In this article, we proposed a simplified mathematical model of primary tumor growth that involves four cell populations: Two types of cancer cells with different levels of immunogenicity, and the immune response in its two components, innate and adaptive. By varying the proliferation rate of non-immunogenic cancer cells and the innate immune stimulation parameter, and applying biparametric numerical continuation techniques, we identified distinct stability regions that revealed scenarios of tumor escape and latency. A closed curve of supercritical Hopf bifurcation points was also detected, delineating the parameter region in which limit cycles emerged. By examining the population maxima of each cell type at steady state, we identified parameter values at which both immunogenic and non-immunogenic tumor cell populations remain in stable equilibrium at modest levels, sustained by an immune response that does not escalate to intensities associated with immunological damage.
Citation: Manuel Arturo Nova-Martínez, Héctor Andrés Granada-Díaz. Tumor expansion and immune regulation in a mathematical model of cancer under variations in tumor cell proliferation rate and innate immune stimulation[J]. Mathematical Biosciences and Engineering, 2025, 22(11): 2826-2851. doi: 10.3934/mbe.2025104
In this article, we proposed a simplified mathematical model of primary tumor growth that involves four cell populations: Two types of cancer cells with different levels of immunogenicity, and the immune response in its two components, innate and adaptive. By varying the proliferation rate of non-immunogenic cancer cells and the innate immune stimulation parameter, and applying biparametric numerical continuation techniques, we identified distinct stability regions that revealed scenarios of tumor escape and latency. A closed curve of supercritical Hopf bifurcation points was also detected, delineating the parameter region in which limit cycles emerged. By examining the population maxima of each cell type at steady state, we identified parameter values at which both immunogenic and non-immunogenic tumor cell populations remain in stable equilibrium at modest levels, sustained by an immune response that does not escalate to intensities associated with immunological damage.
| [1] |
R. F. Alvarez, J. A. Barbuto, R. Venegeroles, A nonlinear mathematical model of cell-mediated immune response for tumor phenotypic heterogeneity, J. Theor. Biol., 471 (2019), 42–50. https://doi.org/10.1016/j.jtbi.2019.03.025 doi: 10.1016/j.jtbi.2019.03.025
|
| [2] |
E. Leschiera, T. Lorenzi, S. Shen, L. Almeida, C. Audebert, A mathematical model to study the impact of intra-tumour heterogeneity on anti-tumour CD8+ T cell immune response, J. Theor. Biol., 538 (2022), 111028. https://doi.org/10.1016/j.jtbi.2022.111028 doi: 10.1016/j.jtbi.2022.111028
|
| [3] |
T. Singh, M. Bhattacharya, A. K. Mavi, A. Gulati, N. K. Sharma, S. Gaur, et al., Immunogenicity of cancer cells: An overview, Cell. Signal., 113 (2024), 110952. ttps://doi.org/10.1016/j.cellsig.2023.110952 doi: 10.1016/j.cellsig.2023.110952
|
| [4] |
V. Debien, A. De Caluwé, X. Wang, M. Piccart-Gebhart, V. K. Tuohy, E. Romano, et al., Immunotherapy in breast cancer: An overview of current strategies and perspectives, NPJ Breast Cancer, 9 (2023), 1–10. https://doi.org/10.1038/s41523-023-00508-3 doi: 10.1038/s41523-023-00508-3
|
| [5] |
R. Rui, L. Zhou, S. He, Cancer immunotherapies: Advances and bottlenecks, Front. Immunol., 14 (2023), 1212476. https://doi.org/10.3389/fimmu.2023.1212476 doi: 10.3389/fimmu.2023.1212476
|
| [6] |
V. Shankaran, H. Ikeda, A. Bruce, J. White, P. Swanson, L. Old, et al., IFN$\gamma$ and lymphocytes prevent primary tumour development and shape tumour immunogenicity, Nature, 410 (2001), 1107–1111. https://doi.org/10.1038/35074122 doi: 10.1038/35074122
|
| [7] |
N. P. Restifo, M. J. Smyth, A. Snyder, Acquired resistance to immunotherapy and future challenges, Nat. Rev. Cancer, 16 (2016), 121-–126. https://doi.org/10.1038/nrc.2016.2 doi: 10.1038/nrc.2016.2
|
| [8] |
Y. Shu, J. Huang, Y. Dong, Y. Takeuchi, Mathematical modeling and bifurcation analysis of pro-and anti-tumor macrophages, Appl. Math. Modell., 88 (2020), 758–773. https://doi.org/10.1016/j.apm.2020.06.042 doi: 10.1016/j.apm.2020.06.042
|
| [9] |
A. S. Moffett, Y. Deng, H. Levine, Modeling the role of immune cell conversion in the tumor-immune microenvironment, Bull. Math. Biol., 85 (2023), 85–93. https://doi.org/10.1007/s11538-023-01201-z doi: 10.1007/s11538-023-01201-z
