ψij | name |
i+j | First Zagreb index |
1√ij | Randić index |
2√iji+j | GA index |
√i+j−2ij | ABC index |
1√i+j | Sum–connectivity index |
(ij)3(i+j−2)3 | AZI index |
2i+j | Harmonic index |
|i−j| | Albertson index |
√i2+j2 | Sombor index |
iji+j | ISI index |
We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms. The determined parameter values closely align with experimental data, providing insights into the mechanisms that govern Geobacter proliferation. Furthermore, the model has been transformed into a scaleless equation with only two parameters to simplify the exploration of qualitative properties. This allowed us to conduct stability analysis of the fixed point and construct a co-dimension two bifurcation diagram.
Citation: Virgínia Villa-Cruz, Sumaya Jaimes-Reátegui, Juana E. Alba-Cuevas, Lily Xochilt Zelaya-Molina, Rider Jaimes-Reátegui, Alexander N. Pisarchik. Quantifying Geobacter sulfurreducens growth: A mathematical model based on acetate concentration as an oxidizing substrate[J]. Mathematical Biosciences and Engineering, 2024, 21(5): 5972-5995. doi: 10.3934/mbe.2024263
[1] | Edil D. Molina, Paul Bosch, José M. Sigarreta, Eva Tourís . On the variable inverse sum deg index. Mathematical Biosciences and Engineering, 2023, 20(5): 8800-8813. doi: 10.3934/mbe.2023387 |
[2] | Mert Sinan Oz, Roberto Cruz, Juan Rada . Computation method of the Hosoya index of primitive coronoid systems. Mathematical Biosciences and Engineering, 2022, 19(10): 9842-9852. doi: 10.3934/mbe.2022458 |
[3] | William E. Fitzgibbon . The work of Glenn F. Webb. Mathematical Biosciences and Engineering, 2015, 12(4): v-xvi. doi: 10.3934/mbe.2015.12.4v |
[4] | V. R. Kulli, J. A. Méndez-Bermúdez, José M. Rodríguez, José M. Sigarreta . Revan Sombor indices: Analytical and statistical study. Mathematical Biosciences and Engineering, 2023, 20(2): 1801-1819. doi: 10.3934/mbe.2023082 |
[5] | Xinmei Liu, Xinfeng Liang, Xianya Geng . Expected Value of Multiplicative Degree-Kirchhoff Index in Random Polygonal Chains. Mathematical Biosciences and Engineering, 2023, 20(1): 707-719. doi: 10.3934/mbe.2023032 |
[6] | Saylé C. Sigarreta, Saylí M. Sigarreta, Hugo Cruz-Suárez . On degree–based topological indices of random polyomino chains. Mathematical Biosciences and Engineering, 2022, 19(9): 8760-8773. doi: 10.3934/mbe.2022406 |
[7] | Muhammad Akram, Adeel Farooq, Maria Shabir, Mohammed M. Ali Al-Shamiri, Mohammed M. Khalaf . Group decision-making analysis with complex spherical fuzzy $ N $-soft sets. Mathematical Biosciences and Engineering, 2022, 19(5): 4991-5030. doi: 10.3934/mbe.2022234 |
[8] | Martin J. Blaser . Studying microbiology with Glenn F. Webb. Mathematical Biosciences and Engineering, 2015, 12(4): xvii-xxii. doi: 10.3934/mbe.2015.12.4xvii |
[9] | Wanlin Zhu, Minglei Fang, Xianya Geng . Enumeration of the Gutman and Schultz indices in the random polygonal chains. Mathematical Biosciences and Engineering, 2022, 19(11): 10826-10845. doi: 10.3934/mbe.2022506 |
[10] | Abdul Qadeer Khan, Azhar Zafar Kiyani, Imtiaz Ahmad . Bifurcations and hybrid control in a 3×3 discrete-time predator-prey model. Mathematical Biosciences and Engineering, 2020, 17(6): 6963-6992. doi: 10.3934/mbe.2020360 |
We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms. The determined parameter values closely align with experimental data, providing insights into the mechanisms that govern Geobacter proliferation. Furthermore, the model has been transformed into a scaleless equation with only two parameters to simplify the exploration of qualitative properties. This allowed us to conduct stability analysis of the fixed point and construct a co-dimension two bifurcation diagram.
In mathematics chemistry and biology, a chemical compound can be represented by a molecular graph by converting atoms to vertices and bonds to edges. One of the primary mission of QSAR/QSPR research is to accurately convert molecular graphs into numerical values. Graph theoretic invariants of molecular graphs are called molecular descriptors which can be utilized to simulate the structural information of molecules, in order to make worthwhile physical and chemical properties of these molecules can be acquired by single numerical values. Such kinds of molecular descriptors are also referred to as topological indices.
In the chemical literature, various topological indices relying only on vertex degrees of the molecular graphs can be utilized in QSPR/QSAR investigation on account of them can be obtained directly from the molecular architecture, and can be rapidly calculated for generous molecules (see [1,2]), and we call them VDB (vertex–degree–based) topological indices. To be more precise, for designated nonnegative real numbers {ψij} (1≤i≤j≤n−1), a VDB topological index of a an n-order (molecular) graph G is expressed as
TI(G)=∑1≤i≤j≤n−1mijψij, | (1.1) |
where mij is the amount of edges connecting an i-vertex and a j-vertex of G. A great deal of well–known VDB topological indices can be obtained by different ψij in expression (1.1). We list some VDB topological indices in Table 1.
ψij | name |
i+j | First Zagreb index |
1√ij | Randić index |
2√iji+j | GA index |
√i+j−2ij | ABC index |
1√i+j | Sum–connectivity index |
(ij)3(i+j−2)3 | AZI index |
2i+j | Harmonic index |
|i−j| | Albertson index |
√i2+j2 | Sombor index |
iji+j | ISI index |
The first Zagreb index [3] is the very first VDB topological index, as powerful molecular structure-descriptors [2], Zagreb indices can describe the peculiarities of the degree of branching in molecular carbon-atom skeleton. Thereafter, many VDB topological indices have been put forward to simulate physical, chemical, biological, and other attributes of molecules [4,5,6,7]. In 2021, Gutman [8] introduced a new VDB topological index named as the Sombor index which has a linear correlation with the entropy and the enthalpy of vaporization of octanes [9]. Das et al., give sharp bounds for Sombor index of graphs by means of some useful graph parameters and they reveal the relationships between the Sombor index and Zagreb indices of graphs [10]. Recently, Steiner Gutman index was introduced by Mao and Das [11] which incorporate Steiner distance of a connected graph G. Nordhaus-Gaddum-type results for the Steiner Gutman index of graphs were given in [12]. In 2022, Shang study the Sombor index and degree-related properties of simplicial networks [13]. For more details of VDB topological indices, one can see [3,14,15,16,17,18,19,20,21,22,23,24,25,26] and the books [27,28,29].
Fluoranthene is a eminent conjugated hydrocarbon which abound in coal tar [30]. A fluoranthene–type benzenoid system (f-benzenoid for short) is formed from two benzenoid units joined by a pentagon [31,32]. The ordinary structure modality of a f-benzenoid F is shown in Figure 1, where segments X and Y are two benzenoid systems. Each f-benzenoid possesses exactly one pentagon [32]. More and more attention is paid to f-benzenoids after the flash vacuum pyrolysis experiments of these nonalternant polycyclic aromatic hydrocarbons [33].
In the whole article, the terminology and notation are chiefly derived from [34,35,36,37,38,39,40,41]. A vertex of degree k is called a k-vertex, and an edge linking a k-vertex and a j-vertex is designated as a (k,j)-edge. Let nk be the number of k-vertices and let mkj be the number of (k,j)-edges in the molecular graph G. A benzenoid system without internal vertices is said to be catacondensed. Analogously, a f-benzenoid F containing a unique internal vertex is referred to as catacatacondensed. We use h-hexagon benzenoid system (or h-hexagon f-benzenoid) to represent a benzenoid system (or f-benzenoid) containing h hexagons.
Let Lh represent the h-hexagon linear chain (as shown in Figure 2(a)). An f-benzenoid FLh (h≥3) obtaining from pieces X=L2 and Y=Lh−2 is named as f-linear chain (as shown in Figure 2(b)).
A fissure (resp. bay, cove, fjord and lagoon) of a f-benzenoid F is a path of degree sequences (2,3,2) (resp. (2,3,3,2), (2,3,3,3,2), (2,3,3,3,3,2) and (2,3,3,3,3,3,2)) on the perimeter of F (see Figure 3). Fissures, bays, coves, fjords and lagoons are said to be different kinds of inlets and their number are signified by f, B, C, Fj and L, respectively [32,37]. Inlets determine many electronic and topological properties of f-benzenoids. Then, it can be found that f+2B+3C+4FJ+5L is the number of 3-vertices on the perimeter of F. It is noted that lagoons cannot occur in the theory of benzenoid systems. For convenience, let r=f+B+C+Fj+L to represent the total number of inlets and b=B+2C+3Fj+4L is referred to as the quantity of bay regions, In addition, b is exactly the quantity of (3,3)-edges on the perimeter of F. It is obvious that b≥2 for any f-benzenoid F.
It is noted that any f-benzenoid F contains merely either 2-vertex or 3-vertex. The vertices not on the perimeter are said to be internal, and we use ni to represent their number.
Lemma 1.1. [32] Let F be an n-order, h-hexagon f-benzenoid with m edges and ni internal vertices. Then
(i) n=4h+5−ni;
(ii) m=5h+5−ni.
Lemma 1.2. [32] Let F be an n-order and h-hexagon f-benzenoid with r inlets, Then
(i) m22=n−2h−r;
(ii) m23=2r;
(iii) m33=3h−r.
From the perspective of mathematics and chemistry, finding the extremal values of some useful TI for significant classes of graphs is very interesting [14,19,23,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56].
As a matter of convenience, we use Γm to represent the collection of f-benzenoids containing exactly m edges. In [45], we derived extremal values for TI among all f-benzenoids with given order. It is noted that structure of f-benzenoids with given order is different from that of f-benzenoids with given number of edges. And we found that the technique for studying TI among all f-benzenoids with given order can not be used directly to investigate TI for all f-benzenoids with fixed number of edges. For this reason, we concentrate on the research of extremal values for TI among all f-benzenoids with given size.
The main idea of this work is to construct f-benzenoids owning maximal r and minimal h at the same time in Γm depending on the number m is congruent to 0,1,2,3 or 4 modulo 5. By making use of this technique, we obtain the extremum of TI over Γm and characterize their corresponding graphs on the basis of m is congruent to 0,1,2,3 or 4 modulo 5. Afterwards the extremums of some well-known TI over Γm can be got by use of the previous results.
The structure of this paper is as below. We first determine the maximal r in the set Γm in Section 2. By utilizing these results, we find the extremum of several famed TI over Γm in Section 3.
We will find the f-benzenoids with maximal r in Γm in this section. Figure 4 illustrates three f-benzenoids pertaining to Γ42.
At first, we try to obtain the maximum and minimum number of hexagons in any F∈Γm.
The spiral benzenoid system [57] Th is a benzenoid system whose structure is in a "spiral" manner as illustrated in Figure 5. Th has maximal ni in all h-hexagon benzenoid systems.
As a matter of convenience, let SHh (h≥3) represent the collection of f-benzenoids formed by two spiral benzenoids X and Y. Particularly, a f-spiral benzenoid is a f-benzenoid F∗∈SHh in which X=Th−1 and Y=T1 (as shown in Figure 6). It is easy to see that that
ni(F∗)=2h−⌈√12(h−1)−3⌉. |
In [40], we proved that for every F′∈SHh (h≥3), the inequality
ni(F′)≤ni(F∗) | (2.1) |
holds, and the following graph operations were introduced.
Operation 1. For any h-hexagon f-benzenoid F having two segments X and Y, let h1=h(X) and h2=h(Y). By substituting spiral benzenoid systems Th1 and Th2 for X and Y, severally, another f-benzenoid F′∈SHh can be obtained (as shown in Figure 7).
For any h-hexagon f-benzenoid F, when h=3, it is easily checked that
ni(F)=1=2×3−⌈√12(3−1)−3⌉. | (2.2) |
When h≥4, let h1=h(X) and h2=h(Y). Another F′∈SHh (as shown in Figure 7) in which X=Th1 and Y=Th2 can be acquired by applying Operation 1 to F. It is apparently that ni(X)≤ni(Th1), ni(Y)≤ni(Th2), therefore
ni(F)=ni(X)+ni(Y)+1≤ni(Th1)+ni(Th2)+1=ni(F′). | (2.3) |
So, the following Lemma can be deduced by Eqs (2.1) and (2.3).
Lemma 2.1. [41] Let F be an h(h≥3)-hexagon f-benzenoid. Then
ni(F)≤2h−⌈√12(h−1)−3⌉, | (2.4) |
and the equality is established when F is F∗.
For any F∈Γm, h(F) over Γm is variable. Sharp bounds for h(F) in Γm is given below.
Theorem 2.1. For any f-benzenoid F∈Γm,
⌈15(m−4)⌉≤h(F)≤m−1−⌈13(2m+√4m−31)⌉, | (2.5) |
where ⌈x⌉ is the smallest integer larger or equal to x.
Proof. On one hand, from Lemma 1.1 (ii) we know that m=5h(F)+5−ni(F). Combining the fact that ni(F)≥1 for any F∈Γm, we get
h(F)≥⌈15(m−4)⌉. |
On the other hand, by Lemma 2.1 we know that ni(F)≤ni(F∗). Consequently, from m=5h(F)+5−ni(F) we have
m−3h(F)−5≥⌈√12(h(F)−1)−3⌉≥√12(h(F)−1)−3. |
Hence,
(3h(F)+(3−m))2≥4m−31. |
Due to the fact that 3h(F)+(3−m)<0, we deduce
3h(F)+(3−m)≤−√4m−31, |
i.e., h(F)≤m−1−⌈13(2m+√4m−31)⌉.
Remark 1. Theorem 2.1 implies that f-spiral benzenoid F∗ has the maximal number of hexagons over Γm.
For the sake of obtaining the extremum TI among all f-benzenoids in Γm, we need to find the f-benzenoids F∈Γm possessing maximal r.
Recall that convex benzenoid systems (CBS for brevity) are a particular sort of benzenoid systems lack of bay regions [14]. Let HSh be the collection of benzenoid systems containing h hexagons.
Lemma 2.2. [42] Let H∈HSh. Under the below cases, H is definitely not a CBS:
(i) If h≥4 and ni=1;
(ii) If h≥5 and ni=2;
(iii) If h≥6 and ni=3.
Lemma 2.3. [52] Let H∈HSh such that ni(H)=4. Then H is bound to embody a subbenzenoid system given in Figure 8, there does not exist hexagons which are adjacent to fissures.
Lemma 2.4. Let S∈HSh. If h≥7 and ni(S)=4, then S is not a CBS.
Proof. Let S be an h (h≥7)-hexagon benzenoid system, ni(S)=4, then by Lemma 2.3 S must contain one of the benzenoid systems of the form given in Figure 7. The proof is carried out in two cases.
Case 1. If these four internal vertices form a path P4 or a K1,3, then S contains one of benzenoid systems (d)–(f) in Figure 7 as its subbenzenoid systems. It is noted that h≥7, by Lemma 2.2, it must not exist hexagons contiguous to the fissures, so, S has at least one hexagon contiguous to a (2,2)-edge, by means of such hexagons, it is succeeded in converting one of the fissures into a cove, bay or fjord. Hence, b(S)≥1.
Case 2. If these four internal vertices are not adjacent then S has possibility subbenzenoid systems as follows.
1) There exist one type (a) and one type (c) benzenoid systems in S;
2) There exist two type (b) benzenoid systems in S;
3) There exist two type (a) and one type (b) benzenoid systems in S.
4) There exist four type (a) benzenoid systems in S
By Lemma 2.2, neither hexagons may be adjacent to the fissures in any of the cases indicated above. Since h≥7, S has at least one hexagon contiguous to a (2,2)-edge, by means of such hexagons, it is succeeded in making one of the fissures become a cove, bay or fjord. Therefore, b(S)≥1.
The proof is completed.
Lemma 2.5. [45] Let F be an h-hexagon f-benzenoid. Then
1) If ni=1, then r(F)≤r(FLh)=2h−3 (h≥3);
2) If ni=2, then r(F)≤r(Gh)=2h−4 (h≥4);
3) If ni=3, then r(F)≤r(Rh)=2h−5 (h≥5);
4) If ni=4, then r(F)≤r(Zh)=2h−6 (h≥6).
Next we find the f-benzenoids with maximal r in Γm with a fixed ni. Recall that Mh, Nh and Qh (see Figure 9) are benzenoid systems, and Gh (see Figure 10), Rh (see Figure 11), Zh (see Figure 12) are f-benzenoids.
Lemma 2.6. [41] Let F be an h-hexagon f-benzenoid. Then
r(F)≤r(FLh)=2h−3. |
Lemma 2.7. [32] For any h-hexagon f-benzenoid including ni internal vertices and b bay regions, the number of (2,2)-edge and (2,3)-edge are m22=b+5,m23=4h−2ni−2b, respectively.
From Lemmas 1.2 (ii) and 8, we get
r=2h−ni−b | (2.6) |
Furthermore, by Lemma 1.1 (ii) and Eq (2.6), we deduce
r=m−3h−5−b | (2.7) |
Theorem 2.2. Let F be an h-hexagon f-benzenoid. If ni=5, then r(F)≤r(Uh)=2h−7 (h≥7).
Proof. Let h1=h(X) and h2=h(Y), X and Y are two segments of F. If ni=5, by the structure of f-benzenoid, equality ni(X)+ni(Y)=4 holds, so, we have the following five cases.
Case 1. ni(X)=1, ni(Y)=3, i.e., there exist one internal vertex and three internal vertices in X and Y, respectively.
Subcase 1.1. If h1=3, then X=M3.
Subcase 1.1.1. If h2=5, i.e., Y=Q5, then F is the f-benzenoid D1, D2 or D3 (see Figure 14). It is clear that r(F)=r(D1)=8≤2h−7, r(F)=r(D2)=7≤2h−7 or r(F)=r(D3)=8≤2h−7.
Subcase 1.1.2. If h2≥6, by Lemma 2.2 and the hypothesis that ni(Y)=3, Y is not a CBS, so b(Y)≥1. Furthermore, b(F)≥3, combining Eq (2.6) we obtain r=2h−ni−b≤2h−8<2h−7.
Subcase 1.2. If h1≥4, according to Lemma 2.2, X is definitely not a CBS, i.e., b(X)≥1.
Subcase 1.2.1. If h2=5, i.e., Y=Q5. It is clear that b(F)≥4, then Eq (2.6) deduces r≤2h−9<2h−7.
Subcase 1.2.2. If h2≥6, Y is definitely not not a CBS according to Lemma 2.2, so, b(Y)≥1. It is clear that b(F)≥5, consequently from Eq (2.6) we obtain r≤2h−10<2h−7.
Case 2. ni(X)=3 and ni(Y)=1.
Subcase 2.1. If h1=5, then X=Q5.
Subcase 2.1.1. If h2=3, i.e., Y=M3, then F is the f-benzenoid D4, D5, D6 (see Figure 14), or D7 (as shown in Figure 15). r(F)=r(D4)=8≤2h−7, r(F)=r(D5)=7≤2h−7, r(F)=r(D6)=8≤2h−7, r(F)=r(D7)=7≤2h−7.
Subcase 2.1.2. If h2≥4, Y is surely not a CBS in light of Lemma 2.2, i.e., b(X)≥1. Hence, we have b(F)≥4, it follows from Eq (2.6) that r≤2h−9<2h−7.
Subcase 2.2. If h1≥6, by Lemma 2.2, X is definitely not a CBS, hence b(X)≥1.
Subcase 2.2.1. If h2=3, i.e., Y=M3. We have b(F)≥4, and Eq (2.6) infers that r≤2h−9<2h−7.
Subcase 2.2.2. f h2≥4, by Lemma 2.2, Y is certainly not a CBS, i.e., b(X)≥1. Hence we have b(F)≥5, by Eq (2.6), r≤2h−10<2h−7.
Case 3. ni(X)=2, ni(Y)=2, i.e., X and Y both have two internal vertices.
Subcase 3.1. If h1=4, we note that ni(X)=2, so X must be the benzenoid system (b) in Figure 9.
Subcase 3.1.1. If h2=4, Y is surely the benzenoid system (b) in Figure 9 according to the hypothesis ni(Y)=2, therefore, F is D8 or D9 (as shown in Figure 15). We get r(F)=r(D8)=8<2h−7 or r(F)=r(D9)=7<2h−7.
Subcase 3.1.2. If h2≥5, by Lemma 2.2 and that ni(Y)=2, Y is not a CBS, so we know that b(X)≥1. Then b(F)≥4, by Eq (2.6) and the fact that ni=5, r≤2h−9<2h−7.
Subcase 3.2. If h2=4, we note that ni(Y)=2, so Y must be the benzenoid system (b) in Figure 8.
Subcase 3.2.1. If h1=4, X must also be the benzenoid system (b) in Figure 9. Hence, F is D8 or D9 (as shown in Figure 15). r(F)=r(D8)=8≤2h−7 or r(F)=r(D9)=7≤2h−7.
Subcase 3.2.2. If h1≥5, by Lemma 2.2 and ni(X)=2, X is definitely not a CBS, i.e., b(X)≥1. Hence, b(F)≥4, by Eq (2.6) and the fact that ni=5, we have r≤2h−9<2h−7.
Subcase 3.3. If h1≥5, h2≥5, it is noted that ni(X)=ni(Y)=2, neither X nor Y are definitely CBS according to Lemma 2.2. So, both b(X) and b(Y) are greater than 1. Hence, b(F)≥5, on the basis of Eq (2.6) we get r≤2h−10<2h−7.
Case 4. ni(X)=4 and ni(Y)=0, i.e., X contains four internal vertices, Y is a catacondensed benzenoid system.
Subcase 4.1. If h1=6, then X is the benzenoid system (d), (e) or (f) in Figure 9.
Subcase 4.1.1. If h2=1, F is the f-benzenoid D10, D11, D12 (see Figure 16), D13 (see Figure 17) or U7 (see Figure 12). r(F)=r(D10)=6≤2h−7, r(F)=r(D11)=6≤2h−7, r(F)=r(D12)=6≤2h−7, r(F)=r(D13)=6≤2h−7 or r(F)=r(U7)=7=2h−7.
Subcase 4.1.2. If h2≥2, we have b(F)≥2, by Eq (2.6), r≤2h−7.
Subcase 4.2. If h1≥7, in the light of Lemma 2.4, X is definitely not a CBS, hence b(Y)≥1. In this situation b(F)≥3, we get the inequality r≤2h−8<2h−7 according to Eq (2.6).
Case 5. ni(X)=0 and ni(Y)=4, i.e., X is a catacondensed benzenoid system, Y has four internal vertices.
Subcase 5.1. If h2=6, then Y is the benzenoid system (d), (e) or (f) in Figure 8.
Subcase 5.1.1. If h1=2, X must be the linear chain L2. In this event, F is D14, D15, D16, D17, D18, D19, D20 or D21 (see Figure 17). By further checking, we gain that r(F)=r(D14)=7≤2h−7, r(F)=r(D15)=8≤2h−7, r(F)=r(D16)=8≤2h−7, r(F)=r(D17)=7≤2h−7, r(F)=r(D18)=7≤2h−7, r(F)=r(D19)=8≤2h−7, r(F)=r(D20)=6≤2h−7 or r(F)=r(D21)=6≤2h−7.
Subcase 5.1.2. If h1≥3, bearing in mind that X is a catacondensed benzenoid system and Y is the benzenoid system (d), (e) or (f) in Figure 8, then F must have f-benzenoid D14, D15, D16, D17, D18, D19, D20 or D21 (see Figure 17) as its subgraph.
Subcase 5.1.2.1. If D14 is a subgraph in F, it is obvious that D14 has two coves. Since X is a catacondensed benzenoid system and h1≥3, F has at least one hexagon contiguous to a (2,2)-edge of X, and such hexagons can convert one fissure into a bay, or convert one cove into a fjord, or convert one fjord into a lagoon. In this instance b(F)≥4. Consequently, r≤2h−9<2h−7 can be got according to Eq (2.6).
Subcase 5.1.2.2. If D15, D16 or D19 is a subpart f-benzenoid in F, it is obvious each one of D15, D16 and D19 has a bay and a cove. Since X is a catacondensed benzenoid system and h1≥3, F contains at least one hexagon adjoining a (2,2)-edge of X, and such hexagons will make one fissure become a bay, or make one cove become a fjord, or make one fjord become a lagoon. Consequently, b(F)≥4, by Eq (2.6) it follows that r≤2h−9<2h−7.
Subcase 5.1.2.3. If D17 is a subpart f-benzenoid in F, it is obvious that D17 has a fjord and a bay. Since X is a catacondensed benzenoid system and h1≥3, F has at least one hexagon adjoining a (2,2)-edge of X, and such hexagons will convert one fissure into a bay, or convert one cove into a fjord, or convert one fjord into a lagoon. Consequently, b(F)≥4, by Eq (2.6) it follows that r≤2h−9<2h−7.
Subcase 5.1.2.4. If D18 is a subpart f-benzenoid in F, it is obvious that D18 has a fjord and two bays. Since X is a catacondensed benzenoid system and h1≥3, there exists has at least one hexagon adjoining a (2,2)-edge of X in F, and these hexagons will convert one of the fissures into a bay, or convert one cove into a fjord, or convert one fjord into a lagoon. Consequently, b(F)≥4, in light of Eq (2.6), r≤2h−9<2h−7.
Subcase 5.1.2.5. If D20 or D21 is a subpart f-benzenoid in F, it is obvious that both D20 and D21 have a bay and two fjords. Since X is a catacondensed benzenoid system and h1≥3, F contains at least one hexagon adjoining a (2,2)-edge of X, and such hexagons will make one fissure become a bay, or make one cove become a fjord, or make one fjord become a lagoon. Consequently, b(F)≥4, according to Eq (2.6), r≤2h−9<2h−7.
Subcase 5.2. If h2≥7, by Lemma 2.4 and the fact that ni(Y)=4, Y is certainly not a CBS, i.e., b(Y)≥1.
Subcase 5.2.1. If h1=2, i.e., X=L2. From the structure of f-benzenoid, F is formed from X and Y joined by a pentagon, it is easily seen that there are at least one bay or one cove arisen in the process of construction of F. It is clear that b(F)≥2, by Eq (2.6) we have r≤2h−7.
Subcase 5.2.2. If h1≥3, we know that F is formed by joining from X and Y through a pentagon, in this construction process of F, it is easily seen that there are at least one bay or one cove arisen. Then b(F)≥2, by Eq (2.6), r≤2h−7.
The proof is completed.
We recall that FLh is the f-linear chain with h hexagons [40]. Extremal f-benzenoids with maximal r in Γm were determined in the following theorem.
Theorem 2.3. Let F∈Γm. Then
1) If m≡0(mod5), then r(F)≤2m−355=r(Um5);
2) If m≡1(mod5), then r(F)≤2m−325=r(Zm−15);
3) If m≡2(mod5), then r(F)≤2m−295=r(Rm−25);
4) If m≡3(mod5), then r(F)≤2m−265=r(Gm−35);
5) If m≡4(mod5), then r(F)≤2m−235=r(FLm−45).
Proof. We know by Eq (2.5) that
⌈15(m−4)⌉≤h(F)≤m−1−⌈13(2m+√4m−31)⌉. |
1) If m≡0(mod5), then ⌈15(m−4)⌉=m5. If h=m5, then by Lemma 1.1 (ii)
m=5h(F)+5−ni(F)=m+5−ni(F), |
it means that ni(F)=5. Furthermore, Theorem 2.2 infers that r(F)≤r(Um5) and we are done. So assume now that h(F)≥m5+1, then by equality (2.7) and the fact that b(F)≥2
r(F)=m−5−3h(F)−b(F)≤m−5−3(m5+1)−b(F) |
≤2m5−10=2m−505≤2m−355=r(Um5). |
2) If m≡1(mod5), then ⌈15(m−4)⌉=m−15. If h(F)=m−15, then by Lemma 1.1 (ii)
m=5h(F)+5−ni(F)=m+4−ni(F), |
thus ni(F)=4. Then r(F)≤r(Zm−15) by part 4 of Lemma 2.5. Otherwise h(F)≥m−15+1, then by equality (2.7) and the obvious fact that b(F)≥2
r(F)=m−5−3h(F)−b(F)≤m−5−3(m−15+1)−b(F) |
≤2m+35−10=2m−475≤2m−325=r(Zm−15). |
3) If m≡2(mod5), then ⌈15(m−4)⌉=m−25. If h(F)=m−25, then by Lemma 1.1 (ii)
m=5h(F)+5−ni(F)=m+3−ni(F), |
and so ni(F)=3. Then r(F)≤r(Rm−25) by part 3 of Lemma 2.5. So assume now that h(F)≥m−25+1, then by Eq (2.7) and the fact that b(F)≥2
r(F)=m−5−3h(F)−b(F)≤m−5−3(m−25+1)−b(F) |
≤2m+65−10=2m−445≤2m−295=r(Rm−25). |
4) If m≡3(mod5), then ⌈15(m−4)⌉=m−35. If h(F)=m−35, then by Lemma 1.1 (ii)
m=5h(F)+5−ni(F)=m+2−ni(F), |
thus ni(F)=2. By Lemma 2.5, r(F)≤r(Gm−35) and we are done. If h(F)≥m−35+1, then by equality (2.7) and the fact that b(F)≥2
r(F)=m−5−3h(F)−b(F)≤m−5−3(m−35+1)−b(F) |
≤2m+95−10=2m−415≤2m−265=r(Gm−35). |
5) If m≡4(mod5), then ⌈15(m−4)⌉=m−45. Since h≥m−45 and b(F)≥2, then by Eq (2.7), we have
r(F)=m−5−3h(F)−b(F)≤m−5−3m−125−b(F) |
≤2m+125−7=2m−235=r(FLm−45). |
In this part, we attempt to find the extremal values of TI over Γm.
It is noted that a f-benzenoid F contains only 2-vertex and 3-vertex. Hence, equation (1.1) reduces to
TI(F)=m22ψ22+m23ψ23+m33ψ33, | (3.1) |
In the light of Lemmas 1.1 and 1.2,
TI(F)=ψ22m+3(ψ33−ψ22)h+(2ψ23−ψ22−ψ33)r, | (3.2) |
If U,V∈Γm then clearly
TI(U)−TI(V)=3(ψ33−ψ22)(h(U)−h(V)) +(2ψ23−ψ22−ψ33)(r(U)−r(V)). | (3.3) |
For convenience, we set s=ψ33−ψ22, q=2ψ23−ψ22−ψ33.
Theorem 3.1. For any F∈Γm, we have the following results.
a. If s≤0 and q≥0,
TI(F)≤{TI(Um5),if m≡0(mod 5)TI(Zm−15),if m≡1(mod 5)TI(Rm−25),if m≡2(mod 5)TI(Gm−35),if m≡3(mod 5)TI(FLm−45),if m≡4(mod 5) |
b. If s≥0 and q≤0,
TI(F)≥{TI(Um5),if m≡0(mod 5)TI(Zm−15),if m≡1(mod 5)TI(Rm−25),if m≡2(mod 5)TI(Gm−35),if m≡3(mod 5)TI(FLm−45),if m≡4(mod 5) |
Proof. Let F∈Γm. By Eq (2.5)
h(F)≥⌈15(m−4)⌉={h(Um5),if m≡0(mod 5)h(Zm−15),if m≡1(mod 5)h(Rm−25),if m≡2(mod 5)h(Gm−35),if m≡3(mod 5)h(FLm−45),if m≡4(mod 5) |
i.e., f-benzenoids Um5, Zm−15, Rm−25, Gm−35 and FLm−45 have minimal h over the set Γm. Meanwhile, by Theorem 2.3, we have
r(F)≤{r(Um5),if m≡0(mod 5)r(Zm−15),if m≡1(mod 5)r(Rm−25),if m≡2(mod 5)r(Gm−35),if m≡3(mod 5)r(FLm−45),if m≡4(mod 5) |
i.e., these five f-benzenoids have maximal number of inlets over Γm. Hence, for any f-benzenoids F∈Γm and V∈{Um5,Zm−15,Rm−25,Gm−35,FLm−45}, h(F)−h(V)≥0 and r(F)−r(V)≤0 hold simultaneously, from Eq (2.7), we have
TI(F)−TI(V)=3s(h(F)−h(V))+q(r(F)−r(V)). |
If s≤0 and q≥0, then TI(F)−TI(V)≤0, i.e., V reaches the maximum value of TI over Γm. If s≥0 and q≤0, then TI(F)−TI(V)≥0, i.e., V reaches the minimum value of TI over Γm. Furthermore, which V∈{Um5,Zm−15,Rm−25,Gm−35,FLm−45} is the extremal graph depending on m is congruent to 0,1,2,3 or 4 modulo 5.
Example 1. Values of s and q for several famous TI are listed in Table 2:
ij | 1√ij | 2√iji+j | 1√i+j | (ij)3(i+j−2)3 | √i+j−2ij | |
q | -1 | -0.0168 | -0.0404 | -0.0138 | -3.390 | 0.040 |
s | 5 | -0.1667 | 0 | -0.091 | 3.390 | -0.040 |
Therefore, the minimum extreme value of TI for the second Zagreb index, GA index and the AZI index can be determined in the light of Theorems 2.3 and 3.1, and we can obtain the maximum extreme value of TI for the ABC index.
If f-benzenoid F∈Γm, then from the Eqs (2.3) and (2.6) and Lemma 1.1(ii) we have
TI(F)=(2ψ23−ψ33)m+6(ψ33−ψ23)h−(2ψ23−ψ22−ψ33)b −5(2ψ23−ψ22−ψ33). | (3.4) |
Consequently, for f-benzenoids U,V∈Γm
TI(U)−TI(V)=6(ψ33−ψ23)(h(U)−h(V)) +(−2ψ23+ψ22+ψ33)(b(U)−b(V)). | (3.5) |
Set u=6(ψ33−ψ23) and keep in mind that q=2ψ23−ψ22−ψ33. Then
TI(U)−TI(V)=u(h(U)−h(V))−q(b(U)−b(V)). | (3.6) |
It is noted that Eq (3.6) can be decided only by h, b and the signs of u and q. For any F∈Γm, We know that
h(F)≤m−1−⌈13(2m+√4m−31)⌉, |
and the equality can be achieved precisely when F is the f-spiral benzenoid F∗ [41].
In [41], we proved that ni(F∗)=2h−⌈√12(h−1)−3⌉. But, b(F∗)≠2 may occur. It is noticeable if X in F∗ is a CBS, F∗ is a f-benzenoid satisfying that b(F∗)=2 or 3. For the sake of simplicity, Let N be the set of positive integers.
The CBS, W=H(l1,l2,l3,l4,l5,l6) (as shown in Figure 18), can be completely determined by the positive integers l1,l2,l3,l4 [14].
The following lemma gave requirements that there exists CBS with maximal ni [53].
Lemma 3.1. [53] Let h∈N. The conditions below are isovalent:
(a) There is a CBS W containing h hexagons and 2h+1−⌈√12h−3 ⌉ number of internal vertices.
(b) There exist l1,l2,l3,l4∈N satisfying the following equation
h=l1l3+l1l4+l2l3+l2l4−l2−l3−12l1(l1+1)−12l4(l4+1)+1⌈√12h−3 ⌉=l1+2l2+2l3+l4−3} | (3.7) |
If for h∈N, Eq (3.7) has a solution l1,l2,l3,l4∈N, then there is a CBS W meeting the conditions that ni(W)=ni(Th).
Now, we concentrate on the research for TI of f-benzenoids. For a h−1∈N, supposing that the system below
h−1=l1l3+l1l4+l2l3+l2l4−l2−l3−12l1(l1+1)−12l4(l4+1)+1⌈√12(h−1)−3 ⌉=l1+2l2+2l3+l4−3∃ li∈{l1,l2,l3,l4,l5,l6}, li=2} | (3.8) |
has a solution {l1,l2,l3,l4}, then a CBS Wh−1 containing ni(Wh−1)=2(h−1)+1−⌈√12(h−1)−3⌉ number of internal vertices exists. Note that li=2 in system (3.8), i.e., there exists one fissure on the side of li of Wh−1, let u,w,v in Figure 1 represent the three vertices of this fissure. Now, we obtain an f-spiral benzenoid F∗1 in which X=Wh−1 and Y=L1. It is obvious that
ni(F∗1)=2h−⌈√12(h−1)−3⌉ | (3.9) |
and b(F∗1)=2. (as shown in Figure 19)
Theorem 3.2. Let h−1∈N such that the Eq (3.8) has a solution, and m=3h+5+⌈√12(h−1)−3⌉. Then for any F∈Γm
1) TI(F∗1)≥TI(F), when u≥0 and q≥0;
2) TI(F∗1)≤TI(F), when u≤0 and q≤0.
Proof. From Lemma 1.1 (ii) and Eq (3.9), we have
m(F∗1)=5h+5−(2h−⌈√12(h−1)−3⌉)=3h+5+⌈√12(h−1)−3⌉ |
and so
h=m−1−⌈13(2m+√4m−31)⌉. |
It is obvious that b(F∗1)=2 and b(F)≥2 for any F∈Γm. Hence by Eq (3.6), we have
TI(F)−TI(F∗1)=u(h(F)−h(F∗1))−q(b(F)−b(F∗1)) |
=u[h(F)−(m−1−⌈13(2m+√4m−31)⌉)]−q[b(F)−2]. |
And by Eq (2.5)
h(F)≤m−1−⌈13(2m+√4m−31)⌉. |
If u≥0 and q≥0 then TI(F)−TI(F∗1)≤0, i.e., F∗1 achieves maximal TI in Γm. Similarly, if u≤0 and q≤0 then TI(F)−TI(F∗1)≥0, i.e., F∗1 obtains minimal TI in Γm.
Example 2. The values of u and q for some famous TI are listed in the following Table 3:
ij | 1√ij | 2√iji+j | 1√i+j | (ij)3(i+j−2)3 | √i+j−2ij | |
q | -1 | -0.0168 | -0.0404 | -0.0138 | -3.390 | 0.040 |
u | 18 | -0.449 | 0.121 | -0.233 | 20.344 | -0.242 |
Hence, by Theorem 3.1 we can deduce the minimal values of the Randć index and the the sum–connectivity index in f-spiral benzenoid F∗1 for those h such that Eq (3.8) holds.
Example 3. Take consideration of the generalized Randć index
Rα(G)=∑1≤i≤j≤n−1mij(ij)α, |
where α∈R. Note that
q=2(6α)−4α−9α=−4α((32)α−1)2≤0 |
for all α∈R. Moreover, s=9α−4α≥0 if and only if α≥0 if and only if u=6(9α−6α)≥0. Hence, by Theorem 3.1, the minimal value of Rα(G) is obtained for all α≥0, and for any α≤0, the minimal value of Rα(G) can be attained by the f-spiral benzenoid F∗1 for those h such that Eq (3.8) holds.
This work investigates extremum TI over the collection of f-benzenoids having same number of edges. In practical terms, there are many other types of very useful topological indices for instance graph energy [58,59,60,61,62], Wiener index [63], Randić energy [64], Wiener polarity index [65], incidence energy [66], Harary index [67], entropy measures [68,69] and HOMO-LUMO index [70]. So, determining these topological indices for f-benzenoids is going to be extraordinary fascinating.
It is noted that the current framework is for studying topological indices of deterministic networks. But random networks would be a very promising direction. In [71,72], the distance Estrada index of random graphs was discussed, and the author went deeply into (Laplacian) Estrada index for random interdependent graphs. So, studying VDB topological indices of random and random interdependent graphs is another interesting problem.
This work was supported by Ningbo Natural Science Foundation (No. 2021J234). The authors are very grateful to anonymous referees and editor for their constructive suggestions and insightful comments, which have considerably improved the presentation of this paper.
The authors declare there is no conflict of interest.
[1] |
A. M. Romero, J. A. Vásquez, Bacteria, source of energy for the future, Tecnura, 16 (2012), 117–142. https://doi.org/10.14483/udistrital.jour.tecnura.2012.2.a10 doi: 10.14483/udistrital.jour.tecnura.2012.2.a10
![]() |
[2] |
L. Lui, S. Grot, B. E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci. Technol., 39 (2005), 4317–4320. https://doi.org/10.1021/es050244p doi: 10.1021/es050244p
![]() |
[3] |
L. Lui, S. Grot, B. E. Logan, A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnol. Adv., 25 (2007), 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004 doi: 10.1016/j.biotechadv.2007.05.004
![]() |
[4] |
D. M. Revelo, N. H. Hurtado, J. O. Ruiz, Celdas de combustible microbianas (CCMs): Un reto para la remoción de materia orgánica y la generación de energía eléctrica, Información Tecnológica, 24 (2013), 17–28. http://dx.doi.org/10.4067/S0718-07642013000600004 doi: 10.4067/S0718-07642013000600004
![]() |
[5] |
D. R. Lovley, Dissimilatory metal reduction, Annu. Rev. Microbiol., 47 (1993), 263–290. https://doi.org/10.1146/annurev.mi.47.100193.001403 doi: 10.1146/annurev.mi.47.100193.001403
![]() |
[6] |
M. Aklujkar, D. R. Lovley, Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus, BMC Evol. Biol., 10 (2010), 1–15. https://doi.org/10.1186/1471-2148-10-230 doi: 10.1186/1471-2148-10-230
![]() |
[7] |
M. V. Coppi, C. Leang, S. J. Sandler, D. R. Lovley, Development of a genetic system for Geobacter sulfurreducens, Appl. Environ. Microbiol., 1 (2001), 3180–3187. https://doi.org/10.1128/AEM.67.7.3180-3187.2001 doi: 10.1128/AEM.67.7.3180-3187.2001
![]() |
[8] |
J. R. Kim, B. Min, B. C. Logan, Evaluation of procedures to acclimate a microbial fuel cell for electricity production, Appl. Microbiol. Biotechnol., 68 (2005), 23–30. https://doi.org/10.1007/s00253-004-1845-6 doi: 10.1007/s00253-004-1845-6
![]() |
[9] |
J. R. Lloyd, C. Leang, A. L. Hodges Myerson, M. V. Coppi, B. Methe, S. J. Sandler, Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens, Biochem. J., 369 (2001), 153–161. https://doi.org/10.1042/bj20020597 doi: 10.1042/bj20020597
![]() |
[10] |
I. Park, B. C. Kim, Homologous overexpression of omcZ, a gene for an outer surface c-type cytochrome of Geobacter sulfurreducens by single-step gene replacement, Biotechnol. Lett., 33 (2011), 2043–2048. https://doi.org/10.1007/s10529-011-0668-7 doi: 10.1007/s10529-011-0668-7
![]() |
[11] |
J. B. Rollefson, C. E. Levar, D. R. Bond, Identification of genes involved in biofilm formation and respiration via mini-Himar transposon mutagenesis of Geobacter sulfurreducens, J. Bacteriol., 191 (2009), 4207–4217. https://journals.asm.org/doi/10.1128/jb.00057-09 doi: 10.1128/jb.00057-09
![]() |
[12] |
T. Ueki, D. R. Lovley, Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species, Nucleic Acid. Res., 38 (2010), 810–821. https://doi.org/10.1093/nar/gkp1085 doi: 10.1093/nar/gkp1085
![]() |
[13] |
F. Caccavo, Jr., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, M. J. Mclnerney, Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism, Appl. Environ. Microbiol., 60 (1994), 3752–3759. https://doi.org/10.1128/aem.60.10.3752-3759.1994 doi: 10.1128/aem.60.10.3752-3759.1994
![]() |
[14] |
D. R. Lovley, E. J. P. Phillips, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese Appl. Environ. Microbiol., 54 (1988), 1472–1480. https://doi.org/10.1128/aem.54.6.1472-1480.1988 doi: 10.1128/aem.54.6.1472-1480.1988
![]() |
[15] |
D. R. Lovley, E. J. P. Phillips, Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments Appl. Environ. Microbiol., 53 (1987), 2636–2641. https://doi.org/10.1128/aem.53.11.2636-2641.1987 doi: 10.1128/aem.53.11.2636-2641.1987
![]() |
[16] |
D. R. Lovley, Powering microbes with electricity: direct electron transfer from electrodes to microbes, Environ. Microbiol. Rep., 3 (2011), 27–35. https://doi.org/10.1111/j.1758-2229.2010.00211.x doi: 10.1111/j.1758-2229.2010.00211.x
![]() |
[17] |
J. E. Butler, R. H. Glaven, A. Esteve-Nuñez, C. Nuñez, E. S. Shelobolina, D. R. Bond, et al., Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens, J. Bacteriol., 188 (2006), 450–455. https://doi.org/10.1128/jb.188.2.450-455.2006 doi: 10.1128/jb.188.2.450-455.2006
![]() |
[18] |
D. R. Lovley, Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy, Rev. Environ. Sci. Biol., 10 (2011), 101–105. https://doi.org/10.1007/s11157-011-9236-9 doi: 10.1007/s11157-011-9236-9
![]() |
[19] |
R. T Anderson, J. N. Rooney-Varga, C. V. Gaw, D. R. Lovley, Anaerobic benzene oxidation in the Fe (Ⅲ) reduction zone of petroleum-contaminated aquifers, Environ. Sci. Technol., 32 (1998), 1222–1229. https://doi.org/10.1021/es9704949 doi: 10.1021/es9704949
![]() |
[20] |
D. E. Holmes, D. R. Bond, R. A. O'Neil, C. E. Reimers, L. R. Tender, D. R. Lovley, Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments, Microb. Ecol., 48 (2004), 178–190. https://doi.org/10.1007/s00248-003-0004-4 doi: 10.1007/s00248-003-0004-4
![]() |
[21] |
K. P. Nevin, B. C. Kim., R. H. Glaven, J. P. Johnson, T. L. Woodard, B. A. Methé, et al., Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells, PLoS One, 4 (2009), 1–11. https://doi.org/10.1371/journal.pone.0005628 doi: 10.1371/journal.pone.0005628
![]() |
[22] |
D. R. Lovley, Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer, Appl. Environ. Microbiol., 65 (1999), 3056–3063. https://doi.org/10.1128/AEM.65.7.3056-3063.1999 doi: 10.1128/AEM.65.7.3056-3063.1999
![]() |
[23] |
D. R. Lovley, Cleaning up with genomics: Applying molecular biology to bioremediation, Nat. Rev. Microbiol., 1 (2003), 34–44. https://doi.org/10.1038/nrmicro731 doi: 10.1038/nrmicro731
![]() |
[24] | A. E. Rotaru, P. M. Shrestha, F. Liu, B. Markovaite, S. Chen, K. P. Nevin, et al., Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri, Appl. Environ. Microbiol., 2014 (80), 4599–4605. https://doi.org/10.1128/AEM.00895-14 |
[25] | A. L. N'Guessan, H. A Vrionis, C. T. Resch, P. E. Long, D. R. Lovley, Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction, Environ. Sci. Technol., 2008 (42), 2999–3004. https://doi.org/10.1021/es071960p |
[26] | K. H. Williams, J. R. Bargar, J. R. Lloyd, D. R. Lovley, Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry, Curr. Opin. Biotechnol., 2013 (24), 489–497. https://doi.org/10.1016/j.copbio.2012.10.008 |
[27] |
V. M. Pérez-García, S. Fitzpatrick, L. A. Pérez-Romasanta, M. Pesic, P. Schucht, E. Arana, et al., Applied mathematics and nonlinear sciences in the war on cancer, Appl. Math. Nonlin, Sci., 1 (2016), 423–436. https://doi.org/10.21042/AMNS.2016.2.00036 doi: 10.21042/AMNS.2016.2.00036
![]() |
[28] |
A. R. Anderson, V. Quaranta, Integrative mathematical oncology, Nat. Rev. Cancer, 8 (2008), 227–234. https://doi.org/10.1038/nrc2329 doi: 10.1038/nrc2329
![]() |
[29] |
L. C. Burnett, G. Lunn, R. Coico, Biosafety: guidelines for working with pathogenic and infectious microorganisms, Curr. Protoc. Microbiol., 13 (2009), 1A.1.1-1A.1.14. https://doi.org/10.1002/9780471729259.mc01a01s13 doi: 10.1002/9780471729259.mc01a01s13
![]() |
[30] |
J. P. O'Brien, M. Nikhil, A simple and low-cost procedure for growing Geobacter sulfurreducens cell cultures and biofilms in bioelectrochemical systems, Curr. Protoc. Microbiol., 43 (2016), 1–27. https://doi.org/10.1002/cpmc.20 doi: 10.1002/cpmc.20
![]() |
[31] |
F. Caccavo, Jr., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, M. McInerney, Geobacter sulfurreducens sp. nov., a hydrogen- and acetate- oxidizing dissimilatory metal-reducing microorganism, Appl. Environ.l Microbiol., 60 (1994), 3753–3759. https://doi.org/10.1128/aem.60.10.3752-3759.1994 doi: 10.1128/aem.60.10.3752-3759.1994
![]() |
[32] |
R. Mahadevan, D. R Bond, J. Butler, A. Esteve‐Núñez, M. V. Coppi, B. O. Palsson, et al., Characterization of metabolism in the Fe(Ⅲ)-reducing organism Geobacter sulfurreducens by constraint-based modeling, Appl. Environ. Microbiol., 72 (2006), 1558–1568. https://doi.org/10.1128/AEM.72.2.1558-1568.2006 doi: 10.1128/AEM.72.2.1558-1568.2006
![]() |
[33] |
A. Esteve‐Núñez, M. Rothermich, M. Sharma, D. R. Lovley, Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture, Environ. Microbiol., 7 (2005), 641–648. https://doi.org/10.1111/j.1462-2920.2005.00731.x doi: 10.1111/j.1462-2920.2005.00731.x
![]() |
[34] |
T. Khare, A. Esteve‐Núñez, K. P. Nevin, W. Zhu, J. R.Yates, D. R. Lovley, et al., Differential protein expression in the metal‐reducing bacterium Geobacter sulfurreducens strain PCA grown with fumarate or ferric citrate, Proteomics, 6 (2006), 632–640. https://doi.org/10.1002/pmic.200500137 doi: 10.1002/pmic.200500137
![]() |
[35] |
M. Izallalen, R. Mahadevan, A. P. Burgard, B. L. Postier, R. J. DiDonato, J. Sun, et al., Geobacter sulfurreducens strain engineered for increased rates of respiration, Metab. Eng., 10 (2008), 267–275. https://doi.org/10.1016/j.ymben.2008.06.005 doi: 10.1016/j.ymben.2008.06.005
![]() |
[36] |
D. Ludwig, D. D. Jones, C. S. Holling, Qualitative analysis of insect outbreak systems: the spruce budworm and forest, J. Anim. Ecol., 47 (1978), 315–332. doi/10.7208/chicago/9780226125534-035 doi: 10.7208/chicago/9780226125534-035
![]() |
[37] | S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering, 2nd edition, CRC Press, Boca Raton, 2018. https://doi.org/10.1201/9780429492563 |
[38] |
C. S. Holling, The components of predation as revealed by a study of small mammal predation on the European pine sawfly, Can. Entomol., 91 (1959), 293–320. https://doi.org/10.4039/Ent91293-5 doi: 10.4039/Ent91293-5
![]() |
[39] |
V. M. Pérez-García, L. E. Ayala-Hernández, J. Belmonte-Beitia, P. Schucht, M. Murek, A. Raabe, et al., Computational design of improved standardized chemotherapy protocols for grade Ⅱ oligodendrogliomas, PLoS Comput. Biol., 15 (2019), 1–17. https://doi.org/10.1371/journal.pcbi.1006778 doi: 10.1371/journal.pcbi.1006778
![]() |
[40] | K. M. Pruitt, R.E. DeMuth, M.E. Turner, Jr., Practical applications of generic growth theory and the significance of the growth curve parameters, Growth, 43 (1979), 19–35. PMID: 378773 |
[41] | K. M. Pruitt, M.E. Turner, Jr., A kinetic theory for analysis of complex systems, In: Biomolecular Structure and Function, (Agris, P.F., ed.) (1978), pp. 257–265, Academic Press, New York. https://api.semanticscholar.org/CorpusID: 100258726 |
[42] |
R. J. Allen, B. K. Waclaw, Bacterial growth: a statistical physicist's guide, Rep. Prog. Phys., 82 (2018), 016601. https://doi.org/10.1088/1361-6633/aae546 doi: 10.1088/1361-6633/aae546
![]() |
[43] |
H. Fujikawa, A. Kai, S. Morozumi, A new logistic model for bacterial growth, Food Hyg. Safe. Sci., 44 (2003), 155–160. https://doi.org/10.3358/shokueishi.44.155 doi: 10.3358/shokueishi.44.155
![]() |
[44] |
H. Fujikawa, A. Kai, S. Morozumi, Improvement of new logistic model for bacterial growth, Food Hyg. Safe. Sci., 45 (2004), 250–254. https://doi.org/10.3358/shokueishi.45.250 doi: 10.3358/shokueishi.45.250
![]() |
[45] |
T. Toshiro, F. Yoshimuro, A neo-logistic model for the growth of bacteria, Physica A, 525 (2019), 199–215. https://doi.org/10.1016/j.physa.2019.03.049 doi: 10.1016/j.physa.2019.03.049
![]() |
[46] |
C. Pinto, K. Shimakawa, A compressed logistic equation on bacteria growth: inferring time-dependent growth rate, Phys. Biol., 19 (2022). https://doi.org/10.1088/1478-3975/ac8c15 doi: 10.1088/1478-3975/ac8c15
![]() |
[47] |
A. Lo Grasso, A. Fort, F. F. Mahdizadeh, A. Magnani, C. Mocenni, Generalized logistic model of bacterial growth, Math. Comp. Model. Dyn., 29 (2023), 169–185. https://doi.org/10.1080/13873954.2023.2236681 doi: 10.1080/13873954.2023.2236681
![]() |
[48] |
D. Pinto-Ramos, S. Echeverría-Alar, M. G. Clerc, M. Tlidi, Vegetation covers phase separation in inhomogeneous environments, Chaos Soliton. Fract., 163 (2022), 112518. https://doi.org/10.1016/j.chaos.2022.112518 doi: 10.1016/j.chaos.2022.112518
![]() |
[49] |
D. Pinto-Ramos, M. G. Clerc, M. Tlidi, Topological defects law for migrating banded vegetation patterns in arid climates, Sci. Adv., 9 (2023), eadf6620. https://doi.org/10.1126/sciadv.adf6620 doi: 10.1126/sciadv.adf6620
![]() |
[50] |
M. G. Clerc, D. Escaff, V. M. Kenkre, Patterns and localized structures in population dynamics, Phys. Rev. E, 72 (2005), 056217. https://doi.org/10.1103/PhysRevE.72.056217 doi: 10.1103/PhysRevE.72.056217
![]() |
[51] |
I. Aviram, A. Rabinovitch, Bifurcation analysis of bacteria and bacteriophage coexistence in the presence of bacterial debris, Commun. Nonlin. Sci. Numer. Simul., 17 (2012), 242–254. https://doi.org/10.1016/j.cnsns.2011.04.031 doi: 10.1016/j.cnsns.2011.04.031
![]() |
[52] |
C. Giverso, M. Verani, P. Ciarletta, Branching instability in expanding bacterial colonies, J. R. Soc. Interface, 12 (2015), 20141290. https://doi.org/10.1098/rsif.2014.1290 doi: 10.1098/rsif.2014.1290
![]() |
[53] |
J. Ren, Q. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124. https://doi.org/10.1063/1.5000152 doi: 10.1063/1.5000152
![]() |
[54] |
M. Ma, P. Xia, Q. Zhang, M. Vuorinen, Global bifurcation and stability of steady states for a bacterial colony model with density-suppressed motility, Appl. Math. Model., 88 (2020), 68–82. https://doi.org/10.1016/j.apm.2020.06.024 doi: 10.1016/j.apm.2020.06.024
![]() |
[55] |
M. H. Zwietering, I. Jongenburger, F. M. Rombouts, K. Van't Riet, Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 56 (1990), 1875–1881. https://journals.asm.org/doi/10.1128/aem.56.6.1875-1881.1990 doi: 10.1128/aem.56.6.1875-1881.1990
![]() |
ψij | name |
i+j | First Zagreb index |
1√ij | Randić index |
2√iji+j | GA index |
√i+j−2ij | ABC index |
1√i+j | Sum–connectivity index |
(ij)3(i+j−2)3 | AZI index |
2i+j | Harmonic index |
|i−j| | Albertson index |
√i2+j2 | Sombor index |
iji+j | ISI index |
ij | 1√ij | 2√iji+j | 1√i+j | (ij)3(i+j−2)3 | √i+j−2ij | |
q | -1 | -0.0168 | -0.0404 | -0.0138 | -3.390 | 0.040 |
s | 5 | -0.1667 | 0 | -0.091 | 3.390 | -0.040 |
ij | 1√ij | 2√iji+j | 1√i+j | (ij)3(i+j−2)3 | √i+j−2ij | |
q | -1 | -0.0168 | -0.0404 | -0.0138 | -3.390 | 0.040 |
u | 18 | -0.449 | 0.121 | -0.233 | 20.344 | -0.242 |
ψij | name |
i+j | First Zagreb index |
1√ij | Randić index |
2√iji+j | GA index |
√i+j−2ij | ABC index |
1√i+j | Sum–connectivity index |
(ij)3(i+j−2)3 | AZI index |
2i+j | Harmonic index |
|i−j| | Albertson index |
√i2+j2 | Sombor index |
iji+j | ISI index |
ij | 1√ij | 2√iji+j | 1√i+j | (ij)3(i+j−2)3 | √i+j−2ij | |
q | -1 | -0.0168 | -0.0404 | -0.0138 | -3.390 | 0.040 |
s | 5 | -0.1667 | 0 | -0.091 | 3.390 | -0.040 |
ij | 1√ij | 2√iji+j | 1√i+j | (ij)3(i+j−2)3 | √i+j−2ij | |
q | -1 | -0.0168 | -0.0404 | -0.0138 | -3.390 | 0.040 |
u | 18 | -0.449 | 0.121 | -0.233 | 20.344 | -0.242 |