Strangles is one of the most prevalent horse diseases globally. The infected horses may be asymptomatic and can still carry the infectious pathogen after it recovers, which are named asymptomatic infected horses and long-term subclinical carriers, respectively. Based on these horses, this paper establishes a dynamical model to screen, measure, and model the spread of strangles. The basic reproduction number is computed through a next generation matrix method. By constructing Lyapunov functions, we concluded that the disease-free equilibrium is globally asymptotically stable if , and the endemic equilibrium exits uniquely and is globally asymptotically stable if . For example, while studying a strangles outbreak of a horse farm in England in 2012, we computed an of this outbreak by data fitting. We further conducted a parameter sensitivity analysis of and the final size by numerical simulations. The results show that the asymptomatic horses mainly influence the final size of this outbreak and that long-term carriers are connected to an increased recurrence of strangles. Moreover, in terms of the three control measures implemented to control strangles(i.e., vaccination, implementing screening regularly and isolating symptomatic horses), the result shows that screening is the most effective measurement, followed by vaccination and isolation, which can provide effective guidance for horse management.
Citation: Lusha Shi, Jianghong Hu, Zhen Jin. Dynamics analysis of strangles with asymptomatic infected horses and long-term subclinical carriers[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18386-18412. doi: 10.3934/mbe.2023817
[1] | Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699 |
[2] | Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001 |
[3] | Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013 |
[4] | Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243 |
[5] | András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43 |
[6] | Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i |
[7] | Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315 |
[8] | Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless -dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269 |
[9] | Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf . Sparse control of alignment models in high dimension. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647 |
[10] | Maria Teresa Chiri, Xiaoqian Gong, Benedetto Piccoli . Mean-field limit of a hybrid system for multi-lane car-truck traffic. Networks and Heterogeneous Media, 2023, 18(2): 723-752. doi: 10.3934/nhm.2023031 |
Strangles is one of the most prevalent horse diseases globally. The infected horses may be asymptomatic and can still carry the infectious pathogen after it recovers, which are named asymptomatic infected horses and long-term subclinical carriers, respectively. Based on these horses, this paper establishes a dynamical model to screen, measure, and model the spread of strangles. The basic reproduction number is computed through a next generation matrix method. By constructing Lyapunov functions, we concluded that the disease-free equilibrium is globally asymptotically stable if , and the endemic equilibrium exits uniquely and is globally asymptotically stable if . For example, while studying a strangles outbreak of a horse farm in England in 2012, we computed an of this outbreak by data fitting. We further conducted a parameter sensitivity analysis of and the final size by numerical simulations. The results show that the asymptomatic horses mainly influence the final size of this outbreak and that long-term carriers are connected to an increased recurrence of strangles. Moreover, in terms of the three control measures implemented to control strangles(i.e., vaccination, implementing screening regularly and isolating symptomatic horses), the result shows that screening is the most effective measurement, followed by vaccination and isolation, which can provide effective guidance for horse management.
[1] | H. Qin, M. Zhu, Status of horse breeding in China, Chin. J. Anim. Husb. Vet. Med., (2013), 4–5. |
[2] | C. R. Sweeney, J. F. Timoney, J. R. Newton, M. T. Hines, Streptococcus equi infections in horses: Guidelines for treatment, control, and prevention of strangles, J. Vet. Intern. Med., 19 (2005), 123–134. |
[3] | Wellcomecollection, Ruffo, Giordano (d.c.1256), De medicina equorum, 1999. Available from: https://wellcomecollection.org/works/cf2cmy6g. |
[4] |
J. F. Timoney, Strangles, Vet. Clin. North Am. Equine Pract., 9 (1993), 365–374. https://doi.org/10.1016/s0749-0739(17)30403-0 doi: 10.1016/s0749-0739(17)30403-0
![]() |
[5] |
N. Pusterla, J. L. Watson, V. K. Affolter, K. G. Magdesian, W. D. Wilson, G. P. Carlson, Purpura haemorrhagica in 53 horses, Vet. Rec., 153 (2003), 118–121. https://doi.org/10.1136/vr.153.4.118 doi: 10.1136/vr.153.4.118
![]() |
[6] | C. R. Sweeney, R. H. Whitlock, D. A. Meirs, S. C. Whitehead, S. O. Barningham, Complications associated with Streptococcus equi infection on a horse farm, J. Am. Vet. Med. Assoc., 191 (1987), 1446–1448. |
[7] |
S. E. Heath, R. J. Geor, H. Tabel, K. McIntosh, Unusual patterns of serum antibodies to Streptococcus equi in two horses with purpura hemorrhagica, J. Vet. Intern. Med., 5 (1991), 263–267. https://doi.org/10.1111/j.1939-1676.1991.tb03132.x doi: 10.1111/j.1939-1676.1991.tb03132.x
![]() |
[8] |
P. A. S. Ivens, D. Matthews, K. Webb, J. R. Newton, K. Steward, A. S. Waller, et al., Molecular characterisation of 'strangles' outbreaks in the UK: the use of M-protein typing of Streptococcus equi ssp. equi, Equine Vet. J., 43 (2011), 359–364. https://doi.org/10.1111/j.2042-3306.2010.00177.x doi: 10.1111/j.2042-3306.2010.00177.x
![]() |
[9] |
A. S. Waller, New perspectives for the diagnosis, control, treatment, and prevention of strangles in horses, Vet. Clin. North Am. Equine Pract., 30 (2014), 591–607. https://doi.org/10.1016/j.cveq.2014.08.007 doi: 10.1016/j.cveq.2014.08.007
![]() |
[10] | Ministry of Agriculture and Rural Affairs of the People's Republic of China, Announcement of the Ministry of Agriculture and Rural Development of the People's Republic of China No. 573, 2022. Available from: http://www.moa.gov.cn/govpublic/xmsyj/202206/t20220629_6403635.htm. |
[11] |
A. G. Boyle, J. F. Timoney, J. R. Newton, M. T. Hines, A. S. Waller, B. R. Buchanan, Streptococcus equi infections in horses: guidelines for treatment, control, and prevention of strangles revised consensus statement, J. Vet. Intern. Med., 32 (2018), 633–647. https://doi.org/10.1111/jvim.15043 doi: 10.1111/jvim.15043
![]() |
[12] |
S. D. Taylor, W. D. Wilson, Streptococcus equi subsp. equi (Strangles) infection, Clin. Tech. Equine Pract., 5 (2006), 211–217. https://doi.org/10.1053/j.ctep.2006.03.016 doi: 10.1053/j.ctep.2006.03.016
![]() |
[13] | H. J. Hamlen, J. F. Timoney, R. J. Bell, Epidemiologic and immunologic characteristics of Streptococcus equi infection in foals, J. Am. Vet. Med. Assoc., 204 (1994), 768–775. |
[14] | A. Boyle, Streptococcus equi subspecies equi infection (strangles) in horses, Compend. Contin. Educ. Vet., 33 (2011), 1–7. |
[15] |
K. Verheyen, J. R. Newton, N. C. Talbot, M. N. de Brauwere, N. Chanter, Elimination of guttural pouch infection and inflammation in asymptomatic carriers of Streptococcus equi, Equine Vet. J., 32 (2000), 527–532. https://doi.org/10.2746/042516400777584703 doi: 10.2746/042516400777584703
![]() |
[16] |
J. R. Newton, K. Verheyen, N. C. Talbot, J. F. Timoney, J. L. Wood, K. H. Lakhani, et al., Control of strangles outbreaks by isolation of guttural pouch carriers identified using PCR and culture of Streptococcus equi, Equine Vet. J., 32 (2000), 515–526. https://doi.org/10.2746/042516400777584721 doi: 10.2746/042516400777584721
![]() |
[17] |
C. Fintl, P. M. Dixon, T. J. Brazil, R. S. Pirie, B. C. McGorum Endoscopic and bacteriological findings in a chronic outbreak of strangles, Vet. Rec., 147 (2000), 480–484. https://doi.org/10.1136/vr.147.17.480 doi: 10.1136/vr.147.17.480
![]() |
[18] |
A. S. Waller, Strangles: Taking steps towards eradication, Vet. Microbiol., 167 (2013), 50–60. https://doi.org/10.1016/j.vetmic.2013.03.033 doi: 10.1016/j.vetmic.2013.03.033
![]() |
[19] |
W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
![]() |
[20] |
O. Byambasuren, M. Cardona, K. Bell, J. Clark, M. McLaws, P. Glasziou, Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: systematic review and meta-analysis, J. Assoc. Med. Microbiol. Infect. Dis. Can., 5 (2020), 223–234. https://doi.org/10.3138/jammi-2020-0030 doi: 10.3138/jammi-2020-0030
![]() |
[21] |
L. Furuya-Kanamori, M. Cox, G. J. Milinovich, R. J. S. Magalhaes, I. M Mackay, L. Yakob, Heterogeneous and dynamic prevalence of asymptomatic influenza virus infections, Emerg. Infect. Dis., 22 (2016), 1052–1056. https://doi.org/10.3201/eid2206.151080 doi: 10.3201/eid2206.151080
![]() |
[22] |
N. E. Dean, M. E. Halloran, Y. Yang, I. M. Longini, Transmissibility and pathogenicity of Ebola virus: a systematic review and meta-analysis of household secondary attack rate and asymptomatic infection, Clin. Infect. Dis., 62 (2016), 1277–1286. https://doi.org/10.1093/cid/ciw114 doi: 10.1093/cid/ciw114
![]() |
[23] |
M. Grunnill, An exploration of the role of asymptomatic infections in the epidemiology of dengue viruses through susceptible, asymptomatic, infected and recovered (SAIR) models, J. Theor. Biol., 439 (2018), 195–204. https://doi.org/10.1016/j.jtbi.2017.12.009 doi: 10.1016/j.jtbi.2017.12.009
![]() |
[24] |
J. B. Aguilar, J. B. Gutierrez, An epidemiological model of malaria accounting for asymptomatic carriers, Bull. Math. Biol., 82 (2020), 42. https://doi.org/10.1007/s11538-020-00717-y doi: 10.1007/s11538-020-00717-y
![]() |
[25] |
D. Kalajdzievska, M. Y. Li, Modeling the effects of carriers on transmission dynamics of infectious diseases, Math. Biosci. Eng., 8 (2011), 711–722. https://doi.org/10.3934/mbe.2011.8.711 doi: 10.3934/mbe.2011.8.711
![]() |
[26] |
L. Matthews, P. G. Coen, J. D. Foster, N. Hunter, M. E. Woolhouse, Population dynamics of a scrapie outbreak, Arch. Virol., 146 (2001), 1173–1186. https://doi.org/10.1007/s007050170113 doi: 10.1007/s007050170113
![]() |
[27] |
A. Stegeman, A. R. W. Elbers, J. Smak, M. C. M. de Jong, Quantification of the transmission of classical swine fever virus between herds during the 1997–1998 epidemic in The Netherlands, Prev. Vet. Med., 42 (1999), 219–234. https://doi.org/10.1016/s0167-5877(99)00077-x doi: 10.1016/s0167-5877(99)00077-x
![]() |
[28] |
M. Li, G. Sun, Y. Wu, J. Zhang, Z. Jin, Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm, Appl. Math. Comput., 237 (2014), 582–594. https://doi.org/10.1016/j.amc.2014.03.094 doi: 10.1016/j.amc.2014.03.094
![]() |
[29] | P. J. Hudson, A. P. Rizzoli, B. T. Grenfell, J. A. P. Heesterbeek, A. P. Dobson, The Ecology of Wildlife Diseases, Oxford University Press, Oxford, 2002. |
[30] |
R. M. A. C. Houben, K. van Maanen, J. G. Kemp-Symonds, A. S. Waller, M. M. S. van Oldruitenborgh-Oosterbaan, H. Heesterbeek, Estimation of the basic reproduction number for Streptococcus equi spp. equi outbreaks by meta-analysis of strangles outbreak reports, Equine Vet. J., 55 (2023), 506–514. https://doi.org/10.1111/evj.13865 doi: 10.1111/evj.13865
![]() |
[31] |
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[32] |
Z. Shuai, P. van den Driessche, Global stability of infectious disease models using lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513–1532. https://doi.org/10.1137/120876642 doi: 10.1137/120876642
![]() |
[33] | J. P. La Salle, The stability of dynamical systems, in CBMS-NSF Regional Conference Series in Applied Mathematics, (1976). |
[34] | R. A. Horn, C. R. Johnson, Matrix Analysis, 2 edition, Cambridge University Press, Cambridge, 2012. |
[35] |
B. Song, Basic reinfection number and backward bifurcation, Math. Biosci. Eng., 18 (2021), 8064–8083. https://doi.org/10.3934/mbe.2021400 doi: 10.3934/mbe.2021400
![]() |
[36] |
U. Christmann, C. Pink, Lessons learned from a strangles outbreak on a large Standardbred farm, Equine Vet. Educ., 29 (2017), 138–143. https://doi.org/10.1111/eve.12451 doi: 10.1111/eve.12451
![]() |
[37] |
N. J. Parkinson, C. Robin, J. R. Newton, J. Slater, A. S. Waller, Molecular epidemiology of strangles outbreaks in the UK during 2010, Vet. Rec., 168 (2011), 666. https://doi.org/10.1136/vr.d1485 doi: 10.1136/vr.d1485
![]() |
[38] |
A. N. F. Neamat-Allah, H. M. E. Damaty, Strangles in Arabian horses in Egypt: Clinical, epidemiological, hematological, and biochemical aspects, Vet. World, 9 (2016), 820–826. https://doi.org/10.14202/vetworld.2016.820-826 doi: 10.14202/vetworld.2016.820-826
![]() |
[39] |
A. McGlennon, A. Waller, K. Verheyen, J. Slater, J. Grewar, D. Aanensen, et al., Surveillance of strangles in UK horses between 2015 and 2019 based on laboratory detection of Streptococcus equi, Vet. Rec., 189 (2021), 948. https://doi.org/10.1002/vetr.948 doi: 10.1002/vetr.948
![]() |
[40] |
J. R. Newton, J. L. N. Wood, K. A. Dunn, M. N. DeBrauwere, N. Chanter, Naturally occurring persistent and asymptomatic infection of the guttural pouches of horses with Streptococcus equi, Vet. Rec., 140 (1997), 84–90. https://doi.org/10.1136/vr.140.4.84 doi: 10.1136/vr.140.4.84
![]() |
[41] |
D. Chhabra, T. Bhatia, U. Goutam, A. Manuja, B. Kumar, Strangles in equines: An overview, Microb. Pathog., 178 (2023), 106070. https://doi.org/10.1016/j.micpath.2023.106070 doi: 10.1016/j.micpath.2023.106070
![]() |
1. | Michael Herty, Dante Kalise, 2018, Suboptimal nonlinear feedback control laws for collective dynamics, 978-1-5386-6089-8, 556, 10.1109/ICCA.2018.8444303 | |
2. | Melanie Harms, Simone Bamberger, Eva Zerz, Michael Herty, On d-Collision-Free Dynamical Systems, 2022, 55, 24058963, 25, 10.1016/j.ifacol.2022.11.303 | |
3. | Fuguo Xu, Qiaobin Fu, Tielong Shen, PMP-based numerical solution for mean field game problem of general nonlinear system, 2022, 146, 00051098, 110655, 10.1016/j.automatica.2022.110655 | |
4. | M. K. Banda, M. Herty, T. Trimborn, 2020, Chapter 7, 978-3-030-50449-6, 133, 10.1007/978-3-030-50450-2_7 | |
5. | Michael Herty, Anna Thunen, 2021, Consistent Control of a Stackelberg Game with Infinitely many Followers, 978-1-6654-3659-5, 918, 10.1109/CDC45484.2021.9682798 | |
6. | Michael Herty, Hui Yu, 2016, Boundary stabilization of hyperbolic conservation laws using conservative finite volume schemes, 978-1-5090-1837-6, 5577, 10.1109/CDC.2016.7799126 | |
7. | Giacomo Albi, Michael Herty, Dante Kalise, Chiara Segala, Moment-Driven Predictive Control of Mean-Field Collective Dynamics, 2022, 60, 0363-0129, 814, 10.1137/21M1391559 | |
8. | Giacomo Albi, Emiliano Cristiani, Lorenzo Pareschi, Daniele Peri, 2020, Chapter 8, 978-3-030-50449-6, 159, 10.1007/978-3-030-50450-2_8 | |
9. | Michael Herty, Sonja Steffensen, Anna Thünen, Multiscale control of Stackelberg games, 2022, 200, 03784754, 468, 10.1016/j.matcom.2022.04.028 | |
10. | Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Mean-field sparse Jurdjevic–Quinn control, 2017, 27, 0218-2025, 1223, 10.1142/S0218202517400140 | |
11. | Bertram Düring, Lorenzo Pareschi, Giuseppe Toscani, Kinetic models for optimal control of wealth inequalities, 2018, 91, 1434-6028, 10.1140/epjb/e2018-90138-1 | |
12. | Yan Ma, Minyi Huang, Linear quadratic mean field games with a major player: The multi-scale approach, 2020, 113, 00051098, 108774, 10.1016/j.automatica.2019.108774 | |
13. | Michael Herty, Mattia Zanella, Performance bounds for the mean-field limit of constrained dynamics, 2017, 37, 1553-5231, 2023, 10.3934/dcds.2017086 | |
14. | Aylin Aydoğdu, Marco Caponigro, Sean McQuade, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, Emmanuel Trélat, 2017, Chapter 3, 978-3-319-49994-9, 99, 10.1007/978-3-319-49996-3_3 | |
15. | Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, Boltzmann Games in Heterogeneous Consensus Dynamics, 2019, 175, 0022-4715, 97, 10.1007/s10955-019-02246-y | |
16. | Michael Herty, Lorenzo Pareschi, Sonja Steffensen, 2019, Chapter 5, 978-3-030-20296-5, 149, 10.1007/978-3-030-20297-2_5 | |
17. | A. Medaglia, G. Colelli, L. Farina, A. Bacila, P. Bini, E. Marchioni, S. Figini, A. Pichiecchio, M. Zanella, Uncertainty quantification and control of kinetic models of tumour growth under clinical uncertainties, 2022, 141, 00207462, 103933, 10.1016/j.ijnonlinmec.2022.103933 | |
18. | Giacomo Albi, Federica Ferrarese, Chiara Segala, 2021, Chapter 5, 978-3-030-91645-9, 97, 10.1007/978-3-030-91646-6_5 | |
19. | Minyi Huang, Mengjie Zhou, Linear Quadratic Mean Field Games: Asymptotic Solvability and Relation to the Fixed Point Approach, 2020, 65, 0018-9286, 1397, 10.1109/TAC.2019.2919111 | |
20. | Eva Zerz, Michael Herty, Collision-Free Dynamical Systems , 2019, 52, 24058963, 72, 10.1016/j.ifacol.2019.11.029 | |
21. | Giacomo Albi, Michael Herty, Chiara Segala, Robust Feedback Stabilization of Interacting Multi-agent Systems Under Uncertainty, 2024, 89, 0095-4616, 10.1007/s00245-023-10078-2 | |
22. | Xiaoqian Gong, Michael Herty, Benedetto Piccoli, Giuseppe Visconti, Crowd Dynamics: Modeling and Control of Multiagent Systems, 2023, 6, 2573-5144, 261, 10.1146/annurev-control-060822-123629 | |
23. | Christian Fiedler, Michael Herty, Sebastian Trimpe, Mean-Field Limits for Discrete-Time Dynamical Systems via Kernel Mean Embeddings, 2023, 7, 2475-1456, 3914, 10.1109/LCSYS.2023.3341280 | |
24. | Martin Gugat, Michael Herty, Jiehong Liu, Chiara Segala, The turnpike property for high‐dimensional interacting agent systems in discrete time, 2024, 45, 0143-2087, 2557, 10.1002/oca.3172 | |
25. | Michael Herty, Yizhou Zhou, Exponential turnpike property for particle systems and mean-field limit, 2025, 0956-7925, 1, 10.1017/S0956792524000871 | |
26. | Giacomo Albi, Sara Bicego, Michael Herty, Yuyang Huang, Dante Kalise, Chiara Segala, 2025, Chapter 2, 978-3-031-85255-8, 29, 10.1007/978-3-031-85256-5_2 | |
27. | Giacomo Albi, Sara Bicego, Dante Kalise, Control of high-dimensional collective dynamics by deep neural feedback laws and kinetic modelling, 2025, 539, 00219991, 114229, 10.1016/j.jcp.2025.114229 |