|
| [10] |
R. A. Flavell, S. Sanjabi, S. H. Wrzesinski, P. Licona-Limón, The polarization of immune cells in the tumour environment by TGF$\beta$, Nat. Rev. Immunol., 10 (2010), 554–567. https://doi.org/10.1038/nri2808 doi: 10.1038/nri2808
|
| [11] |
G. E. Mahlbacher, K. C. Reihmer, H. B. Frieboes, Mathematical modeling of tumor-immune cell interactions, J. Theor. Biol., 469 (2019), 47–60. https://doi.org/10.1016/j.jtbi.2019.03.002 doi: 10.1016/j.jtbi.2019.03.002
|
| [12] |
K. P. Wilkie, P. Hahnfeldt, Modeling the dichotomy of the immune response to cancer: Cytotoxic effects and tumor-promoting inflammation, Bull. Math. Biol., 79 (2017), 1426–1448. https://doi.org/10.1007/s11538-017-0291-4 doi: 10.1007/s11538-017-0291-4
|
| [13] |
J. Li, X. Xie, Y. Chen, D. Zhang, Complex dynamics of a tumor-immune system with antigenicity, Appl. Math. Comput., 400 (2021), 126052. https://doi.org/10.1016/j.amc.2021.126052 doi: 10.1016/j.amc.2021.126052
|
| [14] |
M. Ghanizadeh, S. P. Shariatpanahi, B. Goliaei, C. Rüegg, Mathematical modeling approach of cancer immunoediting reveals new insights in targeted-therapy and timing plan of cancer treatment, Chaos Solitons Fractals, 152 (2021), 111349. https://doi.org/10.1016/j.chaos.2021.111349 doi: 10.1016/j.chaos.2021.111349
|
| [15] |
O. Nave, M. Sigron, A mathematical model for cancer treatment based on combination of anti-angiogenic and immune cell therapies, Results Appl. Math., 16 (2022), 100330. https://doi.org/10.1016/j.rinam.2022.100330 doi: 10.1016/j.rinam.2022.100330
|
| [16] |
V. Kuznetsov, I. Makalkin, M. Taylor, A. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321. https://doi.org/10.1016/S0092-8240(05)80260-5 doi: 10.1016/S0092-8240(05)80260-5
|
| [17] |
L. G. De Pillis, A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: An optimal control approach, Comput. Math. Methods Med., 3 (2001), 79–100. https://doi.org/10.1080/10273660108833067 doi: 10.1080/10273660108833067
|
| [18] |
M. Itik, S. P. Banks, Chaos in a three-dimensional cancer model, Int. J. Bifurcation Chaos, 20 (2010), 71–79. https://doi.org/10.1142/S0218127410025417 doi: 10.1142/S0218127410025417
|
| [19] |
A. N. Kanatnikov, K. E. Starkov, Ultimate dynamics of the Two-Phenotype cancer model: Attracting sets and global cancer eradication conditions, Mathematics, 11 (2023), 4275. https://doi.org/10.3390/math11204275 doi: 10.3390/math11204275
|
| [20] | L. Perko, Differential Equations and Dynamical Systems, 3rd edition, Springer New York, 2001. https://doi.org/10.1007/978-1-4613-0003-8 |
| [21] | W. Govaerts, Y. Kuznetsov, H. Meijer, Matcont: Numerical bifurcation analysis toolbox in Matlab, 2025. Available: https://sourceforge.net/projects/matcont/. |
| [22] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 4th edition, Springer Cham, New York, 2023. https://doi.org/10.1007/978-3-031-22007-4 |
| [23] | J. Guckenheimer, P. Holmes, Nonlinear Oscillations Dynamical Systems, and Bifurcations of Vector Fields, 2nd edition, Springer New York, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
| [24] |
G. P. Dunn, L. J. Old, R. D. Schreiber, The three Es of cancer immunoediting, Ann. Rev. Immunol., 22 (2004), 329–360. https://doi.org/10.1146/annurev.immunol.22.012703.104803 doi: 10.1146/annurev.immunol.22.012703.104803
|
| [25] |
M. A. N. Martínez, H. A. G. Díaz, P. E. Calderón Saavedra, Dynamics of a mathematical model of cancer and immunoediting scenarios under the variation of the immune cell activation rate, Int. J. Bifurcation Chaos, 32 (2022), 2230014. https://doi.org/10.1142/S0218127422300142 doi: 10.1142/S0218127422300142
|
| [26] |
L. Chen, T. Quach, COVID-19 cytokine storm syndrome: A threshold concept, Lancet Microbe, 2 (2021), 49–50. https://doi.org/10.1016/S2666-5247(20)30223-8 doi: 10.1016/S2666-5247(20)30223-8
|
| [27] |
N. Mangalmurti, C. A. Hunter, Cytokine storms: Understanding COVID-19, Immunity, 53 (2020), 19–25. https://doi.org/10.1016/j.immuni.2020.06.017 doi: 10.1016/j.immuni.2020.06.017
|
| [28] |
J. S. Marshall, R. Warrington, W. Watson, H. L. Kim, An introduction to immunology and immunopathology, Allergy Asthma, Clin. Immunol., 14 (2018), 4275. https://doi.org/10.1186/s13223-018-0278-1 doi: 10.1186/s13223-018-0278-1
|
| [29] | R. Q. Cron, G. Goyal, W. W. Chatham, Cytokine storm syndrome, Ann. Rev. Med., 74 (2023), 321–337. https://doi.org/10.1146/annurev-med-042921-112837 |