ab − αd1) + aαk

(
αd1 − 2r(b − α)

)
− bα

}
R2

d − k2b2d2
2

]
.

Now, C is the following quadratic function of R0 − 1:

ϕC(R0 − 1) = µ2kRd (R0 − 1)2 + µ {kd2 + Rd (a + d1k)} (R0 − 1) − a {(r − d1) Rd − d2} .

If Rd ≤
d2

r − d1
then C > 0.

Again, if Rd >
d2

r − d1
, then the equation ϕC(R0 − 1) = 0 has one positive root R(3)

0 (say), and

consequently, C < 0 if 1 < R0 < 1 + R(3)
0 , and C > 0 if R0 > 1 + R(3)

0 , whereas,

R(3)
0 =

− [(a + d1k)Rd + d2k] +
√

[(a − d1k)Rd − d2k]2 + 4akrR2
d

2µkRd
.

Appendix B

Jacobian matrix (8) elements of system (1):

F(1)
S = −d2 +

µR0I
(S + I)2 , F(1)

I = −

(
d2 +

µR0S
(S + I)2

)
, F(1)

P = −

(
a +

rk
(1 + kP)2

)
,

F(2)
S =

µR0I
(S + I)2 , F(2)

I = −
µR0S

(S + I)2 , F(2)
P = −a,

F(3)
S = b, F(3)

I = α, F(3)
P = 0.
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Appendix C

The Jacobian at the interior has the following characteristic equation

λ3 + A1λ
2 + A2λ + A3 = 0.

Then the Hopf bifurcation can occur when A1A2 = A3, provided the transversality condition
d
dk

(A1A2 − A3) , 0 is satisfied. For a detailed mathematical calculation, we proceed as follows:

Since the interior equilibrium depends on the positive solution of the quadratic equation Ax2 + Bx+
C = 0, where all the coefficients A, B, C (expressions are given in Theorem 3.1) are functions of the
bifurcating parameter k, we use implicit differentiation to find

dX∗

dk
= −

dA
dk

X∗2 +
dB
dk

X∗ +
dC
dk

2AX∗ + B

We can use the above expression to find the derivatives of expressions of S ∗, I∗, and P∗ (expressions
are given in Theorem 3.1) as

dS ∗

dk
= −

α

Rd

dX∗

dk
,

dI∗

dk
=

b
Rd

dX∗

dk
, and

dP∗

dk
= −

bµR0

a {1 + (b − α)X∗}2
dX∗

dk
.

The coefficients of the characteristic equation of the Jacobian at the interior are given in proof of
Theorem 3.4. We can calculate the following derivatives using the above equations and the expressions
of S ∗, I∗, and P∗ given in Theorem 3.1:

dA1

dk
=d1

dS ∗

dk
,

dA2

dk
=

ab
Rd

dP∗

dk
+

br
(1 + kP∗)3

[
(1 + kP∗)kP∗

dS ∗

dk
+ S (1 − kP∗)

(
P∗ + k

dP∗

dk

)]
+
µd2R0

(S ∗ + I∗)2

[
S ∗2

dI∗

dk
+ I∗2

dS ∗

dk

]
,

dA3

dk
=

[
brµkRo

Rd {(S ∗ + I∗)(1 + kP∗)}2
− ad2(b − α)

] (
S ∗I∗

dP∗

dk
+ S ∗

dI∗

dk
P∗ +

dS ∗

dk
I∗P∗

)
−

brµkR0S ∗I∗P∗

Rd {(S ∗ + I∗)(1 + kP∗)}3

[
(S ∗ + I∗)

(
P∗ + 2k

dP∗

dk

)
− 2(1 + kP∗)

(
dS ∗

dk
+

dI∗

dk

)]
.

The transversality condition for Hopf bifurcation in a three-dimensional system can be written as

d
dk

(A1A2 − A3) , 0
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=⇒ A1
dA2

dk
+

dA1

dk
A2 −

dA3

dk
, 0.

Now, finally, we can find the value of k at which the Hopf bifurcation will occur by plotting the
expression A1A2 − A3 with respect to k. When the graph crosses the k−axis, provide the bifurcation
point. We can also plot the transversality condition with respect to k, and verify that at the bifurcating
point, it is nonzero or not. Figure A1 gives the Hopf bifurcation point value of k ≈ 0.435, which
satisfies the Hopf bifurcation point of Figure 3 in the manuscript.

Figure A1. Figure shows the Hopf bifurcation condition and the transversality condition for
it in red and blue colour, respectively.
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