[1]
|
Z. Xu, B. Peng, Q. Liang, X. Chen, Y. Cai, S. Zeng, et al., Construction of a ferroptosis-related nine-lncRNA signature for predicting prognosis and immune response in hepatocellular carcinoma, Front. Immunol., 12 (2021), 719175. https://doi.org/10.3389/fimmu.2021.719175 doi: 10.3389/fimmu.2021.719175
|
[2]
|
A. Villanueva, Hepatocellular carcinoma, N. Engl. J. Med., 380 (2019), 1450–1462. https://doi.org/10.1056/NEJMra1713263 doi: 10.1056/NEJMra1713263
|
[3]
|
K. A. McGlynn, J. L. Petrick, H. B. El-Serag, Epidemiology of hepatocellular carcinoma, Hepatology, 73 (2021), 4–13. https://doi.org/10.1002/hep.31288 doi: 10.1002/hep.31288
|
[4]
|
N. Minaei, R. Ramezankhani, A. Tamimi, A. Piryaei, A. Zarrabi, A. R. Aref, et al., Immunotherapeutic approaches in hepatocellular carcinoma: Building blocks of hope in near future, Eur. J. Cell Biol., 102 (2023), 151284. https://doi.org/10.1016/j.ejcb.2022.151284 doi: 10.1016/j.ejcb.2022.151284
|
[5]
|
A. J. Craig, J. von Felden, T. Garcia-Lezana, S. Sarcognato, A. Villanueva, Tumour evolution in hepatocellular carcinoma, Nat. Rev. Gastroenterol. Hepatol., 17 (2020), 139–152. https://doi.org/10.1038/s41575-019-0229-4 doi: 10.1038/s41575-019-0229-4
|
[6]
|
L. K. Chan, Y. M. Tsui, D. W. Ho, I. O. Ng, Cellular heterogeneity and plasticity in liver cancer, Semin. Cancer Biol., 82 (2022), 134–149. https://doi.org/10.1016/j.semcancer.2021.02.015 doi: 10.1016/j.semcancer.2021.02.015
|
[7]
|
I. Barbieri, T. Kouzarides, Role of RNA modifications in cancer, Nat. Rev. Cancer, 20 (2020), 303–322. https://doi.org/10.1038/s41568-020-0253-2 doi: 10.1038/s41568-020-0253-2
|
[8]
|
D. Benak, S. Benakova, L. Plecita-Hlavata, M. Hlavackova, The role of m(6)A and m(6)Am RNA modifications in the pathogenesis of diabetes mellitus, Front. Endocrinol. (Lausanne), 14 (2023), 1223583. https://doi.org/10.3389/fendo.2023.1223583 doi: 10.3389/fendo.2023.1223583
|
[9]
|
S. H. Chung, T. N. Sin, B. Dang, T. Ngo, T. Lo, D. Lent-Schochet, et al., CRISPR-based VEGF suppression using paired guide RNAs for treatment of choroidal neovascularization, Mol. Ther. Nucleic Acids, 28 (2022), 613–622. https://doi.org/10.1016/j.omtn.2022.04.015 doi: 10.1016/j.omtn.2022.04.015
|
[10]
|
S. H. Chung, I. N. Mollhoff, U. Nguyen, A. Nguyen, N. Stucka, E. Tieu, et al., Factors impacting efficacy of AAV-mediated CRISPR-based genome editing for treatment of choroidal neovascularization, Mol. Ther. Methods Clin. Dev., 17 (2020), 409–417. https://doi.org/10.1016/j.omtm.2020.01.006 doi: 10.1016/j.omtm.2020.01.006
|
[11]
|
X. Y. Chen, J. Zhang, J. S. Zhu, The role of m(6)A RNA methylation in human cancer, Mol. Cancer, 18 (2019), 103. https://doi.org/10.1186/s12943-019-1033-z doi: 10.1186/s12943-019-1033-z
|
[12]
|
P. Nombela, B. Miguel-López, S. Blanco, The role of m(6)A, m(5)C and Ψ RNA modifications in cancer: Novel therapeutic opportunities, Mol. Cancer, 20 (2021), 18. https://doi.org/10.1186/s12943-020-01263-w doi: 10.1186/s12943-020-01263-w
|
[13]
|
Q. Zheng, X. Yu, Q. Zhang, Y. He, W. Guo, Genetic characteristics and prognostic implications of m1A regulators in pancreatic cancer, Biosci. Rep., 41 (2021). https://doi.org/10.1042/BSR20210337 doi: 10.1042/BSR20210337
|
[14]
|
Q. Zhang, F. Liu, W. Chen, H. Miao, H. Liang, Z. Liao, et al., The role of RNA m(5)C modification in cancer metastasis, Int. J. Biol. Sci., 17 (2021), 3369–3380. https://doi.org/10.7150/ijbs.61439 doi: 10.7150/ijbs.61439
|
[15]
|
T. Sun, R. Wu, L. Ming, The role of m6A RNA methylation in cancer, Biomed. Pharmacother., 112 (2019), 108613. https://doi.org/10.1016/j.biopha.2019.108613 doi: 10.1016/j.biopha.2019.108613
|
[16]
|
Y. Luo, Y. Yao, P. Wu, X. Zi, N. Sun, J. He, The potential role of N(7)-methylguanosine (m7G) in cancer, J. Hematol. Oncol., 15 (2022), 63. https://doi.org/10.1186/s13045-022-01285-5 doi: 10.1186/s13045-022-01285-5
|
[17]
|
Y. Wang, J. Wang, X. Li, X. Xiong, J. Wang, Z. Zhou, et al., N(1)-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism, Nat. Commun., 12 (2021), 6314. https://doi.org/10.1038/s41467-021-26718-6 doi: 10.1038/s41467-021-26718-6
|
[18]
|
C. Xue, Y. Zhao, G. Li, L. Li, Multi-Omic Analyses of the m(5)C Regulator ALYREF reveal its essential roles in hepatocellular carcinoma, Front. Oncol., 11 (2021), 633415. https://doi.org/10.3389/fonc.2021.633415 doi: 10.3389/fonc.2021.633415
|
[19]
|
Y. He, X. Yu, J. Li, Q. Zhang, Q. Zheng, W. Guo, Role of m(5)C-related regulatory genes in the diagnosis and prognosis of hepatocellular carcinoma, Am. J. Transl. Res., 12 (2020), 912–922.
|
[20]
|
J. Liu, K. Jiang, METTL3-mediated maturation of miR-589-5p promotes the malignant development of liver cancer, J. Cell. Mol. Med., 26 (2022), 2505–2519. https://doi.org/10.1111/jcmm.16845 doi: 10.1111/jcmm.16845
|
[21]
|
Z. Dai, H. Liu, J. Liao, C. Huang, X. Ren, W. Zhu, et al., N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression, Mol. Cell, 81 (2021), 3339–3355. https://doi.org/10.1016/j.molcel.2021.07.003 doi: 10.1016/j.molcel.2021.07.003
|
[22]
|
Y. Xu, M. Zhang, Q. Zhang, X. Yu, Z. Sun, Y. He, et al., Role of main RNA methylation in hepatocellular carcinoma: N6-Methyladenosine, 5-Methylcytosine, and N1-Methyladenosine, Front. Cell Dev. Biol., 9 (2021), 767668. https://doi.org/10.3389/fcell.2021.767668 doi: 10.3389/fcell.2021.767668
|
[23]
|
C. Tomikawa, 7-Methylguanosine modifications in transfer RNA (tRNA), Int. J. Mol. Sci., 19 (2018). https://doi.org/10.3390/ijms19124080 doi: 10.3390/ijms19124080
|
[24]
|
Y. Zhou, B. Zhou, L. Pache, M. Chang, A. H. Khodabakhshi, O. Tanaseichuk, et al., Metascape provides a biologist-oriented resource for the analysis of systems-level datasets, Nat. Commun., 10 (2019), 1523. https://doi.org/10.1038/s41467-019-09234-6 doi: 10.1038/s41467-019-09234-6
|
[25]
|
M. J. Bywater, R. B. Pearson, G. A. McArthur, R. D. Hannan, Dysregulation of the basal RNA polymerase transcription apparatus in cancer, Nat. Rev. Cancer, 13 (2013), 299–314. https://doi.org/10.1038/nrc3496 doi: 10.1038/nrc3496
|
[26]
|
L. A. Garraway, E. S. Lander, Lessons from the cancer genome, Cell, 153 (2013), 17–37. https://doi.org/10.1016/j.cell.2013.03.002 doi: 10.1016/j.cell.2013.03.002
|
[27]
|
J. A. Joyce, J. W. Pollard, Microenvironmental regulation of metastasis, Nat. Rev. Cancer, 9 (2009), 239–252. https://doi.org/10.1038/nrc2618 doi: 10.1038/nrc2618
|
[28]
|
D. Hanahan, L. M. Coussens, Accessories to the crime: Functions of cells recruited to the tumor microenvironment, Cancer Cell, 21 (2012), 309–322. https://doi.org/10.1016/j.ccr.2012.02.022 doi: 10.1016/j.ccr.2012.02.022
|
[29]
|
T. M. Malta, A. Sokolov, A. J. Gentles, T. Burzykowski, L. Poisson, J. N. Weinstein, et al., Machine learning identifies stemness features associated with oncogenic dedifferentiation, Cell, 173 (2018), 338–354. https://doi.org/10.1016/j.cell.2018.03.034 doi: 10.1016/j.cell.2018.03.034
|
[30]
|
A. Iasonos, D. Schrag, G. V. Raj, K. S. Panageas, How to build and interpret a nomogram for cancer prognosis, J. Clin. Oncol., 26 (2008), 1364–1370. https://doi.org/10.1200/JCO.2007.12.9791 doi: 10.1200/JCO.2007.12.9791
|
[31]
|
Z. Yang, Q. Zi, K. Xu, C. Wang, Q. Chi, Development of a macrophages-related 4-gene signature and nomogram for the overall survival prediction of hepatocellular carcinoma based on WGCNA and LASSO algorithm, Int. Immunopharmacol., 90 (2021), 107238. https://doi.org/10.1016/j.intimp.2020.107238 doi: 10.1016/j.intimp.2020.107238
|
[32]
|
A. Dirican, D. Uncu, M. Sekacheva, M. Artaç, A. Aladashvil, A. Erdogan, et al., A multicentre, multinational study of clinical characteristics and prognosis of hepatocellular carcinoma, East. Mediterr. Health J., 29 (2023), 462–473. https://doi.org/10.26719/emhj.23.087 doi: 10.26719/emhj.23.087
|
[33]
|
C. Xie, X. Ye, L. Zeng, X. Zeng, D. Cao, Serum AKR1B10 as an indicator of unfavorable survival of hepatocellular carcinoma, J. Gastroenterol., (2023). https://doi.org/10.1007/s00535-023-02011-9 doi: 10.1007/s00535-023-02011-9
|
[34]
|
M. Chen, L. Wei, C. T. Law, F. H. Tsang, J. Shen, C. L. Cheng, et al., RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2, Hepatology, 67 (2018), 2254–2270. https://doi.org/10.1002/hep.29683 doi: 10.1002/hep.29683
|
[35]
|
D. Li, K. Li, W. Zhang, K. W. Yang, D. A. Mu, G. J. Jiang, et al., The m6A/m5C/m1A regulated gene signature predicts the prognosis and correlates with the immune status of hepatocellular carcinoma, Front Immunol, 13 (2022), 918140. https://doi.org/10.3389/fimmu.2022.918140 doi: 10.3389/fimmu.2022.918140
|
[36]
|
M. Xiong, K. Zhuang, Y. Luo, Q. Lai, X. Luo, Y. Fang, et al., KIF20A promotes cellular malignant behavior and enhances resistance to chemotherapy in colorectal cancer through regulation of the JAK/STAT3 signaling pathway, Aging, 11 (2019), 11905–11921. https://doi.org/10.18632/aging.102505 doi: 10.18632/aging.102505
|
[37]
|
X. Meng, W. Li, H. Yuan, W. Dong, W. Xiao, X. Zhang, KDELR2-KIF20A axis facilitates bladder cancer growth and metastasis by enhancing Golgi-mediated secretion, Biol. Proced. Online, 24 (2022), 12. https://doi.org/10.1186/s12575-022-00174-y doi: 10.1186/s12575-022-00174-y
|
[38]
|
V. A. Copello, K. L. Burnstein, The kinesin KIF20A promotes progression to castration-resistant prostate cancer through autocrine activation of the androgen receptor, Oncogene, 41 (2022), 2824–2832. https://doi.org/10.1038/s41388-022-02307-9 doi: 10.1038/s41388-022-02307-9
|
[39]
|
C. Wu, X. Qi, Z. Qiu, G. Deng, L. Zhong, Low expression of KIF20A suppresses cell proliferation, promotes chemosensitivity and is associated with better prognosis in HCC, Aging, 13 (2021), 22148–22163. https://doi.org/10.18632/aging.203494 doi: 10.18632/aging.203494
|
[40]
|
Y. Hu, C. Tang, W. Zhu, H. Ye, Y. Lin, R. Wang, et al., Identification of chromosomal instability-associated genes as hepatocellular carcinoma progression-related biomarkers to guide clinical diagnosis, prognosis and therapy, Comput. Biol. Med., 148 (2022), 105896. https://doi.org/10.1016/j.compbiomed.2022.105896 doi: 10.1016/j.compbiomed.2022.105896
|
[41]
|
N. Ouyang, S. Ke, N. Eagleton, Y. Xie, G. Chen, B. Laffins, et al., Pregnane X receptor suppresses proliferation and tumourigenicity of colon cancer cells, Br. J. Cancer, 102 (2010), 1753–1761. https://doi.org/10.1038/sj.bjc.6605677 doi: 10.1038/sj.bjc.6605677
|
[42]
|
Y. Niu, Z. Wang, H. Huang, S. Zhong, W. Cai, Y. Xie, et al., Activated pregnane X receptor inhibits cervical cancer cell proliferation and tumorigenicity by inducing G2/M cell-cycle arrest, Cancer Lett., 347 (2014), 88–97. https://doi.org/10.1016/j.canlet.2014.01.026 doi: 10.1016/j.canlet.2014.01.026
|
[43]
|
X. Niu, T. Wu, G. Li, X. Gu, Y. Tian, H. Cui, Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance, Int. J. Biol. Sci., 18 (2022), 742–759. https://doi.org/10.7150/ijbs.68724 doi: 10.7150/ijbs.68724
|
[44]
|
B. D. Khalil, R. Sanchez, T. Rahman, C. Rodriguez-Tirado, S. Moritsch, A. R. Martinez, et al., An NR2F1-specific agonist suppresses metastasis by inducing cancer cell dormancy, J. Exp. Med., 219 (2022). https://doi.org/10.1084/jem.20210836 doi: 10.1084/jem.20210836
|
[45]
|
Y. Liu, P. Zhang, Q. Wu, H. Fang, Y. Wang, Y. Xiao, et al., Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and ΔNp63, Nat. Commun., 12 (2021), 5232. https://doi.org/10.1038/s41467-021-25552-0 doi: 10.1038/s41467-021-25552-0
|
[46]
|
D. M. Gilkes, G. L. Semenza, D. Wirtz, Hypoxia and the extracellular matrix: Drivers of tumour metastasis, Nat. Rev. Cancer, 14 (2014), 430–439. https://doi.org/10.1038/nrc3726 doi: 10.1038/nrc3726
|
[47]
|
Z. Wang, G. Fan, H. Zhu, L. Yu, D. She, Y. Wei, et al., PLOD2 high expression associates with immune infiltration and facilitates cancer progression in osteosarcoma, Front. Oncol., 12 (2022), 980390. https://doi.org/10.3389/fonc.2022.980390 doi: 10.3389/fonc.2022.980390
|
[48]
|
Y. Kiyozumi, M. Iwatsuki, J. Kurashige, Y. Ogata, K. Yamashita, Y. Koga, et al., PLOD2 as a potential regulator of peritoneal dissemination in gastric cancer, Int. J. Cancer, 143 (2018), 1202–1211. https://doi.org/10.1002/ijc.31410 doi: 10.1002/ijc.31410
|
[49]
|
T. Noda, H. Yamamoto, I. Takemasa, D. Yamada, M. Uemura, H. Wada, et al., PLOD2 induced under hypoxia is a novel prognostic factor for hepatocellular carcinoma after curative resection, Liver Int., 32 (2012), 110–118. https://doi.org/10.1111/j.1478-3231.2011.02619.x doi: 10.1111/j.1478-3231.2011.02619.x
|
[50]
|
D. C. Hinshaw, L. A. Shevde, The tumor microenvironment innately modulates cancer Progression, Cancer Res., 79 (2019), 4557–4566. https://doi.org/10.1158/0008-5472.CAN-18-3962 doi: 10.1158/0008-5472.CAN-18-3962
|
[51]
|
N. Woller, S. A. Engelskircher, T. Wirth, H. Wedemeyer, Prospects and challenges for T cell-based therapies of HCC, Cells, 10 (2021). https://doi.org/10.3390/cells10071651 doi: 10.3390/cells10071651
|
[52]
|
C. Zheng, L. Zheng, J. K. Yoo, H. Guo, Y. Zhang, X. Guo, et al., Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing, Cell, 169 (2017), 1342–1356. https://doi.org/10.1016/j.cell.2017.05.035 doi: 10.1016/j.cell.2017.05.035
|
[53]
|
Y. Chen, Z. Tian, HBV-induced immune imbalance in the development of HCC, Front. Immunol., 10 (2019), 2048. https://doi.org/10.3389/fimmu.2019.02048 doi: 10.3389/fimmu.2019.02048
|
[54]
|
I. Lurje, L. Hammerich, F. Tacke, Dendritic cell and T cell crosstalk in liver fibrogenesis and hepatocarcinogenesis: implications for prevention and therapy of liver cancer, Int. J. Mol. Sci., 21 (2020). https://doi.org/10.3390/ijms21197378 doi: 10.3390/ijms21197378
|
[55]
|
Z. Tang, T. Zhang, B. Yang, J. Su, Q. Song, SpaCI: deciphering spatial cellular communications through adaptive graph model, Brief. Bioinf., 24 (2023), bbac563. https://doi.org/10.1093/bib/bbac563 doi: 10.1093/bib/bbac563
|
[56]
|
T. Calandra, R. Bucala, Macrophage migration inhibitory factor (mif): A glucocorticoid counter-regulator within the immune system, Crit. Rev. Immunol., 37 (2017), 359–370. https://doi.org/10.1615/CritRevImmunol.v37.i2-6.90 doi: 10.1615/CritRevImmunol.v37.i2-6.90
|
[57]
|
R. K. Meleppat, C. R. Fortenbach, Y. Jian, E. S. Martinez, K. Wagner, B. S. Modjtahedi, et al., In vivo imaging of retinal and choroidal morphology and vascular plexuses of vertebrates using swept-source optical coherence tomography, Transl. Vis. Sci. Technol., 11 (2022), 11. https://doi.org/10.1167/tvst.11.8.11 doi: 10.1167/tvst.11.8.11
|
[58]
|
R. K. Meleppat, K. E. Ronning, S. J. Karlen, K. K. Kothandath, M. E. Burns, E. N. P. Jr, et al., In situ morphologic and spectral characterization of retinal pigment epithelium organelles in mice using multicolor confocal fluorescence imaging, Invest. Ophthalmol. Vis. Sci., 61 (2020), 1. https://doi.org/10.1167/iovs.61.13.1 doi: 10.1167/iovs.61.13.1
|
[59]
|
P. L. Triozzi, E. R. Stirling, Q. Song, B. Westwood, M. Kooshki, M. E. Forbes, et al., Circulating immune bioenergetic, metabolic, and genetic signatures predict melanoma patients' response to anti-pd-1 immune checkpoint blockade, Clin. Cancer Res., 28 (2022), 1192–1202. https://doi.org/10.1158/1078-0432.CCR-21-3114 doi: 10.1158/1078-0432.CCR-21-3114
|