Although different strategies for mosquito-borne disease prevention can vary significantly in their efficacy and scale of implementation, they all require that individuals comply with their use. Despite this, human behavior is rarely considered in mathematical models of mosquito-borne diseases. Here, we sought to address that gap by establishing general expectations for how different behavioral stimuli and forms of mosquito prevention shape the equilibrium prevalence of disease. To accomplish this, we developed a coupled contagion model tailored to the epidemiology of dengue and preventive behaviors relevant to it. Under our model's parameterization, we found that mosquito biting was the most important driver of behavior uptake. In contrast, encounters with individuals experiencing disease or engaging in preventive behaviors themselves had a smaller influence on behavior uptake. The relative influence of these three stimuli reflected the relative frequency with which individuals encountered them. We also found that two distinct forms of mosquito prevention—namely, personal protection and mosquito density reduction—mediated different influences of behavior on equilibrium disease prevalence. Our results highlight that unique features of coupled contagion models can arise in disease systems with distinct biological features.
Citation: Marya L. Poterek, Mauricio Santos-Vega, T. Alex Perkins. Equilibrium properties of a coupled contagion model of mosquito-borne disease and mosquito preventive behaviors[J]. Mathematical Biosciences and Engineering, 2025, 22(8): 1875-1897. doi: 10.3934/mbe.2025068
[1] | Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218 |
[2] | Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123 |
[3] | Matthew D. Johnston, Bruce Pell, David A. Rubel . A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718 |
[4] | Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134 |
[5] | Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin . Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences and Engineering, 2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068 |
[6] | Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679 |
[7] | Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283 |
[8] | Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135 |
[9] | Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048 |
[10] | Azmy S. Ackleh, Shuhua Hu . Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences and Engineering, 2007, 4(2): 133-157. doi: 10.3934/mbe.2007.4.133 |
Although different strategies for mosquito-borne disease prevention can vary significantly in their efficacy and scale of implementation, they all require that individuals comply with their use. Despite this, human behavior is rarely considered in mathematical models of mosquito-borne diseases. Here, we sought to address that gap by establishing general expectations for how different behavioral stimuli and forms of mosquito prevention shape the equilibrium prevalence of disease. To accomplish this, we developed a coupled contagion model tailored to the epidemiology of dengue and preventive behaviors relevant to it. Under our model's parameterization, we found that mosquito biting was the most important driver of behavior uptake. In contrast, encounters with individuals experiencing disease or engaging in preventive behaviors themselves had a smaller influence on behavior uptake. The relative influence of these three stimuli reflected the relative frequency with which individuals encountered them. We also found that two distinct forms of mosquito prevention—namely, personal protection and mosquito density reduction—mediated different influences of behavior on equilibrium disease prevalence. Our results highlight that unique features of coupled contagion models can arise in disease systems with distinct biological features.
[1] |
S. Q. Deng, X. Yang, Y. Wei, J. T. Chen, X. J. Wang, H. J. Peng, A review on dengue vaccine development, Vaccines, 8 (2020), 63. https://doi.org/10.3390/vaccines8010063 doi: 10.3390/vaccines8010063
![]() |
[2] | S. Rajapakse, C. Rodrigo, A. Rajapakse, Treatment of dengue fever, Infect. Drug Resist., 5 (2012), 103–112. https://doi.org/10.2147/IDR.S22613 |
[3] | S. J. Thomas, D. Strickman, D. W. Vaughn, Dengue Epidemiology: Virus Epidemiology, Ecology, and Emergence, Adv. Virus Res., 61 (2003), 235–289. https://doi.org/10.1016/S0065-3527(03)61006-7 |
[4] |
N. L. Achee, F. Gould, T. A. Perkins, R. C. Reiner Jr, A. C. Morrison, S. A. Ritchie, et al., A critical assessment of vector control for dengue prevention, PLoS Negl.Trop. Dis., 9 (2015), e0003655. https://doi.org/10.1371/journal.pntd.0003655 doi: 10.1371/journal.pntd.0003655
![]() |
[5] | D. Pilger, M. De Maesschalck, O. Horstick, J. L. San Martin, Dengue outbreak response: documented effective interventions and evidence gaps, TropIKA.net, 1 (2010). |
[6] |
P. A. Reyes-Castro, L. Castro-Luque, R. Díaz-Caravantes, K. R. Walker, M. H. Hayden, K. C. Ernst, Outdoor spatial spraying against dengue: A false sense of security among inhabitants of Hermosillo, Mexico, PLoS Negl.Trop. Dis., 11 (2017), e0005611. https://doi.org/10.1371/journal.pntd.0005611 doi: 10.1371/journal.pntd.0005611
![]() |
[7] |
F. Espinoza-Gómez, C. M. Hernández-Suárez, R. Coll-Cárdenas, Educational campaign versus malathion spraying for the control of Aedes aegypti in Colima, Mexico, J. Epidemiol. Community Health, 56 (2002), 148–152. https://doi.org/10.1136/jech.56.2.148 doi: 10.1136/jech.56.2.148
![]() |
[8] |
N. Arunachalam, B. K. Tyagi, M. Samuel, R. Krishnamoorthi, R. Manavalan, S. C. Tewari, et al., Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India, Pathog. Global Health, 106 (2012), 488–496. https://doi.org/10.1179/2047773212Y.0000000056 doi: 10.1179/2047773212Y.0000000056
![]() |
[9] |
C. Aerts, M. Revilla, L. Duval, K. Paaijmans, J. Chandrabose, H. Cox, et al., Understanding the role of disease knowledge and risk perception in shaping preventive behavior for selected vector-borne diseases in Guyana, PLoS Negl. Trop. Dis., 14 (2020), e0008149. https://doi.org/10.1371/journal.pntd.0008149 doi: 10.1371/journal.pntd.0008149
![]() |
[10] |
N. Andersson, E. Nava-Aguilera, J. Arosteguí, A. Morales-Perez, H. Suazo-Laguna, J. Legorreta-Soberanis, et al., Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial, BMJ, 351 (2015), h3267. https://doi.org/10.1136/bmj.h3267 doi: 10.1136/bmj.h3267
![]() |
[11] |
J. Arosteguí, R. J. Ledogar, J. Coloma, C. Hernández-Alvarez, H. Suazo-Laguna, A. Cárcamo, et al., The Camino Verde intervention in Nicaragua, 2004–2012, BMC Public Health, 17 (2017), 406. https://doi.org/10.1186/s12889-017-4299-3 doi: 10.1186/s12889-017-4299-3
![]() |
[12] |
S. Funk, M. Salathé, V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. R. Soc. Interface, 7 (2010), 1247–1256. https://doi.org/10.1098/rsif.2010.0142 doi: 10.1098/rsif.2010.0142
![]() |
[13] | T. Berry, M. Ferrari, T. Sauer, S. J. Greybush, D. Ebeigbe, A. J. Whalen, et al., Stabilizing the return to normal behavior in an epidemic, medRxiv, 2023.03.13.23287222. |
[14] |
S. Del Valle, H. Hethcote, J. M. Hyman, C. Castillo-Chavez, Effects of behavioral changes in a smallpox attack model, Math. Biosci., 195 (2005), 228–251. https://doi.org/10.1016/j.mbs.2005.03.006 doi: 10.1016/j.mbs.2005.03.006
![]() |
[15] |
M. J. Ferrari, S. Bansal, L. A. Meyers, O. N. Bjørnstad, Network frailty and the geometry of herd immunity, Proc. R. Soc. B, 273 (2006), 2743–2748. https://doi.org/10.1098/rspb.2006.3636 doi: 10.1098/rspb.2006.3636
![]() |
[16] |
E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. Gonzalez Parra, G. J. Hickling, et al., Adaptive human behavior in epidemiological models, Proc. Natl. Acad. Sci. U.S.A., 108 (2011), 6306–6311. https://doi.org/10.1073/pnas.101125010 doi: 10.1073/pnas.101125010
![]() |
[17] |
L. LeJeune, N. Ghaffarzadegan, L. M. Childs, O. Saucedo, Mathematical analysis of simple behavioral epidemic models, Math. Biosci., 375 (2024), 109250. https://doi.org/10.1016/j.mbs.2024.109250 doi: 10.1016/j.mbs.2024.109250
![]() |
[18] |
C. Eksin, K. Paarporn, J. S. Weitz, Systematic biases in disease forecasting – The role of behavior change, Epidemics, 27 (2019), 96–105. https://doi.org/10.1016/j.epidem.2019.02.004 doi: 10.1016/j.epidem.2019.02.004
![]() |
[19] |
T. Boccia, M. N. Burattini, F. A. B. Coutinho, E. Massad, Will people change their vector-control practices in the presence of an imperfect dengue vaccine?, Epidemiol. Infect., 142 (2014), 625–633. https://doi.org/10.1017/S0950268813001350 doi: 10.1017/S0950268813001350
![]() |
[20] |
V. M. Alvarado-Castro, C. Vargas-De-León, S. Paredes-Solis, A. Li-Martin, E. Nava-Aguilera, A. Morales-Pérez, et al., The influence of gender and temephos exposure on community participation in dengue prevention: a compartmental mathematical model, BMC Infect. Dis., 24 (2024), 463. https://doi.org/10.1186/s12879-024-09341-w doi: 10.1186/s12879-024-09341-w
![]() |
[21] |
J. Jiao, G. P. Suarez, N. H. Fefferman, How public reaction to disease information across scales and the impacts of vector control methods influence disease prevalence and control efficacy, PLoS Comput. Biol., 17 (2021), e1008762. https://doi.org/10.1371/journal.pcbi.1008762 doi: 10.1371/journal.pcbi.1008762
![]() |
[22] |
K. Roosa, N. H. Fefferman, A general modeling framework for exploring the impact of individual concern and personal protection on vector-borne disease dynamics, Parasites Vectors, 15 (2022), 361. https://doi.org/10.1186/s13071-022-05481-7 doi: 10.1186/s13071-022-05481-7
![]() |
[23] |
J. M. Epstein, J. Parker, D. Cummings, R. A. Hammond, Coupled contagion dynamics of fear and disease: mathematical and computational explorations, PLoS One, 3 (2008), e3955. https://doi.org/10.1371/journal.pone.0003955 doi: 10.1371/journal.pone.0003955
![]() |
[24] |
K. Jain, V. Bhatnagar, S. Prasad, S. Kaur, Coupling fear and contagion for modeling epidemic dynamics, IEEE Trans. Network Sci. Eng., 10 (2023), 20–34. https://doi.org/10.1109/TNSE.2022.3187775 doi: 10.1109/TNSE.2022.3187775
![]() |
[25] |
J. M. Epstein, E. Hatna, J. Crodelle, Triple contagion: a two-fears epidemic model, J. R. Soc. Interface, 18 (2021), 20210186. https://doi.org/10.1098/rsif.2021.0186 doi: 10.1098/rsif.2021.0186
![]() |
[26] |
N. Perra, D. Balcan, B. Gonçalves, A. Vespignani, Towards a characterization of behavior-disease models, PLoS One, 6 (2011), e23084. https://doi.org/10.1371/journal.pone.0023084 doi: 10.1371/journal.pone.0023084
![]() |
[27] |
S. A. Pedro, F. T. Ndjomatchoua, P. Jentsch, J. M. Tchuenche, M. Anand, C. T. Bauch, Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes, Front. Phys., 8 (2020), 574514. https://doi.org/10.3389/fphy.2020.574514 doi: 10.3389/fphy.2020.574514
![]() |
[28] |
A. Bernardin, A. J. Martínez, T. Perez-Acle, On the effectiveness of communication strategies as non-pharmaceutical interventions to tackle epidemics, PLoS One, 16 (2021), e0257995. https://doi.org/10.1371/journal.pone.0257995 doi: 10.1371/journal.pone.0257995
![]() |
[29] | Mathematica 14.0, 2024. Available from: http://www.wolfram.com. |
[30] | M. M. Andersen, S. Højsgaard, caracas: Computer Algebra, 2023. Available from: https://github.com/r-cas/caracas. |
[31] |
P. Driessche, J. Watmough, Further notes on the basic reproduction number, Math. Epidemiol., 2008 (2008), 159–178. https://doi.org/10.1007/978-3-540-78911-6_6 doi: 10.1007/978-3-540-78911-6_6
![]() |
[32] |
A. B. Sabin, Research on dengue during World War II, Am. J. Trop. Med. Hyg., 1 (1952), 30–50. https://doi.org/10.4269/ajtmh.1952.1.30 doi: 10.4269/ajtmh.1952.1.30
![]() |
[33] |
C. Probst, T. M. Vu, J. M. Epstein, A. E. Nielsen, C. Buckley, A. Brennan, et al., The normative underpinnings of population-level alcohol use: An individual-level simulation model, Health Educ. Behav., 47 (2020), 224–234. https://doi.org/10.1177/1090198119880545 doi: 10.1177/1090198119880545
![]() |
[34] | J. M. Epstein, Agent_Zero, Princeton University Press, 2014. |
[35] | T. M. Vu, C. Probst, J. M. Epstein, A. Brennan, M. Strong, R. C. Purshouse, Toward inverse generative social science using multi-objective genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference, ACM, Prague Czech Republic, (2019), 1356–1363. |
[36] |
L. Cattarino, I. Rodriguez-Barraquer, N. Imai, D. A. T. Cummings, N. M. Ferguson, Mapping global variation in dengue transmission intensity, Sci. Transl. Med., 12 (2020), eaax4144. https://doi.org/10.1126/scitranslmed.aax4144 doi: 10.1126/scitranslmed.aax4144
![]() |
[37] |
Y. Liu, K. Lillepold, J. C. Semenza, Y. Tozan, M. B. M. Quam, J. Rocklöv, Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones, Environ. Res., 182 (2020), 109114. https://doi.org/10.1016/j.envres.2020.109114 doi: 10.1016/j.envres.2020.109114
![]() |
[38] |
A. C. Morrison, R. C. Reiner, W. H. Elson, H. Astete, C. Guevara, C. del Aguila, et al., Efficacy of a spatial repellent for control of Aedes-borne virus transmission: A cluster-randomized trial in Iquitos, Peru, Proc. Natl. Acad. Sci., 119 (2022), e2118283119. https://doi.org/10.1073/pnas.2118283119 doi: 10.1073/pnas.2118283119
![]() |
[39] |
H. J. Wearing, P. Rohani, Ecological and immunological determinants of dengue epidemics, Proc. Natl. Acad. Sci., 103 (2006), 11802–11807. https://doi.org/10.1073/pnas.0602960103 doi: 10.1073/pnas.0602960103
![]() |
[40] |
N. G. Reich, S. Shrestha, A. A. King, P. Rohani, J. Lessler, S. Kalayanarooj, et al., Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity, J. R. Soc. Interface, 10 (2013), 20130414. https://doi.org/10.1098/rsif.2013.0414 doi: 10.1098/rsif.2013.0414
![]() |
[41] |
C. B. F. Vogels, C. Rückert, S. M. Cavany, T. A. Perkins, G. D. Ebel, N. D. Grubaugh, Arbovirus coinfection and co-transmission: A neglected public health concern?, PLoS Biol., 17 (2019), e3000130. https://doi.org/10.1371/journal.pbio.3000130 doi: 10.1371/journal.pbio.3000130
![]() |
[42] |
M. Chan, M. A. Johansson, The incubation periods of dengue viruses, PLoS One, 7 (2012), e50972. https://doi.org/10.1371/journal.pone.0050972 doi: 10.1371/journal.pone.0050972
![]() |
[43] |
Q. A. Ten Bosch, J. M. Wagman, F. Castro-Llanos, N. L. Achee, J. P. Grieco, T. A. Perkins, Community-level impacts of spatial repellents for control of diseases vectored by Aedes aegypti mosquitoes, PLoS Comput. Biol., 16 (2020), e1008190. https://doi.org/10.1371/journal.pcbi.1008190 doi: 10.1371/journal.pcbi.1008190
![]() |
[44] |
L. C. Harrington, J. P. Buonaccorsi, J. D. Edman, A. Costero, P. Kittayapong, G. G. Clark, et al., Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand, J. Med. Entomol., 38 (2001), 537–547. https://doi.org/10.1603/0022-2585-38.4.537 doi: 10.1603/0022-2585-38.4.537
![]() |
[45] |
T. W. Scott, P. H. Amerasinghe, A. C. Morrison, L. H. Lorenz, G. G. Clark, D. Strickman, et al., Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency, J. Med. Entomol., 37 (2000), 89–101. https://doi.org/10.1603/0022-2585-37.1.89 doi: 10.1603/0022-2585-37.1.89
![]() |
[46] |
D. L. Smith, K. E. Battle, S. I. Hay, C. M. Barker, T. W. Scott, F. E. McKenzie, Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens, PLoS Pathogens, 8 (2012), e1002588. https://doi.org/10.1371/journal.ppat.1002588 doi: 10.1371/journal.ppat.1002588
![]() |
[47] | R Core Team, R: A Language and Environment for Statistical Computing, 2021. Available from: https://www.R-project.org/. |
[48] |
K. Soetaert, T. Petzoldt, R. W. Setzer, Solving differential equations in R: package deSolve, J. Stat. Software, 33 (2010), 1–25. https://doi.org/10.18637/jss.v033.i09 doi: 10.18637/jss.v033.i09
![]() |
[49] |
A. Puy, S. Lo Piano, A. Saltelli, S. A. Levin, Sensobol: An R package to compute variance-based sensitivity indices, J. Stat. Software, 102 (2022), 1–37. https://doi.org/10.18637/jss.v102.i05 doi: 10.18637/jss.v102.i05
![]() |
[50] | R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, New York, 1992. |
[51] | M. Martcheva, Introduction to epidemic modeling, in An Introduction to Mathematical Epidemiology (ed. M. Martcheva), Springer US, Boston, MA, (2015), 9–31. https://doi.org/10.1007/978-1-4899-7612-3_2 |
[52] | F. Brauer, C. Castillo-Chavez, Z. Feng, Endemic disease models, Math. Models Epidemiol., 69 (2019), 63–116. https://doi.org/10.2478/acph-2019-0006 |
[53] |
R. C. Reiner, S. T. Stoddard, B. M. Forshey, A. A. King, A. M. Ellis, A. L. Lloyd, et al., Time-varying, serotype-specific force of infection of dengue virus, Proc. Natl. Acad. Sci., 111 (2014), E2694–E2702. https://doi.org/10.1073/pnas.13149331 doi: 10.1073/pnas.13149331
![]() |
[54] | M. Ryan, E. Brindal, M. Roberts, R. I. Hickson, A behaviour and disease transmission model: incorporating the Health Belief Model for human behaviour into a simple transmission model, J. R. Soc. Interface, 21 (215), 20240038. https://doi.org/10.1098/rsif.2024.0038 |
[55] |
J. Cascante-Vega, S. Torres-Florez, J. Cordovez, M. Santos-Vega, How disease risk awareness modulates transmission: coupling infectious disease models with behavioural dynamics, R. Soc. Open Sci., 9 (2022), 210803. https://doi.org/10.1098/rsos.210803 doi: 10.1098/rsos.210803
![]() |
[56] |
V. Vanlerberghe, M. E. Toledo, M. Rodriguez, D. Gomez, A. Baly, J. R. Benitez, et al., Community involvement in dengue vector control: cluster randomised trial, BMJ, 338 (2009), b1959–b1959. https://doi.org/10.1136/bmj.b1959 doi: 10.1136/bmj.b1959
![]() |
[57] |
J. Quintero, N. R. Pulido, J. Logan, T. Ant, J. Bruce, G. Carrasquilla, Effectiveness of an intervention for Aedes aegypti control scaled-up under an inter-sectoral approach in a Colombian city hyper-endemic for dengue virus, PLoS One, 15 (2020), e0230486. https://doi.org/10.1371/journal.pone.0230486 doi: 10.1371/journal.pone.0230486
![]() |
[58] |
J. Raude, K. MCColl, C. Flamand, T. Apostolidis, Understanding health behaviour changes in response to outbreaks: Findings from a longitudinal study of a large epidemic of mosquito-borne disease, Soc. Sci. Med., 230 (2019), 184–193. https://doi.org/10.1016/j.socscimed.2019.04.009 doi: 10.1016/j.socscimed.2019.04.009
![]() |
[59] |
L. S. Lloyd, P. Winch, J. Ortega-Canto, C. Kendall, The design of a community-based health education intervention for the control of Aedes aegypti, Am. J. Trop. Med. Hyg., 50 (1994), 401–411. https://doi.org/10.4269/ajtmh.1994.50.401 doi: 10.4269/ajtmh.1994.50.401
![]() |
[60] |
A. Caprara, J. W. D. O. Lima, A. C. R. Peixoto, C. M. V. Motta, J. M. S. Nobre, J. Sommerfeld, et al., Entomological impact and social participation in dengue control: a cluster randomized trial in Fortaleza, Brazil, Trans. R. Soc. Trop. Med. Hyg., 109 (2015), 99–105. https://doi.org/10.1093/trstmh/tru187 doi: 10.1093/trstmh/tru187
![]() |
[61] |
A. M. Buttenheim, V. Paz-Soldan, C. Barbu, C. Skovira, J. Q. Calderón, L. M. M. Riveros, et al., Is participation contagious? Evidence from a household vector control campaign in urban Peru, J Epidemiol. Community Health, 68 (2014), 103–109. https://doi.org/10.1136/jech-2013-202661 doi: 10.1136/jech-2013-202661
![]() |
[62] |
J. Bedson, L. A. Skrip, D. Pedi, S. Abramowitz, S. Carter, M. F. Jalloh, et al., A review and agenda for integrated disease models including social and behavioural factors, Nat. Hum. Behav., 5 (2021), 834–846. https://doi.org/10.1038/s41562-021-01136-2 doi: 10.1038/s41562-021-01136-2
![]() |
[63] |
K. Magori, M. Legros, M. E. Puente, D. A. Focks, T. W. Scott, A. L. Lloyd, et al., Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies, PLoS Negl. Trop. Dis., 3 (2009), e508. https://doi.org/10.1371/journal.pntd.0000508 doi: 10.1371/journal.pntd.0000508
![]() |
[64] |
E. L. Davis, T. D. Hollingsworth, M. J. Keeling, An analytically tractable, age-structured model of the impact of vector control on mosquito-transmitted infections, PLoS Comput. Biol., 20 (2024), e1011440. https://doi.org/10.1371/journal.pcbi.1011440 doi: 10.1371/journal.pcbi.1011440
![]() |
[65] |
M. Predescu, G. Sirbu, R. Levins, T. Awerbuch-Friedlander, On the dynamics of a deterministic and stochastic model for mosquito control, Appl. Math. Lett., 20 (2007), 919–925. https://doi.org/10.1016/j.aml.2006.12.001 doi: 10.1016/j.aml.2006.12.001
![]() |
[66] |
J. Elsinga, H. T. Van Der Veen, I. Gerstenbluth, J. G. M. Burgerhof, A. Dijkstra, M. P. Grobusch, et al., Community participation in mosquito breeding site control: an interdisciplinary mixed methods study in Curaçao, Parasites Vectors, 10 (2017), 434. https://doi.org/10.1186/s13071-017-2371-6 doi: 10.1186/s13071-017-2371-6
![]() |
[67] |
A. N. Rakhmani, Y. Limpanont, J. Kaewkungwal, K. Okanurak, Factors associated with dengue prevention behaviour in Lowokwaru, Malang, Indonesia: a cross-sectional study, BMC Public Health, 18 (2018), 619. https://doi.org/10.1186/s12889-018-5553-z doi: 10.1186/s12889-018-5553-z
![]() |
[68] |
A. J. Mackay, M. Amador, A. Diaz, J. Smith, R. Barrera, Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks, J. Am. Mosq. Control Assoc., 25 (2009), 409–416. https://doi.org/10.2987/09-5888.1 doi: 10.2987/09-5888.1
![]() |
1. | Yixiang Wu, Necibe Tuncer, Maia Martcheva, Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion, 2017, 22, 1553-524X, 1167, 10.3934/dcdsb.2017057 | |
2. | Junping Shi, Yixiang Wu, Xingfu Zou, Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model, 2020, 32, 1040-7294, 1085, 10.1007/s10884-019-09763-0 | |
3. | Yixiang Wu, Xingfu Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, 2016, 261, 00220396, 4424, 10.1016/j.jde.2016.06.028 | |
4. | Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period, 2020, 51, 14681218, 102966, 10.1016/j.nonrwa.2019.102966 | |
5. | Jing Ge, Ling Lin, Lai Zhang, A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment, 2017, 22, 1553-524X, 2763, 10.3934/dcdsb.2017134 | |
6. | Yuan Lou, Rachidi B. Salako, Control Strategies for a Multi-strain Epidemic Model, 2022, 84, 0092-8240, 10.1007/s11538-021-00957-6 | |
7. | Jinsheng Guo, Shuang-Ming Wang, Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay, 2022, 7, 2473-6988, 6331, 10.3934/math.2022352 | |
8. | Rachidi B. Salako, Impact of population size and movement on the persistence of a two-strain infectious disease, 2023, 86, 0303-6812, 10.1007/s00285-022-01842-z | |
9. | Yuan Lou, Rachidi B. Salako, Mathematical analysis of the dynamics of some reaction-diffusion models for infectious diseases, 2023, 370, 00220396, 424, 10.1016/j.jde.2023.06.018 | |
10. | Jonas T. Doumatè, Tahir B. Issa, Rachidi B. Salako, Competition-exclusion and coexistence in a two-strain SIS epidemic model in patchy environments, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023213 | |
11. | Azmy S. Ackleh, Nicolas Saintier, Aijun Zhang, A multiple-strain pathogen model with diffusion on the space of Radon measures, 2025, 140, 10075704, 108402, 10.1016/j.cnsns.2024.108402 | |
12. | Jamal Adetola, Keoni G. Castellano, Rachidi B. Salako, Dynamics of classical solutions of a multi-strain diffusive epidemic model with mass-action transmission mechanism, 2025, 90, 0303-6812, 10.1007/s00285-024-02167-9 |