Research article Special Issues

A stage structured model for mosquito suppression with immigration

  • Received: 08 July 2024 Revised: 06 October 2024 Accepted: 23 October 2024 Published: 01 November 2024
  • The incompatible insect technique based on Wolbachia is a promising alternative to control mosquito-borne diseases, such as dengue fever, malaria, and Zika, which drives wild female mosquitoes sterility through a mechanism cytoplasmic incompatibility. A successful control program should be able to withstand the perturbation induced by the immigration of fertilized females from surrounding uncontrolled areas. In this paper, we formulated a system of delay differential equations, including larval and adult stages, interfered by Wolbachia-infected males. We classified the release number of infected males and immigration number of fertile females, to ensure that the system displays globally asymptotically stable or bistable dynamics. The immigration of fertile females hinders the maximum possible suppression efficiency so that the wild adults cannot be reduced to a level below A. We identified the permitted most migration number to reduce the wild adults to a target level. To reduce up to 90% of wild adults in the peak season within two months, an economically viable strategy is to reduce the immigration number of wild females less than 0.21% of the carrying capacity of adults in the control area.

    Citation: Mugen Huang, Zifeng Wang, Zixin Nie. A stage structured model for mosquito suppression with immigration[J]. Mathematical Biosciences and Engineering, 2024, 21(11): 7454-7479. doi: 10.3934/mbe.2024328

    Related Papers:

    [1] Marek Konieczny . Transformation superplasticity of laminated CuAl10Fe3Mn2 bronze-intermetallics composites. AIMS Materials Science, 2020, 7(3): 312-322. doi: 10.3934/matersci.2020.3.312
    [2] Mica Grujicic, S. Ramaswami, Jennifer Snipes . Nacre-like ceramic/polymer laminated composite for use in body-armor applications. AIMS Materials Science, 2016, 3(1): 83-113. doi: 10.3934/matersci.2016.1.83
    [3] Mohammad Na'aim Abd Rahim, Mohd Shukor Salleh, Saifudin Hafiz Yahaya, Sivarao Subramonian, Azrin Hani Abdul Rashid, Syarifah Nur Aqida Syed Ahmad, Salah Salman Al-Zubaidi . Microstructural investigation and mechanical properties of Al2O3-MWCNTs reinforced aluminium composite. AIMS Materials Science, 2025, 12(2): 318-335. doi: 10.3934/matersci.2025017
    [4] Marek Konieczny . Mechanical properties and failure analysis of laminated magnesium-intermetallic composites. AIMS Materials Science, 2022, 9(4): 572-583. doi: 10.3934/matersci.2022034
    [5] Marek Konieczny . Mechanical properties and wear characterization of Al-Mg composites synthesized at different temperatures. AIMS Materials Science, 2024, 11(2): 309-322. doi: 10.3934/matersci.2024017
    [6] Tomáš Meluš, Roman Koleňák, Jaromír Drápala, Paulína Babincová, Matej Pašák . Ultrasonic soldering of Al2O3 ceramics and Ni-SiC composite by use of Bi-based active solder. AIMS Materials Science, 2023, 10(2): 213-226. doi: 10.3934/matersci.2023012
    [7] Yernat Kozhakhmetov, Mazhyn Skakov, Wojciech Wieleba, Kurbanbekov Sherzod, Nuriya Mukhamedova . Evolution of intermetallic compounds in Ti-Al-Nb system by the action of mechanoactivation and spark plasma sintering. AIMS Materials Science, 2020, 7(2): 182-191. doi: 10.3934/matersci.2020.2.182
    [8] Ruaa Al-Mezrakchi, Ahmed Al-Ramthan, Shah Alam . Designing and modeling new generation of advanced hybrid composite sandwich structure armors for ballistic threats in defense applications. AIMS Materials Science, 2020, 7(5): 608-631. doi: 10.3934/matersci.2020.5.608
    [9] Elisa Padovano, Francesco Trevisan, Sara Biamino, Claudio Badini . Processing of hybrid laminates integrating ZrB2/SiC and SiC layers. AIMS Materials Science, 2020, 7(5): 552-564. doi: 10.3934/matersci.2020.5.552
    [10] Habibur Rahman, Altab Hossain, Mohammad Ali . Experimental investigation on cooling tower performance with Al2O3, ZnO and Ti2O3 based nanofluids. AIMS Materials Science, 2024, 11(5): 935-949. doi: 10.3934/matersci.2024045
  • The incompatible insect technique based on Wolbachia is a promising alternative to control mosquito-borne diseases, such as dengue fever, malaria, and Zika, which drives wild female mosquitoes sterility through a mechanism cytoplasmic incompatibility. A successful control program should be able to withstand the perturbation induced by the immigration of fertilized females from surrounding uncontrolled areas. In this paper, we formulated a system of delay differential equations, including larval and adult stages, interfered by Wolbachia-infected males. We classified the release number of infected males and immigration number of fertile females, to ensure that the system displays globally asymptotically stable or bistable dynamics. The immigration of fertile females hinders the maximum possible suppression efficiency so that the wild adults cannot be reduced to a level below A. We identified the permitted most migration number to reduce the wild adults to a target level. To reduce up to 90% of wild adults in the peak season within two months, an economically viable strategy is to reduce the immigration number of wild females less than 0.21% of the carrying capacity of adults in the control area.





    [1] World Health Organization, Global strategy for dengue prevention and control 2012–2020, 2012. Available from: https://iris.who.int/bitstream/handle/10665/75303/9789241504034_eng.pdf.
    [2] S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504–507. https://doi.org/10.1038/nature12060 doi: 10.1038/nature12060
    [3] A. A. Hoffmann, B. L. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. H. Johnson, F. Muzzi, et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476 (2011), 454–457. https://doi.org/10.1038/nature10356 doi: 10.1038/nature10356
    [4] X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572 (2019), 56–61. https://doi.org/10.1038/s41586-019-1407-9 doi: 10.1038/s41586-019-1407-9
    [5] Z. Xi, C. C. Khoo, S. L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 310 (2005), 326–328. https://doi.org/10.1126/science.1117607 doi: 10.1126/science.1117607
    [6] M. P. Atkinson, Z. Su, N. Alphey, L. S. Alphey, P. G. Coleman, L. M. Wein, Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system, PNAS, 104 (2007), 9540–9545. https://doi.org/10.1073/pnas.0610685104 doi: 10.1073/pnas.0610685104
    [7] B. Zheng, M. Tang, J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equation, SIAM J. Appl. Math., 74 (2014), 743–770. https://doi.org/10.1137/13093354X doi: 10.1137/13093354X
    [8] L. Hu, M. Huang, M. Tang, J. Yu, B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 106 (2015), 32–44. https://doi.org/10.1016/j.tpb.2015.09.003 doi: 10.1016/j.tpb.2015.09.003
    [9] L. Hu, M. Tang, Z. Wu, Z. Xi, J. Yu, The threshold infection level for Wolbachia invasion in random environments, J. Diff. Equ., 266 (2019), 4377–4393. https://doi.org/10.1016/j.jde.2018.09.035 doi: 10.1016/j.jde.2018.09.035
    [10] M. Huang, M. Tang, J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58 (2015), 77–96. https://doi.org/10.1007/s11425-014-4934-8 doi: 10.1007/s11425-014-4934-8
    [11] M. Huang, J. Yu, L. Hu, B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249–1266. https://doi.org/10.1007/s11425-016-5149-y doi: 10.1007/s11425-016-5149-y
    [12] M. Huang, J. Lou, L. Hu, B. Zheng, J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol., 440 (2018), 1–11. https://doi.org/10.1016/j.jtbi.2017.12.012 doi: 10.1016/j.jtbi.2017.12.012
    [13] Y. Hui, G. Lin, J. Yu, J. Li, A delayed differential equation model for mosquito population suppression with sterile mosquitoes, Discrete Contin. Dyn. Syst. B, 25 (2020), 4659–4676. https://doi.org/10.3934/dcdsb.2020118 doi: 10.3934/dcdsb.2020118
    [14] J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Diff. Equ., 269 (2020), 10395–10415. https://doi.org/10.1016/j.jde.2020.07.019 doi: 10.1016/j.jde.2020.07.019
    [15] M. Huang, M. Tang, J. Yu, B. Zheng, The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppression, Math. Bios. Eng., 16 (2019), 4741–4757. https://doi.org/10.3934/mbe.2019238 doi: 10.3934/mbe.2019238
    [16] B. Zheng, J. Yu, Z. Xi, M. Tang, The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model., 387 (2018), 38–48. https://doi.org/10.1016/j.ecolmodel.2018.09.004 doi: 10.1016/j.ecolmodel.2018.09.004
    [17] D. Li, H. Wan, The threshold infection level for Wolbachia invasion in a two-sex mosquito population model, Bulletin Math. Biol., 81 (2019), 2596–2624. https://doi.org/10.1007/s11538-019-00620-1 doi: 10.1007/s11538-019-00620-1
    [18] B. Zheng, M. Tang, J. Yu, J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235–263. https://doi.org/10.1007/s00285-017-1142-5 doi: 10.1007/s00285-017-1142-5
    [19] X. Zhang, S. Tang, R. A. Cheke, Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control, Nonlinear Anal. Real World Appl., 22 (2015), 236–258. https://doi.org/10.1016/j.nonrwa.2014.09.004 doi: 10.1016/j.nonrwa.2014.09.004
    [20] J. Yu, J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Diff. Equ., 269 (2020), 6193–6215. https://doi.org/10.1016/j.jde.2020.04.036 doi: 10.1016/j.jde.2020.04.036
    [21] J. Yu, J. Li, A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period, J. Math. Biol., 84 (2022), 14. https://doi.org/10.1007/s00285-022-01718-2 doi: 10.1007/s00285-022-01718-2
    [22] M. Huang, M. Tang, J. Yu, B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Discrete Contin. Dyn. Syst., 40 (2020), 3467–3484. https://doi.org/10.3934/dcds.2020042 doi: 10.3934/dcds.2020042
    [23] P. I. Bliman, Y. Dumont, Robust control strategy by the sterile insect technique for reducing epidemiological risk in presence of vector migration, Math. Biosci., 350 (2022), 108856. https://doi.org/10.1016/j.mbs.2022.108856 doi: 10.1016/j.mbs.2022.108856
    [24] M. Huang, J. Yu, Modeling the impact of migration on mosquito population suppression, Qual. Theor. Dyn. Syst., 22 (2023), 134. https://doi.org/10.1007/s12346-023-00834-8 doi: 10.1007/s12346-023-00834-8
    [25] T. Prout, The joint effects of the release of sterile males and immigration of fertilized females on a density regulated population, Theor. Popul. Biol., 13 (1978), 40–71. https://doi.org/10.1016/0040-5809(78)90035-7 doi: 10.1016/0040-5809(78)90035-7
    [26] G. L. Goff, D. Damiens, A. H. Ruttee, L. Payet, C. Lebon, J. Dehecq, et al., Field evaluation of seasonal trends in relative population sizes and dispersal pattern of Aedes albopictus males in support of the design of a sterile male release strategy, Paras. Vectors, 12 (2019), 81. https://doi.org/10.1186/s13071-019-3329-7 doi: 10.1186/s13071-019-3329-7
    [27] F. Liu, C. Zhou, P. Lin, Studies on the population ecology of Aedes albopictus–-The seasonal abundance of natural population of Aedes albopictus in Guangzhou, Acta Sci. Natur. Universitatis Sunyatseni, 29 (1990), 118–122.
    [28] A. Tr'ajer, T. Hammer, I. Kacsala, B. Tánczos, N. Bagi, J. Padisák, Decoupling of active and passive reasons for the invasion dynamics of Aedes albopictus Skuse (Diptera: Culicidae): Comparisons of dispersal history in the Apennine and Florida peninsulas, J. Vect. Ecol., 42 (2017), 233–242. https://doi.org/10.1111/jvec.12263 doi: 10.1111/jvec.12263
    [29] Y. Li, F. Kamara, G. Zhou, S. Puthiyakunnon, C. Li, Y. Liu, et al., Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl. Trop. Dis., 8 (2014), e3301. https://doi.org/10.1371/journal.pntd.0003301 doi: 10.1371/journal.pntd.0003301
    [30] F. Liu, C. Yao, P. Lin, C. Zhou, Studies on life table of the natural population of Aedes albopictus, Acta Sci. Natur. Universitatis Sunyatseni, 31 (1992), 84–93.
    [31] P. A. Ross, N. M. Endersby, H. L. Yeap, A. A. Hoffmann, Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia infected Aedes aegypti, Am. J. Trop. Med. Hyg., 9 (2014), 198–205. https://doi.org/10.4269/ajtmh.13-0576 doi: 10.4269/ajtmh.13-0576
    [32] R. K. Walsh, L. Facchinelli, J. M. Ramsey, J. G. Bond, F. Gould, Assessing the impact of density dependence in field populations of Aedes aegypti, J. Vector Ecol., 36 (2011), 300–307. https://doi.org/10.1111/j.1948-7134.2011.00170.x doi: 10.1111/j.1948-7134.2011.00170.x
    [33] D. Zhang, X. Zheng, Z. Xi, K. Bourtzis, J. R. L. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 10 (2015), e0121126. https://doi.org/10.1371/journal.pone.0121126 doi: 10.1371/journal.pone.0121126
    [34] P. Cailly, A. Tran, T. Balenghien, G. L'Ambert, C. Toty, P. Ezanno, A climate driven abundance model to assess mosquito control strategies, Ecol. Model., 227 (2012), 7–17. https://doi.org/10.1016/j.ecolmodel.2011.10.027 doi: 10.1016/j.ecolmodel.2011.10.027
    [35] H. I. Freedman, Deterministic mathematical models in population ecology, 2nd edition, HIFR Consulting LTD, Edmonton, 1987.
    [36] H. L. Smith, An introduction to delay differential equations with applications to the life sciences, Springer, New York, 2011.
    [37] J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187. https://doi.org/10.1137/18M1204917 doi: 10.1137/18M1204917
    [38] D.R. Curtiss, Recent extensions of Descartes' Rule of signs, Annals of Math., 19 (1918), 251–278. https://doi.org/10.2307/1967494 doi: 10.2307/1967494
    [39] J. Waldock, N. L. Chandra, J. Lelieveld, Y. Proestos, E. Michael, G. Christophides, et al., The role of environment variables on Aedes albopictus biology and Chikungunya epidemiology, Pathog. Glob. Health., 107 (2013), 224–240. https://doi.org/10.1179/2047773213Y.0000000100 doi: 10.1179/2047773213Y.0000000100
    [40] Z. Zhong, G. He, The life table of laboratory Aedes albopictus under various temperatures, Academic J. Sun Yat-sen Univ. Med. Sci., 9 (1988), 35–39.
    [41] A. Tran, G. L'Ambert, G. Lacour, R. Benoît, M. Demarchi, M. Cros, et al., A rainfall and temperature driven abundance model for Aedes albopictus populations, Int. J. Environ. Res. Public Health, 10 (2013), 1698–1719. https://doi.org/10.3390/ijerph10051698 doi: 10.3390/ijerph10051698
    [42] P. A. Hancock, V. L. White, A. G. Callahan, C. H. J. Godfray, A. A. Hoffmann, S. A. Ritchie, Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia, J. Appl. Ecol., 53 (2016), 785–793. https://doi.org/10.1111/1365-2664.12620 doi: 10.1111/1365-2664.12620
    [43] P. J. Huxley, K. A. Murray, S. Pawar, L. J. Cator, Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti, Commun. Biol., 5 (2022), 66. https://doi.org/10.1038/s42003-022-03030-7 doi: 10.1038/s42003-022-03030-7
    [44] P. E. Parham, E. Michael, Modeling the effects of weather and climate change on malaria transmission, Environ. Health Perspect., 118 (2010), 620–626. https://doi.org/10.1289/ehp.0901256 doi: 10.1289/ehp.0901256
  • This article has been cited by:

    1. Adam Kurzawa, Dariusz Pyka, Krzysztof Jamroziak, Marcin Bajkowski, Miroslaw Bocian, Mariusz Magier, Jan Koch, Assessment of the Impact Resistance of a Composite Material with EN AW-7075 Matrix Reinforced with α-Al2O3 Particles Using a 7.62 × 39 mm Projectile, 2020, 13, 1996-1944, 769, 10.3390/ma13030769
    2. S A Zelepugin, A S Zelepugin, A A Popov, D V Yanov, Failure of the laminate composites under impact loading, 2018, 1115, 1742-6588, 042018, 10.1088/1742-6596/1115/4/042018
    3. Le Xin, Meini Yuan, Yuhang Yao, Leibin Yao, Fangzhou Han, Numerical study the effects of defects on the anti-penetration performance of Ti6Al4V–Al3Ti Laminated Composites, 2019, 6, 2053-1591, 0865f8, 10.1088/2053-1591/ab2695
    4. Leonid Moiseevich Gurevich, Victor Georgievich Shmorgun, Dmitriy Vladimirovich Pronichev, Roman Evgenyevich Novikov, The Simulation of Titanium-Aluminium Composite with Intermetallic Inclusions Behavior under Compression, 2017, 743, 1662-9795, 176, 10.4028/www.scientific.net/KEM.743.176
    5. Hailiang Yu, Cheng Lu, Kiet Tieu, Huijun Li, Ajit Godbole, Xiong Liu, Charlie Kong, Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding, 2017, 32, 0884-2914, 3761, 10.1557/jmr.2017.355
    6. B. Blessto, Sarath Nair, K. Sivaprasad, D. Nagarajan, Replication of the Al/Ti Metal Intermetallic Laminates Using LS Dyna for Tungsten Alloy Penetrator Application, 2020, 2250-2122, 10.1007/s40033-020-00208-3
    7. Jian Ma, Meini Yuan, Lirong Zheng, Zeyuan Wei, Kai Wang, Dynamic Mechanical Properties of Ti–Al3Ti–Al Laminated Composites: Experimental and Numerical Investigation, 2021, 11, 2075-4701, 1489, 10.3390/met11091489
    8. Honglin Wang, Jian Ma, Meini Yuan, Guang Liang, Xin Pei, Yuzhong Miao, Maohua Li, Microstructure, deformation behaviors and GND density evolution of Ti-Al laminated composites under the incremental compression test, 2022, 33, 23524928, 104605, 10.1016/j.mtcomm.2022.104605
    9. C. O. Ujah, A. P. I. Popoola, O. M. Popoola, Review on materials applied in electric transmission conductors, 2022, 57, 0022-2461, 1581, 10.1007/s10853-021-06681-9
    10. Chika Oliver Ujah, Daramy Vandi Von Kallon, Victor Sunday Aigbodion, Overview of Electricity Transmission Conductors: Challenges and Remedies, 2022, 15, 1996-1944, 8094, 10.3390/ma15228094
    11. G. Sukumar, K. Muralidharan, P. Ponguru Senthil, P. Prakasa Rao, G. Balaji, S. G. Savio, B. Bhav Singh, 2024, Chapter 28, 978-981-99-8806-8, 353, 10.1007/978-981-99-8807-5_28
    12. Yu Wang, Xiangfei Peng, Ahmed M. Fallatah, Hongxin Qin, Wenjuan Zhao, Zaki I. Zaki, Hong Xu, Bin Liu, Hongkui Mao, Zeinhom M. El-Bahy, Hassan Algadi, Chao Wang, High-entropy CoCrFeMnNi alloy/aluminide-laminated composites with enhanced quasi-static bending and dynamic compression properties, 2023, 6, 2522-0128, 10.1007/s42114-023-00782-6
    13. Chongyang Feng, Hua Hou, Zhiqiang Li, Muxi Li, Qingwei Guo, Yuhong Zhao, Anti-penetration performance of Ti/Al3Ti/Al laminated composites with graphene nanoplatelets, 2025, 22387854, 10.1016/j.jmrt.2025.03.280
    14. Yang Wang, Meini Yuan, Pengfei Zhou, Xin Pei, Wei Yang, Zehui Tian, Effects of TC4 Thickness on the Penetration Resistance Behavior of Ti-Al3Ti Metal–Intermetallic Laminated Composites, 2025, 18, 1996-1944, 1846, 10.3390/ma18081846
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(850) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog