Research article Special Issues

Equilibrium properties of a coupled contagion model of mosquito-borne disease and mosquito preventive behaviors

  • Received: 01 February 2025 Revised: 20 May 2025 Accepted: 27 May 2025 Published: 18 June 2025
  • Although different strategies for mosquito-borne disease prevention can vary significantly in their efficacy and scale of implementation, they all require that individuals comply with their use. Despite this, human behavior is rarely considered in mathematical models of mosquito-borne diseases. Here, we sought to address that gap by establishing general expectations for how different behavioral stimuli and forms of mosquito prevention shape the equilibrium prevalence of disease. To accomplish this, we developed a coupled contagion model tailored to the epidemiology of dengue and preventive behaviors relevant to it. Under our model's parameterization, we found that mosquito biting was the most important driver of behavior uptake. In contrast, encounters with individuals experiencing disease or engaging in preventive behaviors themselves had a smaller influence on behavior uptake. The relative influence of these three stimuli reflected the relative frequency with which individuals encountered them. We also found that two distinct forms of mosquito prevention—namely, personal protection and mosquito density reduction—mediated different influences of behavior on equilibrium disease prevalence. Our results highlight that unique features of coupled contagion models can arise in disease systems with distinct biological features.

    Citation: Marya L. Poterek, Mauricio Santos-Vega, T. Alex Perkins. Equilibrium properties of a coupled contagion model of mosquito-borne disease and mosquito preventive behaviors[J]. Mathematical Biosciences and Engineering, 2025, 22(8): 1875-1897. doi: 10.3934/mbe.2025068

    Related Papers:

    [1] Lukáš Pichl, Taisei Kaizoji . Volatility Analysis of Bitcoin Price Time Series. Quantitative Finance and Economics, 2017, 1(4): 474-485. doi: 10.3934/QFE.2017.4.474
    [2] Andres Fernandez, Norman R. Swanson . Further Evidence on the Usefulness of Real-Time Datasets for Economic Forecasting. Quantitative Finance and Economics, 2017, 1(1): 2-25. doi: 10.3934/QFE.2017.1.2
    [3] Samuel Asante Gyamerah . Modelling the volatility of Bitcoin returns using GARCH models. Quantitative Finance and Economics, 2019, 3(4): 739-753. doi: 10.3934/QFE.2019.4.739
    [4] Guillermo Peña . Interest rates affect public expenditure growth. Quantitative Finance and Economics, 2023, 7(4): 622-645. doi: 10.3934/QFE.2023030
    [5] Abdul Haque, Huma Fatima, Ammar Abid, Muhammad Ali Jibran Qamar . Impact of firm-level uncertainty on earnings management and role of accounting conservatism. Quantitative Finance and Economics, 2019, 3(4): 772-794. doi: 10.3934/QFE.2019.4.772
    [6] Arifenur Güngör, Hüseyin Taştan . On macroeconomic determinants of co-movements among international stock markets: evidence from DCC-MIDAS approach. Quantitative Finance and Economics, 2021, 5(1): 19-39. doi: 10.3934/QFE.2021002
    [7] Cemile Özgür, Vedat Sarıkovanlık . An application of Regular Vine copula in portfolio risk forecasting: evidence from Istanbul stock exchange. Quantitative Finance and Economics, 2021, 5(3): 452-470. doi: 10.3934/QFE.2021020
    [8] Md Qamruzzaman, Jianguo Wei . Do financial inclusion, stock market development attract foreign capital flows in developing economy: a panel data investigation. Quantitative Finance and Economics, 2019, 3(1): 88-108. doi: 10.3934/QFE.2019.1.88
    [9] David Melkuev, Danqiao Guo, Tony S. Wirjanto . Applications of random-matrix theory and nonparametric change-point analysis to three notable systemic crises. Quantitative Finance and Economics, 2018, 2(2): 413-467. doi: 10.3934/QFE.2018.2.413
    [10] Fredrik Hobbelhagen, Ioannis Diamantis . A comparative study of symbolic aggregate approximation and topological data analysis. Quantitative Finance and Economics, 2024, 8(4): 705-732. doi: 10.3934/QFE.2024027
  • Although different strategies for mosquito-borne disease prevention can vary significantly in their efficacy and scale of implementation, they all require that individuals comply with their use. Despite this, human behavior is rarely considered in mathematical models of mosquito-borne diseases. Here, we sought to address that gap by establishing general expectations for how different behavioral stimuli and forms of mosquito prevention shape the equilibrium prevalence of disease. To accomplish this, we developed a coupled contagion model tailored to the epidemiology of dengue and preventive behaviors relevant to it. Under our model's parameterization, we found that mosquito biting was the most important driver of behavior uptake. In contrast, encounters with individuals experiencing disease or engaging in preventive behaviors themselves had a smaller influence on behavior uptake. The relative influence of these three stimuli reflected the relative frequency with which individuals encountered them. We also found that two distinct forms of mosquito prevention—namely, personal protection and mosquito density reduction—mediated different influences of behavior on equilibrium disease prevalence. Our results highlight that unique features of coupled contagion models can arise in disease systems with distinct biological features.



    1. Introduction

    The Caginalp phase-field system

    utΔu+f(u)=θ, (1.1)
    θtΔθ=ut, (1.2)

    has been introduced in [1] in order to describe the phase transition phenomena in certain class of material. In this context, θ denotes the relative temperature (relative to the equilibrium melting temperature), and u is the phase-field or order parameter, f is a given function (precisely, the derivaritve of a double-well potential F). This system has received much attention (see for example, [2], [3], [4], [5], [6], [7], [8], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [22], [29], [33] and [41]). These equations can be derived by introducing the (total Ginzburg-Landau) free energy:

    ψ=Ω(12|u|2+F(u)uθ12θ2)dx, (1.3)

    where Ω is the domain occupied by the system (here, we assume that it is a bounded and smooth domain of Rn, n=1,2 or 3, with boundary Ω), and the enthalpy

    H=u+θ. (1.4)

    Then, the evolution equation for the order parameter u is given by:

    ut=δuψ, (1.5)

    where δu stands for the variational derivative with respect to u, which yields (1.1). Then, we have the energy equation

    Ht=divq, (1.6)

    where q is the heat flux. Assuming finally the classical Fourier law for heat conduction, which prescribes the heat flux as

    q=θ, (1.7)

    we obtain (1.2). Now, a well-known side effect of the Fourier heat law is the infinite speed of propagation of thermal disturbances, deemed physically unreasonable and thus called paradox of heat conduction (see, for example, [9]). In order to account for more realistic features, several variations of (1.7), based, for example, on the Maxwell-Cattaneo law or recent laws from thermomechanics, have been proposed in the context of the Caginalp phase-field system (see, for example, [19], [20], [21], [23], [24], [25], [26], [27], [28], [30], [31], [35], [36], [37], [38], [44], [45] and [46]).

    A different approach to heat conduction was proposed in the Sixties (see, [47], [48] and [49]), where it was observed that two temperatures are involved in the definition of the entropy: the conductive temperature θ, influencing the heat conduction contribution, and the thermodynamic temperature, appearing in the heat supply part. For time-independent models, it appears that these two temperatures coincide in absence of heat supply. Actually, they are different generally in the time depedent case see, for example, [19] and references therein for more discussion on the subject. In particular, this happens for non-simple materials. In that case, the two temperatures are related as follows (see [42], [43]):

    θ=φΔφ. (1.8)

    Our aim in this paper is to study a generalization of the Caginalp phase-field system based on this two temperatures theory and the usual Fourier law with a nonlinear coupling.

    The purpose of our study is the following initial and boundary value problem

    utΔu+f(u)=g(u)(φΔφ), (1.9)
    φtΔφtΔφ=g(u)ut, (1.10)
    u=φ=0onΩ, (1.11)
    u|t=0=u0, φ|t=0=φ0. (1.12)

    The paper is organized as follows. In Section 2, we give the derivation of the model. The Section 3 states existence, regularity and uniqueness results. In Section 4, we address the question of dissipativity properties of the system. The last section, analyzes the spatial behavior of solutions in a semi-infinite cylinder, assuming their existence.

    Thoughout this paper, the same letters c,c,c, and sometimes c denote constants which may change from line to line and also .p will denote the usual Lp norm and (.,.) the usual L2 scalar product. More generally, we will denote by .X the norm in the Banach space X. When there is no possible confusion, . will be noted instead of .2.


    2. Derivation of the model

    In our case, to obtain equations (1.9) and (1.10), the total free energy reads in terms of the conductive temperature θ,

    ψ(u,θ)=Ω(12|u|2+F(u)G(u)θ12θ2)dx, (2.1)

    where f=F and g=G, and (1.5) yields, in view of (1.8), the evolution equation for the order parameter (1.9). Furthermore, the enthalpy now reads

    H=G(u)+θ=G(u)+φΔφ, (2.2)

    which yields thanks to (1.6), the energy equation,

    φtΔφt+divq=g(u)ut. (2.3)

    Considering the usual Fourier law (q=φ), one has (1.10).

    Remark 2.1. We can note that we still have an infinite speed of propagation here.


    3. Existence and uniqueness of solutions

    Before stating the existence result, we make some assumptions on nonlinearities f and g:

    |G(s)|2c1F(s)+c2,c0,c1,c20, (3.1)
    |g(s)s|c3(|G(s)|2+1),c30, (3.2)
    c4sk+2c5F(s)f(s)s+c0c6sk+2c7,c4,c6>0,c5,c70, (3.3)
    |g(s)|c8(|s|+1),|g(s)|c9c8,c90, (3.4)
    |f(s)|c10(|s|k+1),c100, (3.5)

    where k is an integer.

    Theorem 3.1. We assume that (3.1)-(3.4) hold true. For all initial data (u0,φ0)H10(Ω)Lk+2(Ω)×H10(Ω)H2(Ω), the problem (1.9)-(1.12) possesses at least one solution (u,φ) with the following regularity uL(0,T;H10(Ω))Lk+2(Ω),utL2(0,T;L2(Ω)),φL(0,T;H10(Ω)H2(Ω)) and φtL2(0,T;H10(Ω)).

    Proof. The proof is based on the Galerkin scheme. Here, we just make formally computations to get a priori estimates, having in mind that these estimates can be rigourously justified using the Galerkin scheme see, for example, [10], [11] and [40] for details.

    Multiplying (1.9) by ut and integrating over Ω, we get

    12ddt(u2+2ΩF(u)dx)+ut2=Ωg(u)ut(φΔφ)dx. (3.6)

    Multiplying (1.10) by φΔφ and integrating over Ω, we have

    12ddt(φ2+2φ2+Δφ2)+φ2+Δφ2=Ωg(u)ut(φΔφ)dx. (3.7)

    Now, summing (3.6) and (3.7), we are led to,

    ddt(u2+2ΩF(u)dx+φ2+2φ2+Δφ2)+2(ut2+φ2+Δφ2)=0. (3.8)

    Multiplying (1.9) by u and integrating over Ω, we obtain

    12ddtu2+u2+Ωf(u)udx=Ωg(u)u(φΔφ)dx. (3.9)

    Using (3.2)-(3.3), (3.9) becomes

    12ddtu2+u2+cΩF(u)dxcΩ|G(u)|2dx+12(φ2+Δφ2)+c. (3.10)

    Adding (3.8) and (3.10), one has

    dE1dt+2(u2+cΩF(u)dx+ut2+φ2)+Δφ2cΩ|G(u)|2dx+φ2+c, (3.11)

    where

    E1=u2+u2+2ΩF(u)dx+φ2+2φ2+Δφ2 (3.12)

    enjoys

    E1c(u2H1(Ω)+uk+2k+2+φ2H2(Ω))c (3.13)

    and

    E1c(u2H1(Ω)+uk+2k+2+φ2H2(Ω))c. (3.14)

    Multiplying now (1.10) by φt and integrating over Ω, we have

    12ddtφ2+φt2+φt2=Ωg(u)utφtdx. (3.15)

    Taking into account (3.4) and using Hölder's inequality, we get

    12ddtφ2+12φt2+φt2c(u2+1)ut2 (3.16)

    and then, summing (3.11) and (3.16), we have

    dE2dt+2(u2+cΩF(u)dx+ut2+φ2+12Δφ2+12φt2+φt2)cΩ|G(u)|2dx+φ2+c(u2+1)ut2+c, (3.17)

    where

    E2=E1+φ2 (3.18)

    satisfies similar estimates as E1.

    We deduce from (3.1) and (3.17)

    dE2dt+c(φt2+φt2)cE2+c, (3.19)

    which achieve the proof.

    For more regularity on solutions, we make following additional assumptions:

    f(0)=0andf(s)c,c0. (3.20)

    We have:

    Theorem 3.2. Under assumptions of Theorem 3.1 and assuming that (3.20) is satisfied. For every initial data (u0,φ0)H10(Ω)Lk+2(Ω)×H10(Ω)H2(Ω), the problem (1.9)-(1.12) admits at least one solution (u,φ) such that uL(0,T;H10(Ω))Lk+2(Ω),utL(0,T;L2(Ω))L2(0,T;H10(Ω)), φL(0,T;H10(Ω)H2(Ω)) and φtL2(0,T;H10(Ω)H2(Ω)).

    Proof. As above proof, we focus on a priori estimates.

    We multiply (1.10) by Δφt and have, integrating over Ω,

    12ddtφ2+φt2+Δφt2=Ωg(u)utΔφtdx. (3.21)

    Thanks to (3.4) and Hölder's inequality:

    Ωg(u)utΔφtdxcΩ(|u|+1)|ut||Δφt|dxc(u2+1)ut2+12Δφt2 (3.22)

    and then,

    12ddtφ2+φt2+12Δφt2c(u2+1)ut2. (3.23)

    Differentiating (1.9) with respect to time, we get

    2ut2Δut+f(u)ut=g(u)ut(φΔφ)+g(u)(φtΔφt). (3.24)

    Multiplying (3.24) by ut and integrating over Ω, we obtain

    12ddtut2+ut2+Ωf(u)|ut|2dx=Ωg(u)|ut|2(φΔφ)dx+Ωg(u)ut(φtΔφt)dx. (3.25)

    Using (1.10), we write,

    Ωg(u)ut(φtΔφt)dx=Ωg(u)ut(g(u)ut+Δφ)dx=Ω|g(u)ut|2dx+Ωg(u)utΔφdx. (3.26)

    Owing to (3.26), (3.25) reads

    12ddtut2+ut2+Ωf(u)|ut|2dx=Ωg(u)|ut|2(φΔφ)dx+Ωg(u)utΔφdxΩ|g(u)ut|2dx, (3.27)

    since

    Ωg(u)|ut|2(φΔφ)dxcΩ|ut|2(|φ|+|Δφ|)dx12ut2+c(φ2+Δφ2), (3.28)
    Ωg(u)utΔφdx=Ωg(u)uutφdxΩg(u)utφdx (3.29)

    and then,

    |Ωg(u)uutφdx|cΩ|u||ut||φ|dx16ut2+cu2Δφ2 (3.30)

    and

    |Ωg(u)utφdx|cΩ(|u|+1)|ut||φ|dx16ut2+c(u2+1)φ2. (3.31)

    Furthemore,

    Ω|g(u)ut|2dxcΩ(|u|+1)2|ut|2dxc(u2+u2+1)ut2. (3.32)

    Now, collecting (3.27)–(3.32) and owing to (3.20), we are led to

    ddtut2+cut2c(u2H1(Ω)+1)(ut2+φ2H2(Ω)). (3.33)

    Adding (3.19), ε1(3.23) and ε2(3.33), with εi>0,i=1,2, small enough, we obtain

    dE3dt+c(ut2H1(Ω)+φt2H2(Ω))cE3+c, (3.34)

    where

    E3=E2+ε1φ2+ε2ut2 (3.35)

    enjoys

    E3c(u2H(Ω)+uk+2k+2+φ2H2(Ω))c (3.36)

    and

    E3c(u2H(Ω)+uk+2k+2+φ2H2(Ω))c. (3.37)

    We complete the proof applying Gronwall's lemma.

    We now give a uniqueness result

    Theorem 3.3. Under assumptions of Theorem 3.2 and assuming that (3.5) holds true. The problem (1.9)-(1.12) has a unique solution (u,φ), with the above regularity.

    Proof. We suppose the existence of two solutions (u1,φ1) and (u2,φ2) to problem (1.9)-(1.11) associated to initial conditions (u01,φ01) and (u02,φ02), respectively. We then have

    utΔu+f(u1)f(u2)=g(u1)(φΔφ)+(g(u1)g(u2))(φ2Δφ2), (3.38)
    φtΔφtΔφ=g(u1)ut(g(u1)g(u2))u2t, (3.39)
    u|Ω=φ|Ω=0, (3.40)
    u|t=0=u01u02,φ|t=0=φ01φ02, (3.41)

    with u=u1u2, φ=φ1φ2, u0=u01u02 and φ0=φ01φ02.

    Multiplying (3.38) by ut and integrating over Ω, we have

    12ddtu2+ut2+Ω(f(u1f(u2)))utdx=Ωg(u1)(φΔφ)utdx+Ω(g(u1)g(u2))(φ2Δφ2)utdx. (3.42)

    Multiplying (3.39) by φ and integrating over Ω, one has

    12ddt(φ2+φ2)+φ2=Ωg(u1)utφdxΩ(g(u1)g(u2))u2tφdx. (3.43)

    Multiplying (3.39) by Δφ and integrating over Ω, we obtain

    12ddt(φ2+Δφ2)+Δφ2=Ωg(u1)utΔφdx+Ω(g(u1)g(u2))u2tΔφdx. (3.44)

    Finally, adding (3.42), (3.43) and (3.44), we get

    dE4dt+ut2+φ2+Δφ2+Ω(f(u1)f(u2))utdx=Ω(g(u1)g(u2))(φ2Δφ2)utdxΩ(g(u1)g(u2))(φΔφ)u2tdx, (3.45)

    where

    E4=u2+φ2+2φ2+Δφ2. (3.46)

    Now, owing to (3.5), and applying Hölder's inequality for k=2, when n=3, we can write

    Ω(f(u1)f(u2))utdxcΩ(|u2|k+1)|u||ut|dxc(u22k+1)u2+ut2, (3.47)

    we also get, thanks to (3.4), and applying Hölder's inequality,

    Ω(g(u1)g(u2))(φ2Δφ2)utdxcΩ|u||φ2Δφ2||ut|dxcu2(φ22+Δφ22)+ut2 (3.48)

    and

    Ω(g(u1)g(u2))(φΔφ)u2tdxcΩ|u||ut||φΔφ|dxcu2t2(φ2+Δφ2)+u2. (3.49)

    From (3.45)-(3.49), we deduce a differential inequality of the type

    dE4dt+cut2c(u22k+u2t2+φ22+Δφ22+1)E4. (3.50)

    In particular,

    dE4dtcE4 (3.51)

    and then applying the Gronwall's lemma to (3.51), we end the proof.


