Due to the different weed characteristics in peanut fields at different weeding periods, there is an urgent need to study a general model of peanut and weed detection and identification applicable to different weeding periods in order to adapt to the development of mechanical intelligent weeding in fields. To this end, we propose a BEM-YOLOv7-tiny target detection model for peanuts and weeds identification and localization at different weeding periods to achieve mechanical intelligent weeding in peanut fields at different weeding periods. The ECA and MHSA modules were used to enhance the extraction of target features and the focus on predicted targets, respectively, the BiFPN module was used to enhance the feature transfer between network layers, and the SIoU loss function was used to increase the convergence speed and efficiency of model training and to improve the detection performance of the model in the field. The experimental results showed that the precision, recall, mAP and F1 values of the BEM-YOLOv7-tiny model were improved by 1.6%, 4.9%, 4.4% and 3.2% for weed targets and 1.0%, 2.4%, 2.2% and 1.7% for all targets compared with the original YOLOv7-tiny. The experimental results of positioning error show that the peanut positioning offset error detected by BEM-YOLOv7-tiny is less than 16 pixels, and the detection speed is 33.8 f/s, which meets the requirements of real-time seedling grass detection and positioning in the field. It provides preliminary technical support for intelligent mechanical weeding in peanut fields at different stages.
Citation: Yong Hua, Hongzhen Xu, Jiaodi Liu, Longzhe Quan, Xiaoman Wu, Qingli Chen. A peanut and weed detection model used in fields based on BEM-YOLOv7-tiny[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 19341-19359. doi: 10.3934/mbe.2023855
[1] | Amar Nath Chatterjee, Fahad Al Basir, Yasuhiro Takeuchi . Effect of DAA therapy in hepatitis C treatment — an impulsive control approach. Mathematical Biosciences and Engineering, 2021, 18(2): 1450-1464. doi: 10.3934/mbe.2021075 |
[2] | Tailei Zhang, Hui Li, Na Xie, Wenhui Fu, Kai Wang, Xiongjie Ding . Mathematical analysis and simulation of a Hepatitis B model with time delay: A case study for Xinjiang, China. Mathematical Biosciences and Engineering, 2020, 17(2): 1757-1775. doi: 10.3934/mbe.2020092 |
[3] | Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060 |
[4] | Yuhua Long, Yining Chen . Global stability of a pseudorabies virus model with vertical transmission. Mathematical Biosciences and Engineering, 2020, 17(5): 5234-5249. doi: 10.3934/mbe.2020283 |
[5] | Xiaowen Xiong, Yanqiu Li, Bingliang Li . Global stability of age-of-infection multiscale HCV model with therapy. Mathematical Biosciences and Engineering, 2021, 18(3): 2182-2205. doi: 10.3934/mbe.2021110 |
[6] | Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019 |
[7] | Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo . Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level. Mathematical Biosciences and Engineering, 2022, 19(2): 1515-1535. doi: 10.3934/mbe.2022070 |
[8] | Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483 |
[9] | Junli Liu . Threshold dynamics of a time-delayed hantavirus infection model in periodic environments. Mathematical Biosciences and Engineering, 2019, 16(5): 4758-4776. doi: 10.3934/mbe.2019239 |
[10] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
Due to the different weed characteristics in peanut fields at different weeding periods, there is an urgent need to study a general model of peanut and weed detection and identification applicable to different weeding periods in order to adapt to the development of mechanical intelligent weeding in fields. To this end, we propose a BEM-YOLOv7-tiny target detection model for peanuts and weeds identification and localization at different weeding periods to achieve mechanical intelligent weeding in peanut fields at different weeding periods. The ECA and MHSA modules were used to enhance the extraction of target features and the focus on predicted targets, respectively, the BiFPN module was used to enhance the feature transfer between network layers, and the SIoU loss function was used to increase the convergence speed and efficiency of model training and to improve the detection performance of the model in the field. The experimental results showed that the precision, recall, mAP and F1 values of the BEM-YOLOv7-tiny model were improved by 1.6%, 4.9%, 4.4% and 3.2% for weed targets and 1.0%, 2.4%, 2.2% and 1.7% for all targets compared with the original YOLOv7-tiny. The experimental results of positioning error show that the peanut positioning offset error detected by BEM-YOLOv7-tiny is less than 16 pixels, and the detection speed is 33.8 f/s, which meets the requirements of real-time seedling grass detection and positioning in the field. It provides preliminary technical support for intelligent mechanical weeding in peanut fields at different stages.
[1] | J. W. Yang, C. H. Cui, Safe weed control technology for peanut fields, China Sci. Technol. Exp., 32 (2010), 27. |
[2] |
Z. H. Tian, Y. L. Jiang, Y. H. Yin, J. Liang, L. Li, D. W. Liu, Current situation and prospect of weed control in peanut field of southern China, Shandong Agric. Sci., 52 (2020), 162–167. https://doi.10.14083/j.issn.1001-4942.2020.01.031 doi: 10.14083/j.issn.1001-4942.2020.01.031
![]() |
[3] |
B. G. Shen, S. R. Chen, J. J. Yin, H. P. Mao, Image recognition of green weeds in cotton fields based on color feature, Trans. Chin. Soc. Agric. Eng., 25 (2009), 163–167. https://doi.10.3969/j.issn.1002-6819.2009.06.031 doi: 10.3969/j.issn.1002-6819.2009.06.031
![]() |
[4] |
H. Y. Wang, J. X. Lü, Identifying corn weed based on texture features and optimized SVM, Hubei Agric. Sci., 53 (2014), 3163–3166+3169. https://doi.10.14088/j.cnki.issn0439-8114.2014.13.110 doi: 10.14088/j.cnki.issn0439-8114.2014.13.110
![]() |
[5] |
X. F. Li, W. X. Zhu, B. Ji, B. Liu, C. H. Ma, Shape feature selection and weed recognition based on image processing and ant colony optimization, Trans. Chin. Soc. Agric. Eng., 26 (2010), 178–182. https://doi.10.3969/j.issn.1002-6819.2010.10.030 doi: 10.3969/j.issn.1002-6819.2010.10.030
![]() |
[6] |
X. W. Deng, L. Qi, X. Ma, Y. Jiang, X. S. Chen, H. Y. Liu, et al., Recognition of weeds at seedling stage in paddy fields using multi-feature fusion and deep belief networks, Trans. Chin. Soc. Agric. Eng., 34 (2018), 165–172. https://doi.10.11975/j.issn.1002-6819.2018.14.021 doi: 10.11975/j.issn.1002-6819.2018.14.021
![]() |
[7] |
M. Dyrmann, H. Karstoft, H. S. Midtiby, Plant species classification using deep convolutional neural network, Biosyst. Eng., 151 (2016), 72–80. https://doi.10.1016/j.biosystemseng.2016.08.024 doi: 10.1016/j.biosystemseng.2016.08.024
![]() |
[8] |
T. Tao, X. Wei, A hybrid CNN-SVM classifier for weed recognition in winter rape field, Plant Methods, 18 (2022), 1–12. https://doi.10.1186/s13007-022-00869-z doi: 10.1186/s13007-022-00869-z
![]() |
[9] | Z. Zong, S. Zhao, G. Liu, Coronal identification and centroid location of maize seedling stage, Trans Chin. Soc. Agric. Mach., 50 (2019), 27–33. |
[10] |
W. R. Zhang, H. J. Wen, C. F. Qiao, G. Y. Wang, Mask R-CNN-based method for detecting corn seedlings and corms, Xinjiang Agric. Sci., 58 (2021), 1918–1928. https://doi.10.6048/j.issn.1001-4330.2021.10.020 doi: 10.6048/j.issn.1001-4330.2021.10.020
![]() |
[11] |
Y. Xu, D. S. Wen, J. P. Zhou, X. P. Pan, Y. Liu, Identification method of cotton seedlings and weeds in Xinjiang based on faster R-CNN, J. Drain. Irrig. Mach. Eng., 39 (2021), 602–607. https://doi.10.3969/j.issn.1674-8530.19.0244 doi: 10.3969/j.issn.1674-8530.19.0244
![]() |
[12] | H. H. Jiang, C. Y. Zhang, Z. Zhang, W. H. Mao, D. Wang, D. W. Wang, Detection method of corn weed based on mask R-CNN, Trans. Chin. Soc. Agric. Mach., 51 (2020), 220–228+247. |
[13] |
X. Li, J. D. Pan, F. P. Xie, J. P. Zeng, Q. Li, X. J. Huang, et al., Fast and accurate green pepper detection in complex backgrounds via an improved YOLOv4-tiny model, Comput. Electron. Agric., 191 (2021), 106503. https://doi.10.1016/j.compag.2021.106503 doi: 10.1016/j.compag.2021.106503
![]() |
[14] |
J. F. Gao, A. P. French, M. P. Pound, Y. He, J. G. Pieters, Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields, Plant Methods, 16 (2020), 1–12. https://doi.10.1186/s13007-020-00570-z doi: 10.1186/s13007-020-00570-z
![]() |
[15] |
L. Z. Quan, H. D. Li, H. L. Li, W. Jiang, Z. X. Lou, L. Q. Chen, Two-stream dense feature fusion network based on RGB-D Data for the real-time prediction of weed aboveground fresh weight in a field environment, Remote Sens., 13 (2021), 2288. https://doi.10.3390/rs13122288 doi: 10.3390/rs13122288
![]() |
[16] |
L. Z. Quan, F. L. Xie, W. Jiang, H. L. Li, H. D. Li, Z. X. Lou, et al., Research on recognition of maize seedlings and weeds in maize mield based on YOLOv4 convolutional neural network, J. Northeast Agric. Univ., 52 (2021), 89–98. https://doi.10.19720/j.cnki.issn.1005-9369.2021.07.011 doi: 10.19720/j.cnki.issn.1005-9369.2021.07.011
![]() |
[17] |
J. X. Gao, F. Tan, J. P. Cui, B. Ma, A method for obtaining the number of maize seedlings based on the improved YOLOv4 lightweight neural network, Agriculture, 12 (2020), 2077–0472. https://doi.org/10.3390/agriculture12101679 doi: 10.3390/agriculture12101679
![]() |
[18] |
A. Ahmad, Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems, Comput. Electron. Agric., 184 (2021), 106081. https://doi.10.1016/j.compag.2021.106081 doi: 10.1016/j.compag.2021.106081
![]() |
[19] |
J. L. Zhang, W. H. Su, H. Y. Zhang, Y. K. Peng, SE-YOLOv5x: An optimized model based on transfer learning and visual attention mechanism for identifying and localizing and visual attention mechanism for identifying and localizing weeds and vegetables, Agronomy, 12 (2022), 2061. https://doi.10.3390/agronomy12092061 doi: 10.3390/agronomy12092061
![]() |
[20] |
Q. F. Wang, M. Cheng, S. Huang, Z. J. Gai, J. L. Zhang, H. B. Yuan, A deep learning approach incorporating YOLOv5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings, Comput. Electron. Agric., 199 (2022), 107194. https://doi.10.1016/j.compag.2022.107194 doi: 10.1016/j.compag.2022.107194
![]() |
[21] |
H. Zhang, Z. Wang, Y. F. Guo, Y. Ma, W. K. Gao, D. X. Chen, Weed detection in peanut fields based on machine vision, Agriculture, 12 (2022), 1541. https://doi.org/10.3390/agriculture12101541 doi: 10.3390/agriculture12101541
![]() |
[22] |
Y. D. Lin, T. T. Chen, S. Y. Liu, Quick and accurate monitoring peanut seedlings emergence rate through UAV video and deep learning, Comput. Electron. Agric., 197 (2022), 106938. https://doi.10.1016/j.compag.2022.106938 doi: 10.1016/j.compag.2022.106938
![]() |
[23] | Z. L. Guan, W. Y. Liu, Characteristics of weed occurrence and control in peanut fields, Modern Agric., 10 (2021), 61–62. |
[24] |
D. Q. Wann, R. S. Tubbs, Interactive effects of hand weeding, tine and sweep cultivation for weed control in organic peanut production, Peanut Sci., 41 (2014), 124–130. https://doi.10.3146/PS13-15.1 doi: 10.3146/PS13-15.1
![]() |
[25] |
H. J. Liu, H. Sun, M. Z. Li, M. Iida, Application of color featuring and deep learning in maize plant detection, Remote Sens., 12 (2020), 2229. https://doi.10.3390/rs12142229 doi: 10.3390/rs12142229
![]() |
[26] |
D. S. F. Alessandro, D. M. Freitas, G. D. S. Gercina, H. Pistoei, M. T. Folhes, Weed detection in soybean crops using ConvNets, Comput. Electron. Agric., 143 (2017), 314–324. https://doi.10.1016/j.compag.2017.10.027 doi: 10.1016/j.compag.2017.10.027
![]() |
[27] | Q. L. Wang, B. G. Wu, P. F. Zhu, P. H. Li, W. M. Zuo, Q. H. Hu, ECA-Net: Efficient channel attention for deep convolutional neural net-works, in 2020 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2020), 11531–11539. https://doi.10.1109/CVPR42600.2020.01155 |
[28] | M. X. Tan, R. M. Pang, Q. V. Le, EfficientDet: Scalable and efficient object detection, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020), 10781–10790. https://doi.10.1109/CVPR42600.2020.01079 |
[29] | A. Srinivas, T. Y. Lin, N. Parmar, J. Shlens, P. Abbeel, A. Vaswani, Bottleneck transformers for visual recognition, in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2021), 16519–16529. https://doi.10.1109/CVPR46437.2021.01625 |
[30] | Z. H. Zheng, P. Wang, W. Liu, J. Z. Li, R. G. Ye, D. W. Ren, Distance-IoU loss: Faster and better learning for bounding box regression, in Proceedings of the AAAI conference on Artificial Intelligence, 34 (2020), 12993–13000. https://doi.10.1609/aaai.v34i07.6999 |
[31] | Z. Gevorgyan, SIoU loss: More powerful learning for bounding box regression, preprint, arXiv: 2205.12740. |
[32] |
M. Perez-Ruiz, D. C. Slaughter, F. A. Fathallah, C. J. Gliever, B. J. Miller, Co-robotic intra-row weed control system, Biosyst. Eng., 126 (2014), 45–55. https://doi.016/j.biosystemseng.2014.07.009 doi: 10.1016/j.biosystemseng.2014.07.009
![]() |
[33] |
C. Wang, S. He, H. Wu, G. Teng, C. Zhao, Identification of growing points of cotton main stem based on convolutional neural network, IEEE Access, 8 (2020), 208407–208417. https://doi.10.1109/ACCESS.2020.3038396 doi: 10.1109/ACCESS.2020.3038396
![]() |
[34] |
H. H. Liu, Y. M. Fan, H. Q. He, K. H. Hui, Improved YOLOv7-tiny's object detection lightweight model, Comput. Eng. Appl., 59 (2023), 1–11. https://doi.10.3778/j.issn.1002-8331.2302-0115 doi: 10.3778/j.issn.1002-8331.2302-0115
![]() |
[35] |
X. Li, C. Wang, B. Li, Z. P. Guo, Q. L. Li, Z. Y. Li, Steel surface defect detection algorithm based on improved YOLOv5, J. Air Force Eng. Univ., 23 (2022), 26–33. https://doi.10.3969/j.issn.1009-3516.2022.02.005 doi: 10.3969/j.issn.1009-3516.2022.02.005
![]() |
[36] |
A. M. Roy, J. Bhaduri, DenseSPH-YOLOv5: An automated damage detection model based on DenseNet and Swin-Transformer prediction head-enabled YOLOv5 with attention mechanism, Adv. Eng. Inf., 56 (2023), 102007. https://doi.org/10.1016/j.aei.2023.102007 doi: 10.1016/j.aei.2023.102007
![]() |
1. | F. Nazari, A.B. Gumel, E.H. Elbasha, Differential characteristics of primary infection and re-infection can cause backward bifurcation in HCV transmission dynamics, 2015, 263, 00255564, 51, 10.1016/j.mbs.2015.02.002 | |
2. | Wei Wang, Wanbiao Ma, Hepatitis C virus infection is blocked by HMGB1: A new nonlocal and time-delayed reaction–diffusion model, 2018, 320, 00963003, 633, 10.1016/j.amc.2017.09.046 | |
3. | A. Cousien, V. C. Tran, S. Deuffic-Burban, M. Jauffret-Roustide, J.-S. Dhersin, Y. Yazdanpanah, Dynamic modelling of hepatitis C virus transmission among people who inject drugs: a methodological review, 2015, 22, 13520504, 213, 10.1111/jvh.12337 | |
4. | David P. Durham, Laura A. Skrip, Robert Douglas Bruce, Silvia Vilarinho, Elamin H. Elbasha, Alison P. Galvani, Jeffrey P. Townsend, The Impact of Enhanced Screening and Treatment on Hepatitis C in the United States, 2016, 62, 1058-4838, 298, 10.1093/cid/civ894 | |
5. | Emily D. Bethea, Qiushi Chen, Chin Hur, Raymond T. Chung, Jagpreet Chhatwal, Should we treat acute hepatitis C? A decision and cost-effectiveness analysis, 2018, 67, 02709139, 837, 10.1002/hep.29611 | |
6. | Lauren E. Cipriano, Jeremy D. Goldhaber-Fiebert, Population Health and Cost-Effectiveness Implications of a “Treat All” Recommendation for HCV: A Review of the Model-Based Evidence, 2018, 3, 2381-4683, 238146831877663, 10.1177/2381468318776634 | |
7. | Wei Wang, Wanbiao Ma, Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling, 2018, 59, 10075704, 488, 10.1016/j.cnsns.2017.11.024 | |
8. | Cheng Ding, Xiaoxiao Liu, Shigui Yang, The value of infectious disease modeling and trend assessment: a public health perspective, 2021, 1478-7210, 1, 10.1080/14787210.2021.1882850 | |
9. | Ignacio Rozada, Daniel Coombs, Viviane D. Lima, Conditions for eradicating hepatitis C in people who inject drugs: A fibrosis aware model of hepatitis C virus transmission, 2016, 395, 00225193, 31, 10.1016/j.jtbi.2016.01.030 | |
10. | Karen Van Nuys, Ronald Brookmeyer, Jacquelyn W. Chou, David Dreyfus, Douglas Dieterich, Dana P. Goldman, Broad Hepatitis C Treatment Scenarios Return Substantial Health Gains, But Capacity Is A Concern, 2015, 34, 0278-2715, 1666, 10.1377/hlthaff.2014.1193 | |
11. | Ashley B Pitcher, Annick Borquez, Britt Skaathun, Natasha K Martin, Mathematical modeling of hepatitis c virus (HCV) prevention among people who inject drugs: A review of the literature and insights for elimination strategies, 2019, 481, 00225193, 194, 10.1016/j.jtbi.2018.11.013 | |
12. | Ruiqing Shi, Yunting Cui, Global analysis of a mathematical model for Hepatitis C virus transmissions, 2016, 217, 01681702, 8, 10.1016/j.virusres.2016.02.006 | |
13. | Mingwang Shen, Yanni Xiao, Weike Zhou, Zhen Li, Global Dynamics and Applications of an Epidemiological Model for Hepatitis C Virus Transmission in China, 2015, 2015, 1026-0226, 1, 10.1155/2015/543029 | |
14. | A. Nwankwo, D. Okuonghae, Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis, 2018, 80, 0092-8240, 437, 10.1007/s11538-017-0384-0 | |
15. | Yao Wang, Zeyu Zhao, Mingzhai Wang, Mikah Ngwanguong Hannah, Qingqing Hu, Jia Rui, Xingchun Liu, Yuanzhao Zhu, Jingwen Xu, Meng Yang, Jing-An Cui, Yanhua Su, Benhua Zhao, Tianmu Chen, The transmissibility of hepatitis C virus: a modelling study in Xiamen City, China, 2020, 148, 0950-2688, 10.1017/S0950268820002885 | |
16. | M. E. Woode, M. Abu‐Zaineh, J. Perriëns, F. Renaud, S. Wiktor, J.‐P. Moatti, Potential market size and impact of hepatitis C treatment in low‐ and middle‐income countries, 2016, 23, 1352-0504, 522, 10.1111/jvh.12516 | |
17. | Oluwasegun M. Ibrahim, Daniel Okuonghae, Monday N.O. Ikhile, Mathematical Modeling of the Population Dynamics of Age-Structured Criminal Gangs with Correctional Intervention Measures, 2022, 107, 0307904X, 39, 10.1016/j.apm.2022.02.005 | |
18. | S. P. Rajasekar, M. Pitchaimani, Quanxin Zhu, Probing a Stochastic Epidemic Hepatitis C Virus Model with a Chronically Infected Treated Population, 2022, 42, 0252-9602, 2087, 10.1007/s10473-022-0521-1 | |
19. | Louiza Tabharit, Maghnia Hamou Maamar, 2021, Mathematical Modeling of Chronic Hepatitis C Treatment’s Effect on the Evolution of its Complications, 978-1-6654-4171-1, 1, 10.1109/ICRAMI52622.2021.9585963 | |
20. | Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.1 | |
21. | Baolin Li, Fengqin Zhang, Xia Wang, A delayed diffusive HBV model with nonlinear incidence and CTL immune response, 2022, 45, 0170-4214, 11930, 10.1002/mma.8547 | |
22. | Yuqiong Lan, Yanqiu Li, Dongmei Zheng, Global dynamics of an age-dependent multiscale hepatitis C virus model, 2022, 85, 0303-6812, 10.1007/s00285-022-01773-9 | |
23. | Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo, Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level, 2021, 19, 1551-0018, 1515, 10.3934/mbe.2022070 | |
24. | R. Rakkiyappan, V. Preethi Latha, F. A. Rihan, Global Dynamics of a Fractional-order Ebola Model with Delayed Immune Response on Complex Networks, 2021, 91, 0369-8203, 681, 10.1007/s40010-021-00756-7 | |
25. | Ke Qi, Zhijun Liu, Lianwen Wang, Qinglong Wang, A nonlinear HCV model in deterministic and randomly fluctuating environments, 2023, 46, 0170-4214, 4644, 10.1002/mma.8792 | |
26. | Nauman Ahmed, Ali Raza, Ali Akgül, Zafar Iqbal, Muhammad Rafiq, Muhammad Ozair Ahmad, Fahd Jarad, New applications related to hepatitis C model, 2022, 7, 2473-6988, 11362, 10.3934/math.2022634 | |
27. | Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.2 | |
28. | Vuk Vujović, Influence of environmental fluctuations on Hepatitis C transmission, 2022, 191, 03784754, 203, 10.1016/j.matcom.2021.08.008 | |
29. | Robert B Hood, Alison H Norris, Abigail Shoben, William C Miller, Randall E Harris, Laura W Pomeroy, Forecasting Hepatitis C Virus Status for Children in the United States: A Modeling Study, 2024, 1058-4838, 10.1093/cid/ciae157 | |
30. | Parvaiz Ahmad Naik, Mehmet Yavuz, Sania Qureshi, Mehraj-ud-din Naik, Kolade M. Owolabi, Amanullah Soomro, Abdul Hamid Ganie, Memory impacts in hepatitis C: A global analysis of a fractional-order model with an effective treatment, 2024, 01692607, 108306, 10.1016/j.cmpb.2024.108306 | |
31. | Shewafera Wondimagegnhu Teklu, Tsegaye Simon Lachamo, Tibebu Tulu Guya, Analyses of a stage structure hepatitis c virus compartmental model with optimal control theory, 2025, 11, 2363-6203, 10.1007/s40808-025-02288-0 |