Prior research has explored co-infections that involve two respiratory viruses, yet triple infections remain poorly elucidated. With the COVID-19 pandemic and seasonal epidemics of respiratory syncytial virus (RSV) and influenza, understanding the dynamics of triple infections is critical for public health preparedness. The simultaneous circulation of influenza A virus (IAV), RSV, and SARS-CoV-2 presents a significant public health burden, particularly among vulnerable populations such as children, the elderly, and immunocompromised individuals. Comprehending the interactions among these viruses is crucial to improve our capacity to forecast and curb disease outbreaks. This study addresses the escalating concern over the interaction of multiple respiratory viruses by introducing a simple mathematical model to analyze triple infection dynamics involving IAV, RSV, and SARS-CoV-2. The central question addressed in this study is how variations in infection rates influence each virus's duration and peak viral load in a triple-infection scenario. We find distinct regimes where each virus can dominate and suppress the viral load and duration of the remaining two viruses. We derive an analytical expression for the dependence of the critical infection rate of one virus on the infection rates of the other two viruses. While the model will need to be extended to realistically capture in vivo viral dynamics, this analysis helps provide insight into the complex dynamics of multiple virus infections.
Citation: Saanvi Srivastava, Hana M. Dobrovolny. Quantitative analysis of respiratory viral triple infections: Examining within host dynamics of Influenza, RSV, and SARS-CoV-2[J]. Mathematical Biosciences and Engineering, 2025, 22(11): 2852-2869. doi: 10.3934/mbe.2025105
Prior research has explored co-infections that involve two respiratory viruses, yet triple infections remain poorly elucidated. With the COVID-19 pandemic and seasonal epidemics of respiratory syncytial virus (RSV) and influenza, understanding the dynamics of triple infections is critical for public health preparedness. The simultaneous circulation of influenza A virus (IAV), RSV, and SARS-CoV-2 presents a significant public health burden, particularly among vulnerable populations such as children, the elderly, and immunocompromised individuals. Comprehending the interactions among these viruses is crucial to improve our capacity to forecast and curb disease outbreaks. This study addresses the escalating concern over the interaction of multiple respiratory viruses by introducing a simple mathematical model to analyze triple infection dynamics involving IAV, RSV, and SARS-CoV-2. The central question addressed in this study is how variations in infection rates influence each virus's duration and peak viral load in a triple-infection scenario. We find distinct regimes where each virus can dominate and suppress the viral load and duration of the remaining two viruses. We derive an analytical expression for the dependence of the critical infection rate of one virus on the infection rates of the other two viruses. While the model will need to be extended to realistically capture in vivo viral dynamics, this analysis helps provide insight into the complex dynamics of multiple virus infections.
| [1] |
G. Shirreff, S. S. Chaves, L. Coudeville, B. Mengual-Chulia, A. Mira-Iglesias, J. Puig-Barbera, et al., Seasonality and co-detection of respiratory viral infections among hospitalised patients admitted with acute respiratory illness-Valencia region, Spain, 2010–2021, Influenza Other Respi. Viruses, 18 (2024), e70017. https://doi.org/10.1111/irv.70017 doi: 10.1111/irv.70017
|
| [2] |
N. C. Marshall, R. M. Kariyawasam, N. Zelyas, J. N. Kanji, M. A. Diggle, Broad respiratory testing to identify sars-cov-2 viral co-circulation and inform diagnostic stewardship in the COVID-19 pandemic, Virol. J., 18 (2021), 93. https://doi.org/10.1186/s12985-021-01545-9 doi: 10.1186/s12985-021-01545-9
|
| [3] |
S. Nickbakhsh, F. Thorburn, B. Von Wissmann, J. McMenamin, R. N. Gunson, P. R. Murcia, Extensive multiplex PCR diagnostics reveal new insights into the epidemiology of viral respiratory infections, Epidemiol. Infect., 144 (2016), 2064–2076. https://doi.org/10.1017/S0950268816000339 doi: 10.1017/S0950268816000339
|
| [4] |
G. Guido, E. Lalle, S. Mosti, P. Mencarini, D. Lapa, R. Libertone, et al., Recovery from triple infection with SARS-CoV-2, RSV and influenza virus: A case report, J. Infect. Public Health, 16 (2023), 1045–1047. https://doi.org/10.1016/j.jiph.2023.05.001 doi: 10.1016/j.jiph.2023.05.001
|
| [5] |
M. K. Lee, D. Alfego, S. E. Dale, Prevalence and trends in mono- and co-infection of COVID-19, influenza A/B, and respiratory syncytial virus, January 2018–June 2023, Front. Public Health, 11 (2023), 1297981. https://doi.org/10.3389/fpubh.2023.1297981 doi: 10.3389/fpubh.2023.1297981
|
| [6] |
A. H. Baker, L. K. Lee, B. E. Sard, S. Chung, The 4 S's of disaster management framework: A case study of the 2022 pediatric tripledemic response in a community hospital, Ann. Emerg. Med., 83 (2024), 568–575. https://doi.org/10.1016/j.annemergmed.2024.01.020 doi: 10.1016/j.annemergmed.2024.01.020
|
| [7] |
W. Luo, Q. Liu, Y. Zhou, Y. Ran, Z. Liu, W. Hou, et al., Spatiotemporal variations of "triple-demic" outbreaks of respiratory infections in the united states in the post COVID-19 era, BMC Public Health, 23 (2023), 2452. https://doi.org/10.1186/s12889-023-17406-9 doi: 10.1186/s12889-023-17406-9
|
| [8] |
E. R. Tavares, T. F. de Lima, G. Bartolomeu-Goncalves, I. M. de Castro, D. G. de Lima, P. H. G. Borges, et al., Development of a melting-curve-based multiplex real-time PCR assay for the simultaneous detection of viruses causing respiratory infection, Microorganisms, 11 (2023), 2692. https://doi.org/10.3390/microorganisms11112692 doi: 10.3390/microorganisms11112692
|
| [9] |
R. Cohen, H. Haas, O. Romain, S. Bechet, C. Romain, C. D. T. de Lays, et al., Use of rapid antigen triple test nasal swabs (COVID-VIRO ALL-IN TRIPLEX: Severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, and influenza) in children with respiratory symptoms: A real-life prospective study, Open Forum Infect Diseases, 11 (2024), ofad617. https://doi.org/10.1093/ofid/ofad617 doi: 10.1093/ofid/ofad617
|
| [10] |
F. Ahmadi, F. Z. Zanganeh, I. A. Tehrani, S. Shoaee, H. Choobin, A. Bozorg, et al., Evaluating an extraction-free sample preparation method for multiplex detection of SARS-Cov-2, influenza A/B, and RSV with implementation on a microfluidic chip, Diagn. Microbiol. Infect. Disease, 109 (2024), 116325. https://doi.org/10.1016/j.diagmicrobio.2024.116325 doi: 10.1016/j.diagmicrobio.2024.116325
|
| [11] |
T. Y. Kim, G. E. Bae, J.-Y. Kim, M. Kang, J.-H. Jang, H. J. Huh, et al., Evaluation of the Kaira COVID-19/flu/rsv detection kit for detection of SARS-CoV-2, influenza A/B, and respiratory syncytial virus: A comparative study with the PowerChek SARS-CoV-2, influenza A & B, RSV multiplex real-time PCR kit, PLoS One, 17 (2022), e0278530. https://doi.org/10.1371/journal.pone.0278530 doi: 10.1371/journal.pone.0278530
|
| [12] |
N. Sultanoglu, E. Erdag, C. S. Ozverel, A single antiviral for a triple epidemic: Is it possible?, Future Virol., 18 (2023), 633–642. https://doi.org/10.2217/fvl-2023-0048 doi: 10.2217/fvl-2023-0048
|
| [13] |
Y. Wang, X. Wei, Y. Liu, S. Li, W. Pan, J. Dai, et al., Towards broad-spectrum protection: the development and challenges of combined respiratory virus vaccines, Front. Cellular Infect. Microbiol., 14 (2024), 1412478. https://doi.org/10.3389/fcimb.2024.1412478 doi: 10.3389/fcimb.2024.1412478
|
| [14] | L. Pinky, H. M. Dobrovolny, Coinfections of the respiratory tract: Viral competition for resources, PLoS ONE, 11 (2016), e0155589. https://doi.org/10.1371/journal.pone.0155589 |
| [15] |
A. Pizzorno, B. Padey, V. Duliere, W. Mouton, J. Oliva, E. Laurent, et al., Interactions between severe acute respiratory syndrome coronavirus 2 replication and major respiratory viruses in human nasal epithelium, J. Infect. Diseases, 226 (2022), 2095–2104. https://doi.org/10.1093/infdis/jiac357 doi: 10.1093/infdis/jiac357
|
| [16] | N. Sankuntaw, N. Punyadee, W. Chantratita, V. Lulitanond, Coinfection with respiratory syncytial virus and rhinovirus increases IFN-$\lambda$1 and CXCL10 expression in human primary bronchial epithelial cells, New Microbiol., 47 (2024), 60–67. |
| [17] |
E.-H. Kim, T.-Q. Nguyen, M. A. B. Casel, R. Rollon, S.-M. Kim, Y.-I. Kim, et al., Coinfection with SARS-CoV-2 and influenza A virus increases disease severity and impairs neutralizing antibody and CD4+ T cell responses, J. Virol., 96 (2022), e01873-21. https://doi.org/10.1128/jvi.01873-21 doi: 10.1128/jvi.01873-21
|
| [18] |
G. Cox, A. J. Gonzalez, E. C. Ijezie, A. Rodriguez, C. R. Miller, J. T. Van Leuven, et al., Priming with rhinovirus protects mice against a lethal pulmonary coronavirus infection, Front. Immunol., 13 (2022), 886611. https://doi.org/10.3389/fimmu.2022.886611 doi: 10.3389/fimmu.2022.886611
|
| [19] |
K. Trepat, A. Gibeaud, S. Trouillet-Assant, O. Terrier, Exploring viral respiratory coinfections: Shedding light on pathogen interactions, PLoS Pathogens, 20 (2024), e1012556. https://doi.org/10.1371/journal.ppat.1012556 doi: 10.1371/journal.ppat.1012556
|
| [20] |
M. J. Kim, S. Kim, H. Kim, D. Gil, H.-J. Han, R. K. Thimmulappa, et al., Reciprocal enhancement of SARS-CoV-2 and influenza virus replication in human pluripotent stem cell-derived lung organoids, Emerg. Microb. Infect., 12 (2023), 2211685. https://doi.org/10.1080/22221751.2023.2211685 doi: 10.1080/22221751.2023.2211685
|
| [21] |
J. J. Clark, R. Penrice-Randal, P. Sharma, X. Dong, S. H. Pennington, A. E. Marriott, et al., Sequential infection with influenza a virus followed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to more severe disease and encephalitis in a mouse model of COVID-19, Viruses–-Basel, 16 (2024), 863. https://doi.org/10.3390/v16060863 doi: 10.3390/v16060863
|
| [22] |
K. Roe, Lethal synergistic infections by two concurrent respiratory pathogens, Arch. Med. Res., 56 (2024), 103101. https://doi.org/10.1016/j.arcmed.2024.103101 doi: 10.1016/j.arcmed.2024.103101
|
| [23] |
K. F. Chan, L. A. Carolan, D. Korenkov, J. Druce, J. McCaw, P. C. Reading, et al., Investigating viral interference between influenza A virus and human respiratory syncytial virus in a ferret model of infection, J. Infect. Dis., 218 (2018), 406–417. https://doi.org/10.1093/infdis/jiy184 doi: 10.1093/infdis/jiy184
|
| [24] |
Y. Drori, J. Jacob-Hirsch, R. Pando, A. Glatman-Freedman, N. Friedman, E. Mendelson, et al., Influenza A virus inhibits RSV infection via a two-wave expression of IFIT proteins, Viruses — Basel, 12 (2020), 1171. https://doi.org/10.3390/v12101171 doi: 10.3390/v12101171
|
| [25] | M. Shinjoh, K. Omoe, N. Saito, N. Matsuo, K. Nerome, In vitro growth profiles of respiratory syncytial virus in the presence of influenza virus, Acta Virol., 44 (2000), 91–97. |
| [26] |
S. M. Hartwig, A. M. Miller, S. M. Varga, Respiratory syncytial virus provides protection against a subsequent influenza A virus infection, J. Immunol., 208 (2022), 1–12. https://doi.org/10.4049/jimmunol.2000751 doi: 10.4049/jimmunol.2000751
|
| [27] |
M. Czerkies, M. Kochanczyk, Z. Korwek, W. Prus, T. Lipniacki, Respiratory syncytial virus protects bystander cells against influenza A virus infection by triggering secretion of type Ⅰ and type Ⅲ interferons, J. Virol., 96 (2022), e01341-22. https://doi.org/10.1128/jvi.01341-22 doi: 10.1128/jvi.01341-22
|
| [28] |
S. M. Hartwig, A. Odle, L.-Y. R. Wong, D. K. Meyerholz, S. Perlman, S. M. Varga, Respiratory syncytial virus infection provides protection against severe acute respiratory syndrome coronavirus challenge, J. Virol., 98 (2024), e00669-24. https://doi.org/10.1128/jvi.00669-24 doi: 10.1128/jvi.00669-24
|
| [29] |
K. Dee, V. Schultz, J. Haney, L. A. Bissett, C. Magill, P. R. Murcia, Influenza A and respiratory syncytial virus trigger a cellular response that blocks severe acute respiratory syndrome virus 2 infection in the respiratory tract, J. Infect. Diseases, 227 (2023), 1396–1406. https://doi.org/10.1093/infdis/jiac494 doi: 10.1093/infdis/jiac494
|
| [30] |
S. Gilbert-Girard, J. Piret, J. Carbonneau, M. Henaut, N. Goyette, G. Boivin, Viral interference between severe acute respiratory syndrome coronavirus 2 and influenza A viruses, PLoS Pathogens, 20 (2024), e1012017. https://doi.org/10.1371/journal.ppat.1012017 doi: 10.1371/journal.ppat.1012017
|
| [31] |
N. R. Cheemarla, T. A. Watkins, V. T. Mihaylova, E. F. Foxman, Viral interference during influenza A-SARS-CoV-2 coinfection of the human airway epithelium and reversal by oseltamivir, J. Infect. Diseases, 229 (2024), 1430-1434. https://doi.org/10.1093/infdis/jiad402 doi: 10.1093/infdis/jiad402
|
| [32] |
K. Oishi, S. Horiuchi, J. M. Minkoff, B. R. tenOever, The host response to influenza A virus interferes with SARS-CoV-2 replication during coinfection, J. Virol., 96 (2022), e00765-22. https://doi.org/10.1128/jvi.00765-22 doi: 10.1128/jvi.00765-22
|
| [33] |
H. C. Maltezou, A. Papanikolopoulou, S. Vassiliu, K. Theodoridou, G. Nikolopoulou, N. V. Sipsas, COVID-19 and respiratory virus co-infections: A systematic review of the literature, Viruses — Basel, 15 (2023), 865. https://doi.org/10.3390/v15040865 doi: 10.3390/v15040865
|
| [34] |
E. A. Goka, P. J. Vallely, K. J. Mutton, P. E. Klapper, Single, dual and multiple respiratory virus infections and risk of hospitalization and mortality, Epidemiol. Infect., 143 (2015), 37–47. https://doi.org/10.1017/S0950268814000302 doi: 10.1017/S0950268814000302
|
| [35] |
P. I. Babawale, A. Guerrero-Plata, Respiratory viral coinfections: Insights into epidemiology, immune response, pathology, and clinical outcomes, Pathogens, 13 (2024), 316. https://doi.org/10.3390/pathogens13040316 doi: 10.3390/pathogens13040316
|
| [36] |
H. Al Kindi, L. W. Meredith, A. Al-Jardani, F. Sajina, I. Al Shukri, R. al Haj, et al., Time trend of respiratory viruses before and during the COVID-19 pandemic in severe acute respiratory virus infection in the Sultanate of Oman between 2017 and 2022, Influenza Other Respi. Viruses, 17 (2023), e13233. https://doi.org/10.1111/irv.13233 doi: 10.1111/irv.13233
|
| [37] |
C. Mantelli, P. Colson, L. Lesage, D. Stoupan, H. Chaudet, A. Morand, et al., Coinfections and iterative detection of respiratory viruses among 17,689 patients between March 2021 and December 2022 in Southern France, J. Clin. Virol., 175 (2024), 105744. https://doi.org/10.1016/j.jcv.2024.105744 doi: 10.1016/j.jcv.2024.105744
|
| [38] |
B. Nieto-Rivera, Z. Saldana-Ahuactzi, I. Parra-Ortega, A. Flores-Alanis, E. Carbajal-Franco, A. Cruz-Rangel, et al., Frequency of respiratory virus-associated infection among children and adolescents from a tertiary-care hospital in Mexico City, Sci. Rep., 13 (2023), 19763. https://doi.org/10.1038/s41598-023-47035-6 doi: 10.1038/s41598-023-47035-6
|
| [39] |
H. M. Dobrovolny, How do viruses get around? a review of mathematical modeling of in-host viral transmission, Virology, 604 (2025), 110444. https://doi.org/10.1016/j.virol.2025.110444 doi: 10.1016/j.virol.2025.110444
|
| [40] |
E. Mochan, T. J. Sego, Mathematical modeling of the lethal synergism of coinfecting pathogens in respiratory viral infections: A review, Microorganisms, 11 (2023), 2974. https://doi.org/10.3390/microorganisms11122974 doi: 10.3390/microorganisms11122974
|
| [41] |
J. Yin, J. Redovich, Kinetic modeling of virus growth in cells, Microbiol. Mol. Biol. Rev., 82 (2018), e00066–17. https://doi.org/10.1128/MMBR.00066-17 doi: 10.1128/MMBR.00066-17
|
| [42] | M. Zhang, M. Li, J. Ma, The role of long-lived plasma cells in viral clearance, J. Biol. Dynam., 18 (2024). https://doi.org/10.1080/17513758.2024.2325523 |
| [43] | M. W. Tan, A. J. N. Anelone, A. T. Tay, R. Y. Tan, K. Zeng, K. B. Tan, et al., Differences in virus and immune dynamics for SARS-CoV-2 delta and omicron infections by age and vaccination histories, BMC Infect. Diseases, 24 (2024). https://doi.org/10.1186/s12879-024-09572-x |
| [44] | D. Stocks, A. Thomas, A. Finn, L. Danon, E. Brooks-Pollock, Mechanistic models of humoral kinetics following COVID-19 vaccination, J. Royal Soc. Interface, 22 (2024). https://doi.org/10.1098/rsif.2024.0445 |
| [45] |
A. Suri, S. Satani, H. M. Dobrovolny, Analyzing differences in viral dynamics between vaccinated and unvaccinated RSV patients, Epedemiologia, 6 (2025), 16. https://doi.org/10.3390/epidemiologia6020016 doi: 10.3390/epidemiologia6020016
|
| [46] | L. Schuh, P. V. Markov, I. Voulgaridi, Z. Bogogiannidou, V. A. Mouchtouri, C. Hadjichristodoulou, et al., Within-host dynamics of antiviral treatment with remdesivir for SARS-CoV-2 infection, J. Royal Soc. Interface, 21 (2024). https://doi.org/10.1098/rsif.2024.0536 |
| [47] |
A. Chiarelli, H. Dobrovolny, Viral rebound after antiviral treatment: A mathematical modeling study of the role of antiviral mechanism of action, Interdiscipl. Sci. Comput. Life Sci., 16 (2024), 844–853. https://doi.org/10.1007/s12539-024-00643-w doi: 10.1007/s12539-024-00643-w
|
| [48] |
T. Phan, R. M. Ribeiro, G. E. Edelstein, J. Boucau, R. Uddin, C. Marino, et al., Modeling suggests SARS-CoV-2 rebound after nirmatrelvir-ritonavir treatment is driven by target cell preservation coupled with incomplete viral clearance, J. Virol., 99 (2025), e01623-24. https://doi.org/10.1128/jvi.01623-24 doi: 10.1128/jvi.01623-24
|
| [49] |
B. Jessie, H. Dobrovolny, The role of syncytia during viral infections, J. Theor. Biol., 525 (2021), 110749. https://doi.org/10.1016/j.jtbi.2021.110749 doi: 10.1016/j.jtbi.2021.110749
|
| [50] |
Z. Noffel, H. M. Dobrovolny, Quantifying the effect of defective viral genomes in respiratory syncytial virus infections, Math. Biosci. Eng., 20 (2023), 12666–12681. https://doi.org/10.3934/mbe.2023564 doi: 10.3934/mbe.2023564
|
| [51] |
L. Schuh, P. Markov V, V. M. Veliov, N. I. Stilianakis, A mathematical model for the within-host (re)infection dynamics of SARS-CoV-2, Math. Biosci., 371 (2024), 109178. https://doi.org/10.1016/j.mbs.2024.109178 doi: 10.1016/j.mbs.2024.109178
|
| [52] |
B. Fain, H. M. Dobrovolny, Initial inoculum and the severity of COVID-19: A mathematical modeling study of the dose-response of SARS-CoV-2 infections, Epidemiologia, 1 (2020), 5–15. https://doi.org/10.3390/epidemiologia1010003 doi: 10.3390/epidemiologia1010003
|
| [53] |
L. Pinky, J. R. DeAguero, C. H. Remien, A. M. Smith, How interactions during viral-viral coinfection can shape infection kinetics, Viruses-Basel, 15 (2023), 1303. https://doi.org/10.3390/v15061303 doi: 10.3390/v15061303
|
| [54] |
L. Pinky, H. M. Dobrovolny, The impact of cell regeneration on the dynamics of viral coinfection, Chaos, 27 (2017), 063109. https://doi.org/10.1063/1.4985276 doi: 10.1063/1.4985276
|
| [55] |
L. Pinky, G. González-Parra, H. M. Dobrovolny, Superinfection and cell regeneration can lead to chronic viral coinfections, J. Theor. Biol., 466 (2019), 24–38. https://doi.org/10.1016/j.jtbi.2019.01.011 doi: 10.1016/j.jtbi.2019.01.011
|
| [56] |
Z. Noffel, H. M. Dobrovolny, Modeling the bystander effect during viral coinfection, J. Theor. Biol., 594 (2024), 111928. https://doi.org/10.1016/j.jtbi.2024.111928 doi: 10.1016/j.jtbi.2024.111928
|
| [57] |
N. Polavarapu, M. Doty, H. M. Dobrovolny, Exploring the treatment of SARS-CoV-2 with modified vesicular stomatitis virus, J. Theor. Biol., 595 (2024), 111959. https://doi.org/10.1016/j.jtbi.2024.111959 doi: 10.1016/j.jtbi.2024.111959
|
| [58] |
M. A. Taye, Host viral load during triple coinfection of SARS-CoV-2, influenza virus, and syncytial virus, Contempor. Msth., 4 (2023), 392–410. https://doi.org/10.37256/cm.4320232500 doi: 10.37256/cm.4320232500
|
| [59] |
Y. Lu, T. Zhao, M. Lu, Y. Zhang, X. Yao, G. Wu, et al., The analyses of high infectivity mechanism of sars-cov-2 and its variants, COVID, 1 (2021), 666–673. https://doi.org/10.3390/covid1040054 doi: 10.3390/covid1040054
|
| [60] |
H. Choi, P. Chatterjee, M. Hwang, E. Lichtfouse, V. K. Sharma, C. Jinadatha, The viral phoenix: enhanced infectivity and immunity evasion of SARS-CoV-2 variants, Environm. Chem. Lett., 20 (2022), 1539–1544. https://doi.org/10.1007/s10311-021-01318-4 doi: 10.1007/s10311-021-01318-4
|
| [61] |
Y. Hu, S. Peng, B. Su, T. Wang, J. Lin, W. Sun, et al., Laboratory studies on the infectivity of human respiratory viruses: Experimental conditions, detections, and resistance to the atmospheric environment, Fund. Res., 4 (2024), 471–483. https://doi.org/10.1016/j.fmre.2023.12.017 doi: 10.1016/j.fmre.2023.12.017
|
| [62] |
T. C. Bouton, J. Atarere, J. Turcinovic, S. Seitz, C. Sher-Jan, M. Gilbert, et al., Viral dynamics of omicron and delta severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with implications for timing of release from isolation: A longitudinal cohort study, Clin. Infect. Diseases, 76 (2023), E227–E233. https://doi.org/10.1093/cid/ciac510 doi: 10.1093/cid/ciac510
|
| [63] |
L. Pinky, H. M. Dobrovolny, SARS-CoV-2 coinfections: Could influenza and the common cold be beneficial?, J Med Virol., 92 (2020), 2623–2630. https://doi.org/10.1002/jmv.26098 doi: 10.1002/jmv.26098
|
| [64] |
A. M. Smith, F. R. Adler, A. S. Perelson, An accurate two-phase approximate solution to an acute viral infection model, J. Math. Biol., 60 (2010), 711–726. https://doi.org/10.1007/s00285-009-0281-8 doi: 10.1007/s00285-009-0281-8
|
| [65] |
L. Xue, S. Jing, K. Zhang, R. Milne, H. Wang, Infectivity versus fatality of SARS-CoV-2 mutations and influenza, Int. J. Infect. Diseases, 121 (2022), 195–202. https://doi.org/10.1016/j.ijid.2022.05.031 doi: 10.1016/j.ijid.2022.05.031
|
| [66] |
D. Niemeyer, S. Stenzel, T. Veith, S. Schroeder, K. Friedmann, F. Weege, et al., SARS-CoV-2 variant alpha has a spike-dependent replication advantage over the ancestral B.1 strain in human cells with low ACE2 expression, PLoS Biol., 20 (2022), e3001871. https://doi.org/10.1371/journal.pbio.3001871 doi: 10.1371/journal.pbio.3001871
|
| [67] |
T. K. Fayyadh, F. Ma, C. Qin, X. Zhang, W. Li, X.-E. Zhang, et al., Simultaneous detection of multiple viruses in their co-infected cells using multicolour imaging with self-assembled quantum dot probes, Microch. Acta, 184 (2017), 2815–2824. https://doi.org/10.1007/s00604-017-2300-6 doi: 10.1007/s00604-017-2300-6
|
| [68] |
L. E. Wee, J. T. Lim, R. W. L. Ho, C. J. Chiew, B. Young, I. Venkatachalam, et al., Severity of respiratory syncytial virus versus SARS-CoV-2 omicron and influenza infection amongst hospitalized singaporean adults: A national cohort study, Lancet Regional Health–-Western Pacific, 55 (2025), 101494. https://doi.org/10.1016/j.lanwpc.2025.101494 doi: 10.1016/j.lanwpc.2025.101494
|
| [69] |
K. L. Bajema, D. P. Bui, L. Yan, Y. Li, N. Rajeevan, R. Vergun, et al., Severity and long-term mortality of COVID-19, influenza, and respiratory syncytial virus, JAMA Int. Med., 185 (2025), 324–334. https://doi.org/10.1001/jamainternmed.2024.7452 doi: 10.1001/jamainternmed.2024.7452
|
| [70] |
S. Khanal, B. Khanal, F.-S. Chou, A. J. Moon-Grady, L. V. Ghimire, Comparison of mortality and cardiovascular complications due to COVID-19, RSV, and influenza in hospitalized children and young adults, BMC Cardiovac. Disord., 24 (2024), 686. https://doi.org/10.1186/s12872-024-04366-0 doi: 10.1186/s12872-024-04366-0
|
| [71] |
D. Liu, K.-Y. Leung, H.-Y. Lam, R. Zhang, Y. Fan, X. Xie, et al., Interaction and antiviral treatment of coinfection between SARS-CoV-2 and influenza in vitro, Virus Res., 345 (2024), 199371. https://doi.org/10.1016/j.virusres.2024.199371 doi: 10.1016/j.virusres.2024.199371
|
| [72] |
M. R. Amin, K. N. Anwar, M. J. Ashraf, M. Ghassemi, R. M. Novak, Preventing human influenza and coronaviral mono or coinfection by blocking virus-induced sialylation, Antiviral Res., 232 (2024), 106041. https://doi.org/10.1016/j.antiviral.2024.106041 doi: 10.1016/j.antiviral.2024.106041
|
| [73] |
P. Alexander, H. M. Dobrovolny, Treatment of respiratory viral coinfections, Epidemiologia, 3 (2022), 81–96. https://doi.org/10.3390/epidemiologia3010008 doi: 10.3390/epidemiologia3010008
|
| [74] |
M. Essaidi-Laziosi, J. Geiser, S. Huang, S. Constant, L. Kaiser, C. Tapparel, Interferon-dependent and respiratory virus-specific interference in dual infections of airway epithelia, Sci. Rep., 10 (2020), 10246. https://doi.org/10.1038/s41598-020-66748-6 doi: 10.1038/s41598-020-66748-6
|
| [75] |
L. Pinky, H. M. Dobrovolny, Epidemiological consequences of viral interference: A mathematical modeling study of two interacting viruses, Front. Microbiol., 13 (2022), 830423. https://doi.org/10.3389/fmicb.2022.830423 doi: 10.3389/fmicb.2022.830423
|
| [76] |
J. Biryukov, C. Meyers, Superinfection exclusion between two high-risk human papillomavirus types during a coinfection, J. Virol., 92 (2018), 01993-17. https://doi.org/10.1128/JVI.01993-17 doi: 10.1128/JVI.01993-17
|
| [77] |
A. Sims, L. B. Tornaletti, S. Jasim, C. Pirillo, R. Devlin, J. C. Hirst, et al., Superinfection exclusion creates spatially distinct influenza virus populations, PLoS Biol., 21 (2023), e3001941. https://doi.org/10.1371/journal.pbio.3001941 doi: 10.1371/journal.pbio.3001941
|
| [78] |
L. Pinky, G. Gonzalez-Parra, H. M. Dobrovolny, Effect of stochasticity on coinfection dynamics of respiratory viruses, BMC Bioinform., 20 (2019), 191. https://doi.org/10.1186/s12859-019-2793-6 doi: 10.1186/s12859-019-2793-6
|
| [79] |
R. Cush, P. Russo, Z. Kucukyavuz, Z. Bu, D. Neau, D. Shih, et al., Rotational and translational diffusion of a rodlike virus in random coil polymer solutions, Macromolecules, 30 (1997), 4920–4926. https://doi.org/10.1021/ma970032f doi: 10.1021/ma970032f
|
| [80] |
B. Fain, H. M. Dobrovolny, GPU acceleration and data fitting: Agent-based models of viral infections can now be parameterized in hours, J. Comp. Sci., 61 (2022), 101662. https://doi.org/10.1016/j.jocs.2022.101662 doi: 10.1016/j.jocs.2022.101662
|