    4. Dissipativity properties of the system

    This section is devoted to the existence of bounded absorbing sets for the semigroup S(t),t0. To this end, we consider a more restrictive assumption on G, namely,

    ϵ>0,|G(u)|2ϵF(s)+cϵ,sR. (4.1)

    We then have

    Theorem 4.1. Under the assumptions of the Theorem 3.3 and assuming that (4.1) holds true. Then, uL(R+;H10(Ω))Lk+2(Ω), φL(R+;H10(Ω)H2(Ω)).

    Proof. Going from (3.8) and (3.10), we get, summing (3.8) and δ(3.10), with δ>0, as small as we need,

    dE5dt+2(cu2+δΩF(u)dx+ut2+φ2+Δφ2)2cδΩ|G(u)|2dx+δ(φ2+Δφ2)+c2cδΩ|G(u)|2dx+δ(cφ2+Δφ2)+c, (4.2)

    where

    E5=δu2+u2+2ΩF(u)dx+φ2+2φ2+Δφ2 (4.3)

    satisfies

    E5c(u2H1(Ω)+uk+2k+2+φ2H2(Ω))c (4.4)

    and

    E5c(u2H1(Ω)+uk+2k+2+φ2H2(Ω))c. (4.5)

    From (4.2) and owing to (4.1), we obtain

    dE5dt+2(cu2+δΩF(u)dx+ut2+φ2+Δφ2)CϵΩF(u)dx+δ(cφ2+Δφ2)+Cϵ, (4.6)

    where Cϵ and Cϵ are positive constants which depend on ϵ. Now, choosing ϵ and δ such that:

    2δCϵand2>cδ, (4.7)

    we then deduce from (4.6),

    dE5dt+c(E5+ut2)c, (4.8)

    we complete the proof applying the Gronwall's lemma.

    Remark 4.2. It follows from theorems 3.1, 3.2 and 4.1 that we can define the family solving operators:

    S(t):ΦΦ,(u0,φ0)(u(t),φ(t)),t0, (4.9)

    where Φ=H10(Ω)×H10(Ω)H2(Ω), and (u,φ) is the unique solution to the problem (1.9)-(1.12). Moreover, this family of solving operators forms a continuous semigroup i.e., S(0)=Id and S(t+τ)=S(t)S(τ),t,τ0. And then, it follows from (4.8) that S(t) is dissipative in Φ, it means that it possesses a bounded absorbing set B0Φ i.e., BΦ(bounded),t0=t0(B) suchthat tt0 implies S(t)BB0. (see, e.g., [32], [34] for details).


    5. Spatial behavior of solutions

    The aim of this section is to study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist. This study is motivated by the possibility of extending results obtained above to the case of unbounded domains like semi-infinite cylinders. To do so, we will study the behavior of solutions in a semi-infinite cylinder denoted R=(0,+)×D, where D is a smooth bounded domain of Rn1, n being the space dimension. We then consider the problem defined by the system (1.9)-(1.10) in the semi-infinite R, with n=3. Furthermore, we endow to this system following boundary conditions:

    u=φ=0on(0,+)×D×(0,T) (5.1)

    and

    u(0,x2,x3;t)=h(x2,x3;t),φ(0,x2,x3;t)=l(x2,x3;t)on{0}×D×(0,T), (5.2)

    where T>0 is a given final time.

    We also consider following initial data

    u|t=0=φ|t=0=0onR. (5.3)

    Let us suppose that such solutions exist. We consider the function

    Fw(z,t)=t0D(z)ews(usu,1+φ(φ,1+φ,1s)+φsφ,1)dads, (5.4)

    where D(z)={xR:x1=z}, u,1=ux1, us=us and w is a positive constant. Using the divergence theorem and owing to (5.1), we have

    Fw(z+h,t)Fw(z,t)=ewt2R(z,z+h)(|u|2+2F(u)+|φ|2+2|φ|2+|Δφ|2)dx+t0R(z,z+h)ews(|us|2+|φ|2+|Δφ|2)dxds+w2t0R(z,z+h)ews(|u|2+2F(u)+|φ|2+2|φ|2+|Δφ|2)dxds, (5.5)

    where R(z,z+h)={xR:z<x1<z+h}.

    Hence,

    Fwt(z,t)=ewt2D(z)(|u|2+2F(u)+|φ|2+2|φ|2+|Δφ|2)da+t0D(z)ews(|us|2+|φ|2+|Δφ|2)dads+w2t0D(z)ews(|u|2+2F(u)+|φ|2+2|φ|2+|Δφ|2)dads. (5.6)

    We consider a second function, namely,

    Gw(z,t)=t0D(z)ews(usu,1+φ(θ,1+φ,1s))dads, (5.7)

    where θ=t0φ(s)ds.

    Similarly, we have

    Gw(z+h,t)Gw(z,t)=ewt2R(z,z+h)(|u|2+|θ|2)dx+t0R(z,z+h)ews(|u|2+f(u)u+uΔφ+|φ|2+|φ|2)dxds+w2t0R(z,z+h)ews(|u|2+|θ|2)dxds+t0R(z,z+h)ews(G(u)g(u)u)φdxds (5.8)

    and then

    Gwt(z,t)=ewt2D(z)(|u|2+|θ|2)da+t0D(z)ews(|u|2+f(u)u+uΔφ+|φ|2+|φ|2)dads+w2t0D(z)ews(|u|2+|θ|2)dads+t0D(z)ews(G(u)g(u)u)φdads. (5.9)

    We choose τ large enough such as

    2F(u)+τu2C1u2,C1>0. (5.10)

    Now, we focus on the nonliear part i.e.,

    w(F(u)+τ2|u|2)+τf(u)u+τ(G(u)g(u)u)φ+w2|φ|2. (5.11)

    We assume that G(s)g(s)sc(|s|k+2+s2).

    For τ large enough, we have F(u)+τ2|u|2C2(|u|k+2+|u|2),C2>0. Thus, for wτ, we deduce that

    w(F(u)+τ2|u|2)+τf(u)u+τ(G(u)g(u)u)φ+w2|φ|2C3(|u|2+|φ|2+|Δφ|2). (5.12)

    Taking into account previous choices, it clearly appears that the following function

    Hw=Fw+τGw (5.13)

    satisfies

    Hwt(z,t)C4t0D(z)ews(|u|2+|u|2+|us|2+|φ|2+|φ|2+|Δφ|2+|θ|2)dads. (5.14)

    We give now an estimate of |Hw| in terms of Hwt. Applying Cauchy-Schwarz's inequality, one has

    |Fw|(t0D(z)ewsu2sdads)1/2(ewsu2,1)1/2+(t0D(z)ewsφ2dads)1/2(ewsφ2,1)1/2+(t0D(z)ewsφ2dads)1/2(ewsφ2,1s)1/2+(t0D(z)ewsφ2sdads)1/2(ewsφ2,1)1/2C5t0D(z)ews(|u|2+|us|2+|φ|2+|φ|2+|φs|2+|φs|2)dads,C5>0. (5.15)

    Similarly,

    |Gw|(t0D(z)ewsu2dads)1/2(t0D(z)ewsu2,1dads)1/2+(t0D(z)ewsφ2dads)1/2(t0D(z)ewsθ2,1dads)1/2+(t0D(z)ewsφ2sdads)1/2(t0D(z)ewsφ2,1dads)1/2C6t0D(z)ews(|u|2+|u|2+|φ|2+|φ|2+|θ|2)dads,C6>0. (5.16)

    We then deduce the existence of a positive constant C7=C5+τC6C4 such that

    |Hw|C7Hwz. (5.17)

    Remark 5.1. The inequality (5.17) is well known in the study of spatial estimates and leads to the Phragmén-Lindelöf alternative (see, e.g., [9], [39]).

    In particular, if there exist z00 such that Fw(z0,t)>0, then the solution satisfies

    Hw(z,t)Hw(z0,t)eC17(zz0),zz0. (5.18)

    The estimate (5.18) gives information in terms of measure defined in the cylinder. Actually, from (5.18), we deduce that

    ewt2R(0,z)(|u|2+2F(u)+|φ|2+2|φ|2+|Δφ|2)dx+τewt2R(0,z)(|u|2+|θ|2)dx+t0R(0,z)ews(|us|2+|φ|2+|Δφ|2)dxds+τt0R(0,z)ews(|u|2+f(u)u+g(u)uΔφ+|φ|2+2|φ|2)dxds+w2t0R(0,z)ews(|u|2+2F(u)+|φ|2+2|φ|2+|Δφ|2)dxds+τw2t0R(0,z)ews(|u|2+|θ|2)dx+τt0R(0,z)ews(G(u)g(u)u)φdxds (5.19)

    tends to infinity exponentially fast. On the other hand, if Hw(z,t)0, for every z0, we deduce that the solution decreases and we get an inequality of the type

    Hw(z,t)Hw(0,t)eC17z,z0, (5.20)

    where

    Ew(z,t)=ewt2R(z)(|u|2+2F(u)+|φ|2+2|φ|2+|Δφ|2)dx+τewt2R(z)(|u|2+|θ|2)dx+t0R(z)ews(|us|2+|φ|2+|Δφ|2)dxds+τt0R(z)ews(|u|2+f(u)u+g(u)uΔφ+|φ|2+2|φ|2)dxds+w2t0R(z)ews(|u|2+2F(u)+|φ|2+2|φ|2+|Δφ|2)dxds+τw2t0R(z)ews(|u|2+|θ|2)dx+τt0R(z)ews(G(u)g(u)u)φdxds (5.21)

    and R(z)={xR:x1>z}.

    Finally, setting

    Ew(z,t)=12R(z)(|u|2+2F(u)+|φ|2+2|φ|2+|Δφ|2)dx+τ12R(z)(|u|2+|θ|2)dx+t0R(z)(|us|2+|φ|2+|Δφ|2)dxds+τt0R(z)(|u|2+f(u)u+g(u)uΔφ+|φ|2+2|φ|2)dxds+w2t0R(z)(|u|2+2F(u)+|φ|2+2|φ|2+|Δφ|2)dxds+τw2t0R(z)(|u|2+|θ|2)dx+τt0R(z)(G(u)g(u)u)φdxds. (5.22)

    We have the following result

    Theorem 5.2. Let (u,φ) be a solution to the problem given by (1.9)-(1.10), boundary conditions (5.1)-(5.2) and initial data (5.3). Then, either this solution satisfies (5.18), or it satisfies

    Ew(z,t)Ew(0,t)ewtC17z,z0, (5.23)

    where the energy Ew is given by (5.22).


    Acknowledgments

    The author would like to thank Alain Miranville for his advices and for his careful reading of this paper.


    Conflict of interest

    The author declares no conflicts of interest in this paper.




    [1] S. Q. Deng, X. Yang, Y. Wei, J. T. Chen, X. J. Wang, H. J. Peng, A review on dengue vaccine development, Vaccines, 8 (2020), 63. https://doi.org/10.3390/vaccines8010063 doi: 10.3390/vaccines8010063
    [2] S. Rajapakse, C. Rodrigo, A. Rajapakse, Treatment of dengue fever, Infect. Drug Resist., 5 (2012), 103–112. https://doi.org/10.2147/IDR.S22613
    [3] S. J. Thomas, D. Strickman, D. W. Vaughn, Dengue Epidemiology: Virus Epidemiology, Ecology, and Emergence, Adv. Virus Res., 61 (2003), 235–289. https://doi.org/10.1016/S0065-3527(03)61006-7
    [4] N. L. Achee, F. Gould, T. A. Perkins, R. C. Reiner Jr, A. C. Morrison, S. A. Ritchie, et al., A critical assessment of vector control for dengue prevention, PLoS Negl.Trop. Dis., 9 (2015), e0003655. https://doi.org/10.1371/journal.pntd.0003655 doi: 10.1371/journal.pntd.0003655
    [5] D. Pilger, M. De Maesschalck, O. Horstick, J. L. San Martin, Dengue outbreak response: documented effective interventions and evidence gaps, TropIKA.net, 1 (2010).
    [6] P. A. Reyes-Castro, L. Castro-Luque, R. Díaz-Caravantes, K. R. Walker, M. H. Hayden, K. C. Ernst, Outdoor spatial spraying against dengue: A false sense of security among inhabitants of Hermosillo, Mexico, PLoS Negl.Trop. Dis., 11 (2017), e0005611. https://doi.org/10.1371/journal.pntd.0005611 doi: 10.1371/journal.pntd.0005611
    [7] F. Espinoza-Gómez, C. M. Hernández-Suárez, R. Coll-Cárdenas, Educational campaign versus malathion spraying for the control of Aedes aegypti in Colima, Mexico, J. Epidemiol. Community Health, 56 (2002), 148–152. https://doi.org/10.1136/jech.56.2.148 doi: 10.1136/jech.56.2.148
    [8] N. Arunachalam, B. K. Tyagi, M. Samuel, R. Krishnamoorthi, R. Manavalan, S. C. Tewari, et al., Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India, Pathog. Global Health, 106 (2012), 488–496. https://doi.org/10.1179/2047773212Y.0000000056 doi: 10.1179/2047773212Y.0000000056
    [9] C. Aerts, M. Revilla, L. Duval, K. Paaijmans, J. Chandrabose, H. Cox, et al., Understanding the role of disease knowledge and risk perception in shaping preventive behavior for selected vector-borne diseases in Guyana, PLoS Negl. Trop. Dis., 14 (2020), e0008149. https://doi.org/10.1371/journal.pntd.0008149 doi: 10.1371/journal.pntd.0008149
    [10] N. Andersson, E. Nava-Aguilera, J. Arosteguí, A. Morales-Perez, H. Suazo-Laguna, J. Legorreta-Soberanis, et al., Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial, BMJ, 351 (2015), h3267. https://doi.org/10.1136/bmj.h3267 doi: 10.1136/bmj.h3267
    [11] J. Arosteguí, R. J. Ledogar, J. Coloma, C. Hernández-Alvarez, H. Suazo-Laguna, A. Cárcamo, et al., The Camino Verde intervention in Nicaragua, 2004–2012, BMC Public Health, 17 (2017), 406. https://doi.org/10.1186/s12889-017-4299-3 doi: 10.1186/s12889-017-4299-3
    [12] S. Funk, M. Salathé, V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. R. Soc. Interface, 7 (2010), 1247–1256. https://doi.org/10.1098/rsif.2010.0142 doi: 10.1098/rsif.2010.0142
    [13] T. Berry, M. Ferrari, T. Sauer, S. J. Greybush, D. Ebeigbe, A. J. Whalen, et al., Stabilizing the return to normal behavior in an epidemic, medRxiv, 2023.03.13.23287222.
    [14] S. Del Valle, H. Hethcote, J. M. Hyman, C. Castillo-Chavez, Effects of behavioral changes in a smallpox attack model, Math. Biosci., 195 (2005), 228–251. https://doi.org/10.1016/j.mbs.2005.03.006 doi: 10.1016/j.mbs.2005.03.006
    [15] M. J. Ferrari, S. Bansal, L. A. Meyers, O. N. Bjørnstad, Network frailty and the geometry of herd immunity, Proc. R. Soc. B, 273 (2006), 2743–2748. https://doi.org/10.1098/rspb.2006.3636 doi: 10.1098/rspb.2006.3636
    [16] E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. Gonzalez Parra, G. J. Hickling, et al., Adaptive human behavior in epidemiological models, Proc. Natl. Acad. Sci. U.S.A., 108 (2011), 6306–6311. https://doi.org/10.1073/pnas.101125010 doi: 10.1073/pnas.101125010
    [17] L. LeJeune, N. Ghaffarzadegan, L. M. Childs, O. Saucedo, Mathematical analysis of simple behavioral epidemic models, Math. Biosci., 375 (2024), 109250. https://doi.org/10.1016/j.mbs.2024.109250 doi: 10.1016/j.mbs.2024.109250
    [18] C. Eksin, K. Paarporn, J. S. Weitz, Systematic biases in disease forecasting – The role of behavior change, Epidemics, 27 (2019), 96–105. https://doi.org/10.1016/j.epidem.2019.02.004 doi: 10.1016/j.epidem.2019.02.004
    [19] T. Boccia, M. N. Burattini, F. A. B. Coutinho, E. Massad, Will people change their vector-control practices in the presence of an imperfect dengue vaccine?, Epidemiol. Infect., 142 (2014), 625–633. https://doi.org/10.1017/S0950268813001350 doi: 10.1017/S0950268813001350
    [20] V. M. Alvarado-Castro, C. Vargas-De-León, S. Paredes-Solis, A. Li-Martin, E. Nava-Aguilera, A. Morales-Pérez, et al., The influence of gender and temephos exposure on community participation in dengue prevention: a compartmental mathematical model, BMC Infect. Dis., 24 (2024), 463. https://doi.org/10.1186/s12879-024-09341-w doi: 10.1186/s12879-024-09341-w
    [21] J. Jiao, G. P. Suarez, N. H. Fefferman, How public reaction to disease information across scales and the impacts of vector control methods influence disease prevalence and control efficacy, PLoS Comput. Biol., 17 (2021), e1008762. https://doi.org/10.1371/journal.pcbi.1008762 doi: 10.1371/journal.pcbi.1008762
    [22] K. Roosa, N. H. Fefferman, A general modeling framework for exploring the impact of individual concern and personal protection on vector-borne disease dynamics, Parasites Vectors, 15 (2022), 361. https://doi.org/10.1186/s13071-022-05481-7 doi: 10.1186/s13071-022-05481-7
    [23] J. M. Epstein, J. Parker, D. Cummings, R. A. Hammond, Coupled contagion dynamics of fear and disease: mathematical and computational explorations, PLoS One, 3 (2008), e3955. https://doi.org/10.1371/journal.pone.0003955 doi: 10.1371/journal.pone.0003955
    [24] K. Jain, V. Bhatnagar, S. Prasad, S. Kaur, Coupling fear and contagion for modeling epidemic dynamics, IEEE Trans. Network Sci. Eng., 10 (2023), 20–34. https://doi.org/10.1109/TNSE.2022.3187775 doi: 10.1109/TNSE.2022.3187775
    [25] J. M. Epstein, E. Hatna, J. Crodelle, Triple contagion: a two-fears epidemic model, J. R. Soc. Interface, 18 (2021), 20210186. https://doi.org/10.1098/rsif.2021.0186 doi: 10.1098/rsif.2021.0186
    [26] N. Perra, D. Balcan, B. Gonçalves, A. Vespignani, Towards a characterization of behavior-disease models, PLoS One, 6 (2011), e23084. https://doi.org/10.1371/journal.pone.0023084 doi: 10.1371/journal.pone.0023084
    [27] S. A. Pedro, F. T. Ndjomatchoua, P. Jentsch, J. M. Tchuenche, M. Anand, C. T. Bauch, Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes, Front. Phys., 8 (2020), 574514. https://doi.org/10.3389/fphy.2020.574514 doi: 10.3389/fphy.2020.574514
    [28] A. Bernardin, A. J. Martínez, T. Perez-Acle, On the effectiveness of communication strategies as non-pharmaceutical interventions to tackle epidemics, PLoS One, 16 (2021), e0257995. https://doi.org/10.1371/journal.pone.0257995 doi: 10.1371/journal.pone.0257995
    [29] Mathematica 14.0, 2024. Available from: http://www.wolfram.com.
    [30] M. M. Andersen, S. Højsgaard, caracas: Computer Algebra, 2023. Available from: https://github.com/r-cas/caracas.
    [31] P. Driessche, J. Watmough, Further notes on the basic reproduction number, Math. Epidemiol., 2008 (2008), 159–178. https://doi.org/10.1007/978-3-540-78911-6_6 doi: 10.1007/978-3-540-78911-6_6
    [32] A. B. Sabin, Research on dengue during World War II, Am. J. Trop. Med. Hyg., 1 (1952), 30–50. https://doi.org/10.4269/ajtmh.1952.1.30 doi: 10.4269/ajtmh.1952.1.30
    [33] C. Probst, T. M. Vu, J. M. Epstein, A. E. Nielsen, C. Buckley, A. Brennan, et al., The normative underpinnings of population-level alcohol use: An individual-level simulation model, Health Educ. Behav., 47 (2020), 224–234. https://doi.org/10.1177/1090198119880545 doi: 10.1177/1090198119880545
    [34] J. M. Epstein, Agent_Zero, Princeton University Press, 2014.
    [35] T. M. Vu, C. Probst, J. M. Epstein, A. Brennan, M. Strong, R. C. Purshouse, Toward inverse generative social science using multi-objective genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference, ACM, Prague Czech Republic, (2019), 1356–1363.
    [36] L. Cattarino, I. Rodriguez-Barraquer, N. Imai, D. A. T. Cummings, N. M. Ferguson, Mapping global variation in dengue transmission intensity, Sci. Transl. Med., 12 (2020), eaax4144. https://doi.org/10.1126/scitranslmed.aax4144 doi: 10.1126/scitranslmed.aax4144
    [37] Y. Liu, K. Lillepold, J. C. Semenza, Y. Tozan, M. B. M. Quam, J. Rocklöv, Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones, Environ. Res., 182 (2020), 109114. https://doi.org/10.1016/j.envres.2020.109114 doi: 10.1016/j.envres.2020.109114
    [38] A. C. Morrison, R. C. Reiner, W. H. Elson, H. Astete, C. Guevara, C. del Aguila, et al., Efficacy of a spatial repellent for control of Aedes-borne virus transmission: A cluster-randomized trial in Iquitos, Peru, Proc. Natl. Acad. Sci., 119 (2022), e2118283119. https://doi.org/10.1073/pnas.2118283119 doi: 10.1073/pnas.2118283119
    [39] H. J. Wearing, P. Rohani, Ecological and immunological determinants of dengue epidemics, Proc. Natl. Acad. Sci., 103 (2006), 11802–11807. https://doi.org/10.1073/pnas.0602960103 doi: 10.1073/pnas.0602960103
    [40] N. G. Reich, S. Shrestha, A. A. King, P. Rohani, J. Lessler, S. Kalayanarooj, et al., Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity, J. R. Soc. Interface, 10 (2013), 20130414. https://doi.org/10.1098/rsif.2013.0414 doi: 10.1098/rsif.2013.0414
    [41] C. B. F. Vogels, C. Rückert, S. M. Cavany, T. A. Perkins, G. D. Ebel, N. D. Grubaugh, Arbovirus coinfection and co-transmission: A neglected public health concern?, PLoS Biol., 17 (2019), e3000130. https://doi.org/10.1371/journal.pbio.3000130 doi: 10.1371/journal.pbio.3000130
    [42] M. Chan, M. A. Johansson, The incubation periods of dengue viruses, PLoS One, 7 (2012), e50972. https://doi.org/10.1371/journal.pone.0050972 doi: 10.1371/journal.pone.0050972
    [43] Q. A. Ten Bosch, J. M. Wagman, F. Castro-Llanos, N. L. Achee, J. P. Grieco, T. A. Perkins, Community-level impacts of spatial repellents for control of diseases vectored by Aedes aegypti mosquitoes, PLoS Comput. Biol., 16 (2020), e1008190. https://doi.org/10.1371/journal.pcbi.1008190 doi: 10.1371/journal.pcbi.1008190
    [44] L. C. Harrington, J. P. Buonaccorsi, J. D. Edman, A. Costero, P. Kittayapong, G. G. Clark, et al., Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand, J. Med. Entomol., 38 (2001), 537–547. https://doi.org/10.1603/0022-2585-38.4.537 doi: 10.1603/0022-2585-38.4.537
    [45] T. W. Scott, P. H. Amerasinghe, A. C. Morrison, L. H. Lorenz, G. G. Clark, D. Strickman, et al., Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency, J. Med. Entomol., 37 (2000), 89–101. https://doi.org/10.1603/0022-2585-37.1.89 doi: 10.1603/0022-2585-37.1.89
    [46] D. L. Smith, K. E. Battle, S. I. Hay, C. M. Barker, T. W. Scott, F. E. McKenzie, Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens, PLoS Pathogens, 8 (2012), e1002588. https://doi.org/10.1371/journal.ppat.1002588 doi: 10.1371/journal.ppat.1002588
    [47] R Core Team, R: A Language and Environment for Statistical Computing, 2021. Available from: https://www.R-project.org/.
    [48] K. Soetaert, T. Petzoldt, R. W. Setzer, Solving differential equations in R: package deSolve, J. Stat. Software, 33 (2010), 1–25. https://doi.org/10.18637/jss.v033.i09 doi: 10.18637/jss.v033.i09
    [49] A. Puy, S. Lo Piano, A. Saltelli, S. A. Levin, Sensobol: An R package to compute variance-based sensitivity indices, J. Stat. Software, 102 (2022), 1–37. https://doi.org/10.18637/jss.v102.i05 doi: 10.18637/jss.v102.i05
    [50] R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, New York, 1992.
    [51] M. Martcheva, Introduction to epidemic modeling, in An Introduction to Mathematical Epidemiology (ed. M. Martcheva), Springer US, Boston, MA, (2015), 9–31. https://doi.org/10.1007/978-1-4899-7612-3_2
    [52] F. Brauer, C. Castillo-Chavez, Z. Feng, Endemic disease models, Math. Models Epidemiol., 69 (2019), 63–116. https://doi.org/10.2478/acph-2019-0006
    [53] R. C. Reiner, S. T. Stoddard, B. M. Forshey, A. A. King, A. M. Ellis, A. L. Lloyd, et al., Time-varying, serotype-specific force of infection of dengue virus, Proc. Natl. Acad. Sci., 111 (2014), E2694–E2702. https://doi.org/10.1073/pnas.13149331 doi: 10.1073/pnas.13149331
    [54] M. Ryan, E. Brindal, M. Roberts, R. I. Hickson, A behaviour and disease transmission model: incorporating the Health Belief Model for human behaviour into a simple transmission model, J. R. Soc. Interface, 21 (215), 20240038. https://doi.org/10.1098/rsif.2024.0038
    [55] J. Cascante-Vega, S. Torres-Florez, J. Cordovez, M. Santos-Vega, How disease risk awareness modulates transmission: coupling infectious disease models with behavioural dynamics, R. Soc. Open Sci., 9 (2022), 210803. https://doi.org/10.1098/rsos.210803 doi: 10.1098/rsos.210803
    [56] V. Vanlerberghe, M. E. Toledo, M. Rodriguez, D. Gomez, A. Baly, J. R. Benitez, et al., Community involvement in dengue vector control: cluster randomised trial, BMJ, 338 (2009), b1959–b1959. https://doi.org/10.1136/bmj.b1959 doi: 10.1136/bmj.b1959
    [57] J. Quintero, N. R. Pulido, J. Logan, T. Ant, J. Bruce, G. Carrasquilla, Effectiveness of an intervention for Aedes aegypti control scaled-up under an inter-sectoral approach in a Colombian city hyper-endemic for dengue virus, PLoS One, 15 (2020), e0230486. https://doi.org/10.1371/journal.pone.0230486 doi: 10.1371/journal.pone.0230486
    [58] J. Raude, K. MCColl, C. Flamand, T. Apostolidis, Understanding health behaviour changes in response to outbreaks: Findings from a longitudinal study of a large epidemic of mosquito-borne disease, Soc. Sci. Med., 230 (2019), 184–193. https://doi.org/10.1016/j.socscimed.2019.04.009 doi: 10.1016/j.socscimed.2019.04.009
    [59] L. S. Lloyd, P. Winch, J. Ortega-Canto, C. Kendall, The design of a community-based health education intervention for the control of Aedes aegypti, Am. J. Trop. Med. Hyg., 50 (1994), 401–411. https://doi.org/10.4269/ajtmh.1994.50.401 doi: 10.4269/ajtmh.1994.50.401
    [60] A. Caprara, J. W. D. O. Lima, A. C. R. Peixoto, C. M. V. Motta, J. M. S. Nobre, J. Sommerfeld, et al., Entomological impact and social participation in dengue control: a cluster randomized trial in Fortaleza, Brazil, Trans. R. Soc. Trop. Med. Hyg., 109 (2015), 99–105. https://doi.org/10.1093/trstmh/tru187 doi: 10.1093/trstmh/tru187
    [61] A. M. Buttenheim, V. Paz-Soldan, C. Barbu, C. Skovira, J. Q. Calderón, L. M. M. Riveros, et al., Is participation contagious? Evidence from a household vector control campaign in urban Peru, J Epidemiol. Community Health, 68 (2014), 103–109. https://doi.org/10.1136/jech-2013-202661 doi: 10.1136/jech-2013-202661
    [62] J. Bedson, L. A. Skrip, D. Pedi, S. Abramowitz, S. Carter, M. F. Jalloh, et al., A review and agenda for integrated disease models including social and behavioural factors, Nat. Hum. Behav., 5 (2021), 834–846. https://doi.org/10.1038/s41562-021-01136-2 doi: 10.1038/s41562-021-01136-2
    [63] K. Magori, M. Legros, M. E. Puente, D. A. Focks, T. W. Scott, A. L. Lloyd, et al., Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies, PLoS Negl. Trop. Dis., 3 (2009), e508. https://doi.org/10.1371/journal.pntd.0000508 doi: 10.1371/journal.pntd.0000508
    [64] E. L. Davis, T. D. Hollingsworth, M. J. Keeling, An analytically tractable, age-structured model of the impact of vector control on mosquito-transmitted infections, PLoS Comput. Biol., 20 (2024), e1011440. https://doi.org/10.1371/journal.pcbi.1011440 doi: 10.1371/journal.pcbi.1011440
    [65] M. Predescu, G. Sirbu, R. Levins, T. Awerbuch-Friedlander, On the dynamics of a deterministic and stochastic model for mosquito control, Appl. Math. Lett., 20 (2007), 919–925. https://doi.org/10.1016/j.aml.2006.12.001 doi: 10.1016/j.aml.2006.12.001
    [66] J. Elsinga, H. T. Van Der Veen, I. Gerstenbluth, J. G. M. Burgerhof, A. Dijkstra, M. P. Grobusch, et al., Community participation in mosquito breeding site control: an interdisciplinary mixed methods study in Curaçao, Parasites Vectors, 10 (2017), 434. https://doi.org/10.1186/s13071-017-2371-6 doi: 10.1186/s13071-017-2371-6
    [67] A. N. Rakhmani, Y. Limpanont, J. Kaewkungwal, K. Okanurak, Factors associated with dengue prevention behaviour in Lowokwaru, Malang, Indonesia: a cross-sectional study, BMC Public Health, 18 (2018), 619. https://doi.org/10.1186/s12889-018-5553-z doi: 10.1186/s12889-018-5553-z
    [68] A. J. Mackay, M. Amador, A. Diaz, J. Smith, R. Barrera, Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks, J. Am. Mosq. Control Assoc., 25 (2009), 409–416. https://doi.org/10.2987/09-5888.1 doi: 10.2987/09-5888.1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(151) PDF downloads(22) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog