Processing math: 100%
Research article Special Issues

Free boundary problem for a nonlocal time-periodic diffusive competition model


  • In this paper we consider a free boundary problem for a nonlocal time-periodic competition model. One species is assumed to adopt nonlocal dispersal, and the other one adopts mixed dispersal, which is a combination of both random dispersal and nonlocal dispersal. We first prove the global well-posedness of solutions to the free boundary problem with more general growth functions, and then discuss the spreading and vanishing phenomena. Moreover, under the weak competition condition, we study the long-time behaviors of solutions for the spreading case.

    Citation: Qiaoling Chen, Fengquan Li, Sanyi Tang, Feng Wang. Free boundary problem for a nonlocal time-periodic diffusive competition model[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16471-16505. doi: 10.3934/mbe.2023735

    Related Papers:

    [1] Aslı Alkan, Halil Anaç . A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358
    [2] Qasim Khan, Anthony Suen, Hassan Khan, Poom Kumam . Comparative analysis of fractional dynamical systems with various operators. AIMS Mathematics, 2023, 8(6): 13943-13983. doi: 10.3934/math.2023714
    [3] Manal Alqhtani, Khaled M. Saad, Rasool Shah, Thongchai Botmart, Waleed M. Hamanah . Evaluation of fractional-order equal width equations with the exponential-decay kernel. AIMS Mathematics, 2022, 7(9): 17236-17251. doi: 10.3934/math.2022949
    [4] Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237
    [5] Naveed Iqbal, Saleh Alshammari, Thongchai Botmart . Evaluation of regularized long-wave equation via Caputo and Caputo-Fabrizio fractional derivatives. AIMS Mathematics, 2022, 7(11): 20401-20419. doi: 10.3934/math.20221118
    [6] Azzh Saad Alshehry, Naila Amir, Naveed Iqbal, Rasool Shah, Kamsing Nonlaopon . On the solution of nonlinear fractional-order shock wave equation via analytical method. AIMS Mathematics, 2022, 7(10): 19325-19343. doi: 10.3934/math.20221061
    [7] Zeliha Korpinar, Mustafa Inc, Dumitru Baleanu . On the fractional model of Fokker-Planck equations with two different operator. AIMS Mathematics, 2020, 5(1): 236-248. doi: 10.3934/math.2020015
    [8] Emad Salah, Ahmad Qazza, Rania Saadeh, Ahmad El-Ajou . A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system. AIMS Mathematics, 2023, 8(1): 1713-1736. doi: 10.3934/math.2023088
    [9] Yudhveer Singh, Devendra Kumar, Kanak Modi, Vinod Gill . A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 2020, 5(2): 843-855. doi: 10.3934/math.2020057
    [10] Yousef Jawarneh, Humaira Yasmin, M. Mossa Al-Sawalha, Rasool Shah, Asfandyar Khan . Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations. AIMS Mathematics, 2023, 8(11): 25845-25862. doi: 10.3934/math.20231318
  • In this paper we consider a free boundary problem for a nonlocal time-periodic competition model. One species is assumed to adopt nonlocal dispersal, and the other one adopts mixed dispersal, which is a combination of both random dispersal and nonlocal dispersal. We first prove the global well-posedness of solutions to the free boundary problem with more general growth functions, and then discuss the spreading and vanishing phenomena. Moreover, under the weak competition condition, we study the long-time behaviors of solutions for the spreading case.



    Fractional calculus (FC) is a discipline of mathematics concerned with the study of derivatives and integrals of non-integer orders. It was invented in September 1695 by L'Hospital. In a letter to L'-Hospital [1], who discussed the differentiation of product functions of order 12, which laid the groundwork for FC [2,3,4]. It provides a great tool for characterizing memory and inherited qualities of different materials and procedures [4,5,6]. FC has grown in interest in recent decades as a result of the intensive development of fractional calculus theory and its applications in diverse sectors of science and engineering due to its high precision and applicability, for example, fractional control theory, image processing, signal processing, bio-engineering, groundwater problems, heat conduction, and behavior of viscoelastic and visco-plastic materials, see [7,8,9]. In addition, the electrical RLC circuit's performance has been determined using the fractional model [10].

    In the last few decades, numerical and analytical solutions of fractional partial differential equations (FPDEs) have drawn a lot of attention among researchers [11,12,13,14,15]. The qualitative behavior of these mathematical models is significantly influenced by the fractional derivatives that are employed in FPDEs. This has numerous applications in the fields of solid-state physics, plasma physics, mathematical biology, electrochemistry, diffusion processes, turbulent flow, and materials science [16,17,18].

    However, solving PDEs is not an easy task. A lot of mathematicians have put their effort into formulating analytical and numerical methods to solve fractional partial differential equations. The widely recognized methods for the solution of (FPDEs) are the Adomian decomposition method [19], homotopy analysis method [20,21], q-homotopy analysis transform method [22], homotopy perturbation method [23], variation iteration method [24], differential transform method [25], projected differential transform method [26], meshless method [27], backlund transformation method [28], Haar wavelet method [29], G'/G expansion method [30], residual power series method [31], Adam Bashforth's moulton technique [32], operational matrix method [33].

    The nonlinear partial differential Navier-Stokes (N-S) equation, which expresses viscous fluid motion, was first developed by Claude Louis and Gabriel Stokes in 1822 [34]. This equation describes the conservation of mass and conservation of momentum for Newtonian and is referred to as the Newton's second law for fluids. The N-S equation has wide applications in engineering science, for example, examining liquid flow, studying wind current around wings, climate estimation, and blood flow [35,36]. Furthermore, along with Maxwell's equations the (N-S) equation can be applied to study and model magnetohydrodynamics, plasma physics, geophysics, etc. Also, fluid-solid interaction problems have been modeled and investigated by the N-S equation [37].

    The multi-dimensional Navier-Stokes equation (MDNSE) stands as a fundamental cornerstone in fluid dynamics, providing a comprehensive mathematical framework to describe the motion of fluid substances in multiple dimensions. Derived from the Navier-Stokes equation, which govern the conservation of momentum for incompressible fluids, the MDNSE extends these principles to encompass the complexities of fluid flow in more than one spatial dimension. The equation accounts for the conservation of mass and the interplay of viscous and inertial forces, offering a powerful tool to model and analyze fluid behavior in diverse physical scenarios. The application of the multi-dimensional Navier-Stokes equation spans a wide range of scientific and engineering disciplines, playing a crucial role in understanding fluid dynamics across various contexts. In the field of aerospace engineering, MDNSE is employed to simulate the airflow around aircraft, aiding in the design and optimization of aerodynamic profiles. In marine engineering, it finds application in predicting the behavior of water currents around ships and offshore structures. Additionally, MDNSE is instrumental in weather modeling, allowing meteorologists to simulate and analyze atmospheric conditions in multiple dimensions for more accurate weather predictions. In the realm of biomedical engineering, it contributes to the study of blood flow in arteries and the behavior of biological fluids. Overall, the multi-dimensional Navier-Stokes equation serves as a versatile and indispensable tool for gaining insights into the intricate dynamics of fluid motion in diverse scientific and engineering.

    In literature, many researchers have used numerous techniques to analyze the N-S equation. First of all, the authors of [38] solved the fractional-order N-S equation by using the Laplace transform, Fourier sine transform, and Hankel transform. The authors of [39,40,41] investigated the time-fractional N-S equation by using the homotopy perturbation method. Biraider [42] used the Adomian decomposition method to find a numerical solution. Recently, many researchers have focused on examining the multi-dimensional time-fractional N-S equation, by combining a variety of techniques with different transforms, see [43,44,45,46].

    Motivated by the mentioned work, in the present article the new iterative transform method (NITM) and homotopy perturbation transform method (HPTM) combined with natural transform are implemented to analyze the solution of the time-fractional multi-dimensional Navier-Stokes equation in the sense of Caputo-Fabrizio operator. The article is structured in the following way: In Section 2, some basic definitions and properties are explained. In Section 3, the interpretation of the NITM is explained for the solution of fractional PDEs. In Section 4, the above-mentioned method's convergence analysis is also presented. In Section 5, the outcome of the suggested method is illustrated by examples, and validated graphically. In Section 6, the HPTM is explicated. In Section 7, similar examples are presented to elucidate the HPTM.

    Definition 1 ([47]). The Caputo fractional derivative of f() is defined as

    C0Dθf()={1Γ(mθ)0(ζ)mθ1fm(ζ)dζ,m1<θ<m,fm(),θ=m. (2.1)

    where, mZ+,θR+.

    Definition 2 ([48]). The Caputo-Fabrizio fractional derivative of f() is defined as

    CF0Dθf()=(2θ)B(θ)2(1θ)0exp(θ(ζ)1θ)D(f(ζ))dζ0. (2.2)

    where θ[0,1], and B(θ) is a normalization function and satisfies the condition B(0)=B(1)=1.

    Definition 3 ([49]). The fractional integral of function f() of order θ, is defined as

    CF0Iθf()=2(1θ)(2θ)B(θ)f()+2θ(2θ)B(θ)0f(ζ)dζ,0. (2.3)

    From Eq (2.3), the following results hold:

    2(1θ)(2θ)B(θ)+2θ(2θ)B(θ)=1,

    which gives,

    B(θ)=22θ,0θ1.

    Thus, Losada and Nieto [49] redefined the Caputo-Fabrizio fractional derivative as

    CF0Dθf()=11θ0exp(θ(ζ)1θ)D(f(ζ))dζ0. (2.4)

    Definition 4 ([50]). The natural transform of () is given by

    N(())=U(s,v)=es(v)d,s,v(,). (2.5)

    For (0,), the natural transform of () is given by

    N(()H())=N+=U+(s,v)=0es(v)ds,v(0,), (2.6)

    where H is the Heaviside function.

    The inverse of natural transform of U(s,v) is defined as

    N1[U(s,v)]=(),>0.

    Definition 5 ([51]). The natural transform of the fractional Caputo differential operator C0Dθ() is defined as

    N[C0Dθ()]=(1s)θ(N[()](1s)(0)). (2.7)

    Definition 6 ([52]). The natural transform of the fractional Caputo-Fabrizio differential operator CF0Dθ() is defined as

    N[CF0Dθ()]=11θ+θ(vs)(N[()](1s)(0)). (2.8)

    This section considers, NITM with the CF fractional derivative operator in order to evaluate the multi-dimensional (N-S) problem. This iterative method is a combination of the new iterative method introduced in [53] and the natural transform [50].

    Consider the fractional PDE of the form

    CF0Dθ(φ,ϱ,)+R((φ,ϱ,))+N((φ,ϱ,))P(φ,ϱ,)=0, (3.1)

    with respect to the initial condition

    (φ,ϱ,0)=h(φ,ϱ). (3.2)

    CF0Dθ is the Caputo-Fabrizio fractional differential operator of order θ,R and N are linear and non-linear terms, and P is the source term.

    By employing the natural transform on both sides of Eq (3.1), we get

    N[CF0Dθ(φ,ϱ,)+R((φ,ϱ,))+N((φ,ϱ,))P(φ,ϱ,)=0], (3.3)
    N[(φ,ϱ,)]=s1(φ,ϱ,0)+(1θ+θ(vs))N{P(φ,ϱ,)[R((φ,ϱ,))+N((φ,ϱ,))]}. (3.4)

    By using the inverse natural transform, Eq (3.4) can reduced to the form

    (φ,ϱ,)=N1{s1(φ,ϱ,0)+(1θ+θ(vs))N{P(φ,ϱ,)[R((φ,ϱ,))+N((φ,ϱ,))]}}. (3.5)

    The nonlinear operator N as in [53], can be decomposed as

    N((φ,ϱ,))=N(r=0r(φ,ϱ,))=N(0(φ,ϱ,))+r=1{N(ri=0i(φ,ϱ,))N(r1i=0i(φ,ϱ,))}. (3.6)

    Now, define an mth-order approximate series

    D(m)(φ,ϱ,)=mr=0r(φ,ϱ,)=0(φ,ϱ,)+1(φ,ϱ,)+2(φ,ϱ,)++m(φ,ϱ,),mN. (3.7)

    Consider the solution of Eq (3.1) in a series form as

    (φ,ϱ,)=limmD(m)(φ,ϱ,)=r=0r(φ,ϱ,). (3.8)

    By substituting Eqs (3.6) and (3.7) into Eq (3.5), we get

    r=0r(φ,ϱ,)=N1{s1(φ,ϱ,0)+(1θ+θ(vs))N[P(φ,ϱ,)[R(0(φ,ϱ,))+N(0(φ,ϱ,))]]}N1{(1θ+θ(vs))N[r=1{R(r(φ,ϱ,))+[N(ri=0i(φ,ϱ,))N(r1i=0i(φ,ϱ,))]}]}. (3.9)

    From Eq (3.9), the following iterations are obtained.

    0(φ,ϱ,)=N1[s1(φ,ϱ,0)+(1θ+θ(vs))N[P(φ,ϱ,)]], (3.10)
    1(φ,ϱ,)=N1[(1θ+θ(vs))N[R(0(φ,ϱ,))+N(0(φ,ϱ,))]], (3.11)
    ur+1(φ,ϱ,)=N1{(1θ+θ(vs))N[r=1{R(r(φ,ϱ,))+[N(ri=0i(φ,ϱ,))N(r1i=0i(φ,ϱ,))]}]}. (3.12)

    In this section, we demonstrate the uniqueness and convergence of the NITMCF.

    Theorem 1. The solution derived with the aid of the NITMCF of Eq (3.1) is unique whenever 0<(1,2)[1θ+θ]<1.

    Proof. Let X=(C[J],.) be the Banach space for all continuous functions over the interval J=[0,T], with the norm ϕ()=maxJ|ϕ()|.

    Define the mapping F:XX, where

    Cr+1=C0N1[(1θ+θvs)N{R((φ,ϱ,))+N((φ,ϱ,))P(φ,ϱ,)}],r0.

    Now, assume that R() and N() satisfy the Lipschitz conditions with Lipschitz constants 1,2 and |R()R(ˉ)|<1|ˉ|, |N()N(ˉ)|<2|ˉ|, where =(φ,ϱ,) and ˉ=(φ,ϱ,) are the values of two distinct functions.

    F()F(ˉ)maxJ|N1[(1θ+θvs)N{R((φ,ϱ,))R(ˉ(φ,ϱ,))}+(1θ+θvs)N{N((φ,ϱ,))N(ˉ(φ,ϱ,))}]|maxJ[1N1{(1θ+θvs)N|(φ,ϱ,)ˉ(φ,ϱ,)|}+2N1{(1θ+θvs)N|(φ,ϱ,)ˉ(φ,ϱ,)|}]maxJ(1+2)[N1{(1θ+θvs)N|(φ,ϱ,)ˉ(φ,ϱ,)|}](1+2)[N1{(1θ+θvs)N|(φ,ϱ,)ˉ(φ,ϱ,)|}](1+2)[1θ+θ]ˉ.

    F is contraction as 0<(1+2)[1θ+θ]<1. Thus, the result of (3.1) is unique with the aid of the Banach fixed-point theorem.

    Theorem 2. The solution derived from Eq (3.1) using the NITMCF converges if 0<<1 and i∥<, where =(1+2)[1θ+θ].

    Proof. Let n=nr=0r(φ,ϱ,) be a partial sum of series. To prove that {n} is a Cauchy sequence in the Banach space X, we consider

    (mn=maxJ|mr=n+1r(φ,ϱ,)|,n=1,2,3,...maxJ|N1[(1θ+θvs)N{mr=n+1[R(r1(φ,ϱ,))+N(r1(φ,ϱ,))]}]|maxJ|N1[(1θ+θvs)N{R(m1)R(n1)+N(m1)N(n1)}]|
    1maxJ|N1[(1θ+θvs)N{R(m1)R(n1)}]|+2maxJ|N1[(1θ+θvs)N{N(m1)Nn1)}]|=(1+2)[1θ+θ]m1n1.

    If m=n+1, then

    n+1n∥≤nn1∥≤2n1n2∥≤...n10,

    where =(1+2)[1θ+θ]. In a similar way

    mn≤∥n+1n∥≤∥n+2n+1∥≤...mm1,(n+n+1+...+m1)10,n(1mn1)1.

    We see that, 1mn<1, as 0<<1. Thus,

    mn∥≤(n1)maxJ1.

    Since 1∥<, mn∥→0 as n. Hence, m is a Cauchy sequence in X. So, the series m is convergent.

    In this section, we demonstrate the effectiveness of the NITM with the natural transformation for the Caputo-Fabrizio fractional derivative to solve the two-dimensional fractional N-S equation.

    Consider the two-dimensional fractional N-S equation

    CF0Dθ(μ)+μμφ+νμϱ=ρ[2μφ2+2μϱ2]+q,CF0Dθ(ν)+μνφ+ννϱ=ρ[2νφ2+2νϱ2]q, (5.1)

    with initial conditions

    {μ(φ,ϱ,0)=sin(φ+ϱ),ν(φ,ϱ,0)=sin(φ+ϱ). (5.2)

    From Eqs (5.1) and (5.2), we set the following

    {P1(φ,ϱ,)=q,R(μ(φ,ϱ,))=ρ[2μφ2+2μϱ2],N(μ(φ,ϱ,))=μμφ+νμϱ,P2(φ,ϱ,)=q,R(ν(φ,ϱ,))=ρ[2νφ2+2νϱ2],N(ν(φ,ϱ,))=μνφ+ννϱ,μ0(φ,ϱ,0)=sin(φ+ϱ),ν0(φ,ϱ,0)=sin(φ+ϱ).

    Using the iteration process outlined in Section 3, we have

    μ0(φ,ϱ,)=N1[s1μ(φ,ϱ,0)+(1θ+θ(vs))N[P1(φ,ϱ,)]],0<θ1=sin(φ+ϱ)+q.[(1θ)+θ],ν0(φ,ϱ,)=N1[s1ν(φ,ϱ,0)+(1θ+θ(vs))N[P2(φ,ϱ,)]]=sin(φ+ϱ)q.[(1θ)+θ], (5.3)
    μ1(φ,ϱ,)=N1[(1θ+θ(vs))N{R(μ0(φ,ϱ,))+N(μ0(φ,ϱ,))}]=N1[(1θ+θ(vs))N(ρ[2μ0φ2+2μ0ϱ2]+μ0μ0φ+ν0μ0ϱ)]=2ρsin(φ+ϱ)[(1θ)+θ],ν1(φ,ϱ,)=N1[(1θ+θ(vs))N(R(ν0(φ,ϱ,))+N(ν0(φ,ϱ,)))]=N1[(1θ+θ(vs))N(ρ[2ν0φ2+2ν0ϱ2]+μ0ν0φ+ν0ν0ϱ)]=2ρsin(φ+ϱ)[(1θ)+θ], (5.4)
    μ2(φ,ϱ,)=N1[(1θ+θ(vs))N[(R(μ1(φ,ϱ,))+{N(μ0(φ,ϱ,)+μ1(φ,ϱ,))N(μ0(φ,ϱ,))}]]=N1[(1θ+θ(vs))N(ρ[2μ1φ2+2μ1ϱ2]+(μ0+μ1)(μ0+μ1)φ+(ν0+ν1)(μ0+μ1)ϱμ0μ0φν0μ0ϱ)]=(2ρ)2sin(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!],ν2(φ,ϱ,)=N1[(1θ+θ(vs))N[(R(ν1(φ,ϱ,))+{N(ν0(φ,ϱ,)+ν1(φ,ϱ,))N(ν0(φ,ϱ,))}]]=N1[(1θ+θ(vs))N(ρ[2ν1φ2+2ν1ϱ2]+(μ0+μ1)(ν0+ν1)φ+(ν0+ν1)(ν0+ν1)ϱμ0ν0φν0ν0ϱ)]=(2ρ)2sin(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!], (5.5)
    μ3(φ,ϱ,)=N1[(1θ+θ(vs))N[(R(μ2(φ,ϱ,))+{N(μ0(φ,ϱ,)+μ1(φ,ϱ,)+μ2(φ,ϱ,))N(μ0(φ,ϱ,)+μ1(φ,ϱ,))}]]=N1[(1θ+θ(vs))N(ρ[2μ2φ2+2μ2ϱ2]+(μ0+μ1+μ2)(μ0+μ1+μ2)φ+(ν0+ν1+ν2)(μ0+μ1+μ2)ϱ(μ0+μ1)(μ0+μ1)φ(ν0+ν1)(μ0+μ1)ϱ)]=(2ρ)3sin(φ+ϱ)[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!], (5.6)
    ν3(φ,ϱ,)=N1[(1θ+θ(vs))N[(R(ν2(φ,ϱ,))+{N(ν0(φ,ϱ,)+ν1(φ,ϱ,)+ν2(φ,ϱ,))N(ν0(φ,ϱ,)+ν1(φ,ϱ,))}]]=N1[(1θ+θ(vs))N(ρ[2ν2φ2+2ν2ϱ2]+(μ0+μ1+μ2)(ν0+ν1+ν2)φ+(ν0+ν1+ν2)(ν0+ν1+ν2)ϱ(μ0+μ1)(ν0+ν1)φ(ν0+ν1)(ν0+ν1)ϱ)]=(2ρ)3sin(φ+ϱ)[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!], (5.7)

    In a general way,

    μ(φ,ϱ,)=r=0μr(φ,ϱ,)=μ0(φ,ϱ,)+μ1(φ,ϱ,)+μ2(φ,ϱ,)+.ν(φ,ϱ,)=r=0νr(φ,ϱ,)=ν0(φ,ϱ,)+ν1(φ,ϱ,)+ν2(φ,ϱ,)+.

    With the addition of all μ and ν,

    μ(φ,ϱ,)=sin(φ+ϱ)+q.[(1θ)+θ]+2ρsin(φ+ϱ)[(1θ)+θ](2ρ)2sin(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!]+(2ρ)3sin(φ+ϱ)×[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!],
    ν(φ,ϱ,)=sin(φ+ϱ)q.[(1θ)+θ]2ρsin(φ+ϱ)[(1θ)+θ]+(2ρ)2sin(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!](2ρ)3sin(φ+ϱ)×[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!]+.

    The exact solution of Eq (5.1) at θ=1 and q=0 is given by

    μ(φ,ϱ,)=e2ρsin(φ+ϱ),ν(φ,ϱ,)=e2ρsin(φ+ϱ). (5.8)

    Consider the two-dimensional fractional N-S equation

    CF0Dθ(μ)+μμφ+νμϱ=ρ[2μφ2+2μϱ2]+q,CF0Dθ(ν)+μνφ+ννϱ=ρ[2νφ2+2νϱ2]q, (5.9)

    with the initial conditions

    {μ(φ,ϱ,0)=e(φ+ϱ),ν(φ,ϱ,0)=e(φ+ϱ). (5.10)

    From Eqs (5.9) and (5.10), we set the following:

    {P1(φ,ϱ,)=q,R(μ(φ,ϱ,))=ρ[2μφ2+2μϱ2],N(μ(φ,ϱ,))=μμφ+νμϱ,P2(φ,ϱ,)=q,R(ν(φ,ϱ,))=ρ[2νφ2+2νϱ2],N(ν(φ,ϱ,))=μνφ+ννϱ,μ0(φ,ϱ,0)=e(φ+ϱ),ν0(φ,ϱ,0)=e(φ+ϱ).

    Using the iteration process outlined in Section 3, we have

    μ0(φ,ϱ,)=N1[s1μ(φ,ϱ,0)+(1θ+θ(vs))N[P1(φ,ϱ,)]],0<θ1=e(φ+ϱ)+q.[(1θ)+θ],ν0(φ,ϱ,)=N1[s1ν(φ,ϱ,0)+(1θ+θ(vs))N[P2(φ,ϱ,)]]=e(φ+ϱ)q.[(1θ)+θ], (5.11)
    μ1(φ,ϱ,)=N1[(1θ+θ(vs))N{R(μ0(φ,ϱ,))+N(μ0(φ,ϱ,))}]=N1[(1θ+θ(vs))N(ρ[2μ0φ2+2μ0ϱ2]+μ0μ0φ+ν0μ0ϱ)]=2ρe(φ+ϱ)[(1θ)+θ],ν1(φ,ϱ,)=N1[(1θ+θ(vs))N(R(ν0(φ,ϱ,))+N(ν0(φ,ϱ,)))]=N1[(1θ+θ(vs))N(ρ[2ν0φ2+2ν0ϱ2]+μ0ν0φ+ν0ν0ϱ)]=2ρe(φ+ϱ)[(1θ)+θ],μ2(φ,ϱ,)=N1[(1θ+θ(vs))N[(R(μ1(φ,ϱ,))+{N(μ0(φ,ϱ,)+μ1(φ,ϱ,))N(μ0(φ,ϱ,))}]]=N1[(1θ+θ(vs))N(ρ[2μ1φ2+2μ1ϱ2]+(μ0+μ1)(μ0+μ1)φ+(ν0+ν1)(μ0+μ1)ϱμ0μ0φν0μ0ϱ)]=(2ρ)2e(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!], (5.12)
    ν2(φ,ϱ,)=N1[(1θ+θ(vs))N[(R(ν1(φ,ϱ,))+{N(ν0(φ,ϱ,)+ν1(φ,ϱ,))N(ν0(φ,ϱ,))}]]=N1[(1θ+θ(vs))N(ρ[2ν1φ2+2ν1ϱ2]+(μ0+μ1)(ν0+ν1)φ+(ν0+ν1)(ν0+ν1)ϱμ0ν0φν0ν0ϱ)]=(2ρ)2e(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!], (5.13)
    μ3(φ,ϱ,)=N1[(1θ+θ(vs))N[(R(μ2(φ,ϱ,))+{N(μ0(φ,ϱ,)+μ1(φ,ϱ,)+μ2(φ,ϱ,))N(μ0(φ,ϱ,)+μ1(φ,ϱ,))}]]=N1[(1θ+θ(vs))N(ρ[2μ2φ2+2μ2ϱ2]+(μ0+μ1+μ2)(μ0+μ1+μ2)φ+(ν0+ν1+ν2)(μ0+μ1+μ2)ϱ(μ0+μ1)(μ0+μ1)φ(ν0+ν1)(μ0+μ1)ϱ)]=(2ρ)3e(φ+ϱ)[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!],ν3(φ,ϱ,)=N1[(1θ+θ(vs))N[(R(ν2(φ,ϱ,))+{N(ν0(φ,ϱ,)+ν1(φ,ϱ,)+ν2(φ,ϱ,))N(ν0(φ,ϱ,)+ν1(φ,ϱ,))}]]=N1[(1θ+θ(vs))N(ρ[2ν2φ2+2ν2ϱ2]+(μ0+μ1+μ2)(ν0+ν1+ν2)φ+(ν0+ν1+ν2)(ν0+ν1+ν2)ϱ(μ0+μ1)(ν0+ν1)φ(ν0+ν1)(ν0+ν1)ϱ)]=(2ρ)3e(φ+ϱ)[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!], (5.14)

    In a general way,

    μ(φ,ϱ,)=r=0μr(φ,ϱ,)=μ0(φ,ϱ,)+μ1(φ,ϱ,)+μ2(φ,ϱ,)+,ν(φ,ϱ,)=r=0νr(φ,ϱ,)=ν0(φ,ϱ,)+ν1(φ,ϱ,)+ν2(φ,ϱ,)+.

    With the addition of all μ and ν,

    μ(φ,ϱ,)=e(φ+ϱ)+q.[(1θ)+θ]2ρe(φ+ϱ)[(1θ)+θ](2ρ)2e(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!](2ρ)3e(φ+ϱ)[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!],
    ν(φ,ϱ,)=e(φ+ϱ)q.[(1θ)+θ]+2ρe(φ+ϱ)[(1θ)+θ]+(2ρ)2e(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!]+(2ρ)3e(φ+ϱ)[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!]+.

    The exact solution of Eq (5.9) at θ=1 and q=0 is given by

    μ(φ,ϱ,)=eφ+ϱ+2ρ,ν(φ,ϱ,)=eφ+ϱ+2ρ. (5.15)

    Consider the following non-linear fractional PDEs

    CF0Dθ(φ,ϱ,)+R((φ,ϱ,))+N((φ,ϱ,))P(φ,ϱ,)=0,0<θ1, (6.1)

    subject to the initial condition

    (φ,ϱ,0)=0(φ,ϱ). (6.2)

    CF0Dθ is the Caputo-Fabrizio fractional differential operator of order θ,R and N are linear and non-linear terms, and P is the source term.

    By using the natural transform on both sides of Eq (6.1), we get

    N[CF0Dθ(φ,ϱ,)+R((φ,ϱ,))+N((φ,ϱ,))P(φ,ϱ,)=0], (6.3)
    N[(φ,ϱ,)]=ϖ((φ,ϱ,s))(1θ+θ(vs))N{[R((φ,ϱ,))+N((φ,ϱ,))]}, (6.4)

    where

    ϖ((φ,ϱ,s))=s1(φ,ϱ,0)+(1θ+θ(vs))˜P(φ,ϱ,s).

    By applying the inverse natural transform, Eq (6.4) is reduced to the form

    (φ,ϱ,)=ϖ((φ,ϱ,))N1[(1θ+θ(vs))N{[R((φ,ϱ,))+N((φ,ϱ,))]}], (6.5)

    where ϖ((φ,ϱ,)) represents the term arising from the source term. Now, applying the HPTM to find the solution of Eq (6.5), we get

    (φ,ϱ,)=r=0zrr(φ,ϱ,), (6.6)

    and the non-linear tern can be decomposed as

    N((φ,ϱ,))=r=0zrHr(φ,ϱ,). (6.7)

    Cnsider some He's polynomials [54], given as

    Hr(0,1,...,r)=1r!rzr[N(j=0zjj)],r=0,1,2,. (6.8)

    By substituting Eqs (6.6) and (6.7) into Eq (6.5), we get

    r=0r(φ,ϱ,)zr=ϖ((φ,ϱ,))z.N1[(1θ+θ(vs))N{Rr=0zrr(φ,ϱ,)+Nr=0zrHr(φ,ϱ,)}]. (6.9)

    Comparing the coefficients of like powers of z, the following approximations are obtained:

    z0:0(φ,ϱ,)=ϖ((φ,ϱ,)) (6.10)
    z1:1(φ,ϱ,)=N1[(1θ+θ(vs))N{R[0(φ,ϱ,)]+H0()}] (6.11)
    zr+1:r+1(φ,ϱ,)=N1[(1θ+θ(vs))N{R[r(φ,ϱ,)]+Hr()}]. (6.12)

    Consider the two-dimensional fractional N-S equation

    CF0Dθ(μ)+μμφ+νμϱ=ρ[2μφ2+2μϱ2]+q,CF0Dθ(ν)+μνφ+ννϱ=ρ[2νφ2+2νϱ2]q, (6.13)

    with initial conditions

    {μ(φ,ϱ,0)=sin(φ+ϱ),ν(φ,ϱ,0)=sin(φ+ϱ). (6.14)

    Applying the natural transform and inversion in Eq (6.13), we obtain

    μ(φ,ϱ,)=μ(φ,ϱ,0)+N1[(1θ+θ(vs))N[q]]+N1[(1θ+θ(vs))×N{ρ(2μφ2+2μϱ2)(μμφ+νμϱ)}],ν(φ,ϱ,)=ν(φ,ϱ,0)N1[(1θ+θ(vs))N[q]]+N1[(1θ+θ(vs))×N{ρ(2νφ2+2νϱ2)(μνφ+ννϱ)}]. (6.15)

    By implementing HPTM in Eq (6.15), we get

    r=0zrμ(φ,ϱ,)=sin(φ+ϱ)+N1[(1θ+θ(vs))N[q]]+z.N1[(1θ+θ(vs))×N{ρr=0zr(2μφ2+2μϱ2)r=0zrHr(φ,ϱ)}],r=0zrν(φ,ϱ,)=sin(φ+ϱ)N1[(1θ+θ(vs))N[q]]+z.N1[(1θ+θ(vs))×N{ρr=0zr(2νφ2+2νϱ2)r=0zrIr(φ,ϱ)}]. (6.16)

    where Hr(φ,ϱ)=μμφ+νμϱ and Ir(φ,ϱ)=μνφ+ννϱ, represent the nonlinear term.

    From Eq (6.16), comparing the powers of z, we get

    z0:μ0(φ,ϱ,)=sin(φ+ϱ)+q.[(1θ)+θ],z0:ν0(φ,ϱ,)=sin(φ+ϱ)q.[(1θ)+θ], (6.17)
    z1:μ1(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2μ0φ2+2μ0ϱ2)H0(φ,ϱ)}]=2ρsin(φ+ϱ)[(1θ)+θ],z1:ν1(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2ν0φ2+2ν0ϱ2)I0(φ,ϱ)}]=2ρsin(φ+ϱ)[(1θ)+θ], (6.18)

    where H0(φ,ϱ)=μ0μ0φ+ν0μ0ϱ and I0(φ,ϱ)=μ0ν0φ+ν0ν0ϱ.

    z2:μ2(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2μ1φ2+2μ1ϱ2)H1(φ,ϱ)}]=(2ρ)2sin(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!],z2:ν2(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2ν1φ2+2ν1ϱ2)I1(φ,ϱ)}]=(2ρ)2sin(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!], (6.19)

    where H1(φ,ϱ)=(μ0μ1φ+μ1μ0φ)+(ν0μ1ϱ+ν1μ0ϱ),

    and I1(φ,ϱ)=(μ0ν1φ+μ1ν0φ)+(ν0ν1ϱ+ν1ν0ϱ).

    z3:μ3(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2μ2φ2+2μ2ϱ2)H2(φ,ϱ)}]=(2ρ)3sin(φ+ϱ)[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!],z3:ν3(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2ν2φ2+2ν2ϱ2)I2(φ,ϱ)}]=(2ρ)3sin(φ+ϱ)[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!], (6.20)

    where H2(φ,ϱ)=(μ0μ2φ+μ1μ1φ+μ2μ0φ)+(ν0μ2ϱ+ν1μ1ϱ+ν2μ0ϱ),

    and I2(φ,ϱ)=(μ0ν2φ+μ1ν1φ+μ2ν0φ)+(ν0ν2ϱ+ν1ν1ϱ+ν2ν0ϱ).

        

    In a general way,

    μ(φ,ϱ,)=r=0μr(φ,ϱ,)=μ0(φ,ϱ,)+μ1(φ,ϱ,)+μ2(φ,ϱ,)+,ν(φ,ϱ,)=r=0νr(φ,ϱ,)=ν0(φ,ϱ,)+ν1(φ,ϱ,)+ν2(φ,ϱ,)+.

    With the addition of all μ and ν,

    μ(φ,ϱ,)=sin(φ+ϱ)+q.[(1θ)+θ]+2ρsin(φ+ϱ)[(1θ)+θ](2ρ)2sin(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!]+(2ρ)3sin(φ+ϱ)×[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!].
    ν(φ,ϱ,)=sin(φ+ϱ)q.[(1θ)+θ]2ρsin(φ+ϱ)[(1θ)+θ]+(2ρ)2sin(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!](2ρ)3sin(φ+ϱ)×[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!]+.

    The exact solution of Eq (6.13) at θ=1 and q=0 is given by

    μ(φ,ϱ,)=e2ρsin(φ+ϱ),ν(φ,ϱ,)=e2ρsin(φ+ϱ). (6.21)

    Consider the two-dimensional fractional order N-S equation

    CF0Dθ(μ)+μμφ+νμϱ=ρ[2μφ2+2μϱ2]+q,CF0Dθ(ν)+μνφ+ννϱ=ρ[2νφ2+2νϱ2]q, (6.22)

    with initial conditions

    {μ(φ,ϱ,0)=e(φ+ϱ),ν(φ,ϱ,0)=e(φ+ϱ). (6.23)

    Applying the natural transform and inversion in Eq (6.22), we obtain

    μ(φ,ϱ,)=μ(φ,ϱ,0)+N1[(1θ+θ(vs))N[q]]+N1[(1θ+θ(vs))×N{ρ(2μφ2+2μϱ2)(μμφ+νμϱ)}],ν(φ,ϱ,)=ν(φ,ϱ,0)N1[(1θ+θ(vs))N[q]]+N1[(1θ+θ(vs))×N{ρ(2νφ2+2νϱ2)(μνφ+ννϱ)}]. (6.24)

    By implementing HPTM in Eq (6.24), we get

    r=0zrμ(φ,ϱ,)=e(φ+ϱ)+N1[(1θ+θ(vs))N[q]]+z.N1[(1θ+θ(vs))×N{ρr=0zr(2μφ2+2μϱ2)r=0zrHr(φ,ϱ)}],r=0zrν(φ,ϱ,)=e(φ+ϱ)N1[(1θ+θ(vs))N[q]]+z.N1[(1θ+θ(vs))×N{ρr=0zr(2νφ2+2νϱ2)r=0zrIr(φ,ϱ)}]. (6.25)

    where Hr(φ,ϱ)=μμφ+νμϱ and Ir(φ,ϱ)=μνφ+ννϱ represent the nonlinear terms.

    From Eq (6.25), comparing the powers of z, we get

    z0:μ0(φ,ϱ,)=e(φ+ϱ)+q.[(1θ)+θ],z0:ν0(φ,ϱ,)=e(φ+ϱ)q.[(1θ)+θ], (6.26)
    z1:μ1(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2μ0φ2+2μ0ϱ2)H0(φ,ϱ)}]=2ρe(φ+ϱ)[(1θ)+θ],z1:ν1(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2ν0φ2+2ν0ϱ2)I0(φ,ϱ)}]=2ρe(φ+ϱ)[(1θ)+θ]. (6.27)

    where H0(φ,ϱ)=μ0μ0φ+ν0μ0ϱ and I0(φ,ϱ)=μ0ν0φ+ν0ν0ϱ.

    z2:μ2(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2μ1φ2+2μ1ϱ2)H1(φ,ϱ)}]=(2ρ)2e(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!],z2:ν2(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2ν1φ2+2ν1ϱ2)I1(φ,ϱ)}]=(2ρ)2e(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!], (6.28)

    where H1(φ,ϱ)=(μ0μ1φ+μ1μ0φ)+(ν0μ1ϱ+ν1μ0ϱ),

    and I1(φ,ϱ)=(μ0ν1φ+μ1ν0φ)+(ν0ν1ϱ+ν1ν0ϱ).

    z3:μ3(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2μ2φ2+2μ2ϱ2)H2(φ,ϱ)}]=(2ρ)3e(φ+ϱ)[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!],z3:ν3(φ,ϱ,)=N1[(1θ+θ(vs))N{ρ(2ν2φ2+2ν2ϱ2)I2(φ,ϱ)}]=(2ρ)3e(φ+ϱ)[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!], (6.29)

    where H2(φ,ϱ)=(μ0μ2φ+μ1μ1φ+μ2μ0φ)+(ν0μ2ϱ+ν1μ1ϱ+ν2μ0ϱ),

    and I2(φ,ϱ)=(μ0ν2φ+μ1ν1φ+μ2ν0φ)+(ν0ν2ϱ+ν1ν1ϱ+ν2ν0ϱ).

        

    In a general way,

    μ(φ,ϱ,)=r=0μr(φ,ϱ,)=μ0(φ,ϱ,)+μ1(φ,ϱ,)+μ2(φ,ϱ,)+,ν(φ,ϱ,)=r=0νr(φ,ϱ,)=ν0(φ,ϱ,)+ν1(φ,ϱ,)+ν2(φ,ϱ,)+.

    With the addition of all μ and ν,

    μ(φ,ϱ,)=e(φ+ϱ)+q.[(1θ)+θ]2ρe(φ+ϱ)[(1θ)+θ](2ρ)2e(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!](2ρ)3e(φ+ϱ)×[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!]...
    ν(φ,ϱ,)=e(φ+ϱ)q.[(1θ)+θ]+2ρe(φ+ϱ)[(1θ)+θ]+(2ρ)2e(φ+ϱ)[(1θ)2+2θ(1θ)+θ222!]+(2ρ)3e(φ+ϱ)×[(1θ)3+3θ(1θ)2+3θ2(1θ)22!+θ333!]+...

    The exact solution of Eq (6.22) at θ=1 and q=0 is given by

    μ(φ,ϱ,)=eφ+ϱ+2ρ,ν(φ,ϱ,)=eφ+ϱ+2ρ. (6.30)

    Effective analytical techniques were used to analyze the solution of the time-fractional multi-dimensional N-S equation. The fractional derivatives are defined in the form of Caputo-Fabrizio, and are examined by the NITM and HPTM, along with NT. To verify that the suggested approaches are accurate and applicable, the graphical interpretation is illustrated for both fractional and integer orders for some examples.

    Figures 1 and 2 demonstrate the behavior of the exact and analytical solutions of Example 1 for μ(φ,ϱ,) and ν(φ,ϱ,) at θ=1, and demonstrate that the NITM solution figures are identical and in close contact with the exact solution of the example.

    Figure 1.  Comparison of exact and NITM solutions of μ(φ,ϱ,) at θ=1 and =1 of Example 1.
    Figure 2.  Comparison of exact and NITM solutions of ν(φ,ϱ,) at θ=1 and =1 of Example 1.

    The physical attributes of μ(φ,ϱ,) corresponding to the various fractional-orders θ=0.2,0.4,0.6,0.8 of Example 1 are plotted in Figures 3 and 4.

    Figure 3.  The solution of μ(φ,ϱ,) at various fractional order θ=0.2,0.4 of Example 1 up to the four terms of the series.
    Figure 4.  The solution of μ(φ,ϱ,) at various fractional-orders θ=0.6,0.8 of Example 1 up to the four terms of the series.

    Similarly, the graphical solutions of ν(φ,ϱ,) for various fractional-orders θ=0.2,0.4,0.6,0.8 of Example 1 are examined in Figures 5 and 6. It is shown that the NITM solutions are in strong agreement with the exact solutions and show a high rate of convergence.

    Figure 5.  The solution of ν(φ,ϱ,) at various fractional-orders θ=0.2,0.4 of Example 1 up to the four terms of the series.
    Figure 6.  The solution of ν(φ,ϱ,) at various fractional-orders θ=0.6,0.8 of Example 1 up to the four terms of the series.

    Figures 7 and 8 represent the analytical and exact solutions of Examples 2 and 4 for μ(φ,ϱ,) and ν(φ,ϱ,) at θ=1.

    Figure 7.  Comparison of exact and NITM solution of μ(φ,ϱ,) at θ=1 and =1 of Example 2.
    Figure 8.  Comparison of exact and NITM solution of ν(φ,ϱ,) at θ=1 and =1 of Example 2.

    It can be seen that the NITM solution figures are identical and in close contact with the exact solution of the example. Furthermore, in Figures 9 and 10, Examples 2 and 4 are calculated by the NITM method, and the value of μ(φ,ϱ,) is examined corresponding to the various fractional orders θ=0.2,0.4,0.6,0.8 by graphical interpretation.

    Figure 9.  The solution of μ(φ,ϱ,) at various fractional orders θ=0.2,0.4 of Example 2 up to the four terms of the series.
    Figure 10.  The solution of μ(φ,ϱ,) at various fractional orders θ=0.6,0.8 of Example 2 up to the four terms of the series.

    Similarly, the graphical solution of ν(φ,ϱ,) for various fractional orders θ=0.2,0.4,0.6,0.8 of Example 2 is analyzed in Figures 11 and 12.

    Figure 11.  The solution of ν(φ,ϱ,) at various fractional orders θ=0.2,0.4 of Example 2 up to the four terms of the series.
    Figure 12.  The solution of ν(φ,ϱ,) at various fractional orders θ=0.6,0.8 of Example 2 up to the four terms of the series.

    It is observed that the outcome of the NITM method and its graphical interpretation demonstrate the accuracy and applicability of the suggested techniques, and it is noted that the fractional-order solution exhibits the same convergence trends as that of integer-order solutions.

    This article presents the successful implementation of NITM and HPTM to evaluate the solution of the time-fractional multi-dimensional N-S equation analytically. The efficacy and accuracy of the proposed methods are examined with the support of four examples, and the outcomes show how effective, precise, and easy the methods are to use. The graphical interpretation of different values of the fractional-order θ on the solution profile is displayed in Figures 26 and in Figures 912, which demonstrate some interesting dynamics of the model. The results obtained by these methods are in a series form, and close agreement with those solutions is given by [44,45]. It is noted that there is a high rate of convergence between the series solutions obtained towards the solutions of integer order. Furthermore, the suggested methods are simple to use, and they may be used to solve additional fractional PDEs that arise in applied research.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding their research work through project number ISP-2024.

    There is no competing interest among the authors regarding the publication of the article.



    [1] C.Y. Kao, Y. Lou, W. X. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. B, 17 (2012), 2047–2072. https://doi.org/10.3934/dcdsb.2012.17.2047 doi: 10.3934/dcdsb.2012.17.2047
    [2] X. L. Bai, F. Li, Classification of global dynamics of competition models with nonlocal dispersals Ⅰ: Symmetric kernels, Calc. Var. Partial Differ. Equations, 57 (2018), 144. https://doi.org/10.1007/s00526-018-1419-6 doi: 10.1007/s00526-018-1419-6
    [3] Y. H. Du, M. X. Wang, M. Zhao, Two species nonlocal diffusion systems with free boundaries, Discrete Contin. Dyn. Syst., 42 (2022), 1127–1162. https://doi.org/10.3934/dcds.2021149 doi: 10.3934/dcds.2021149
    [4] J. P. Wang, M. X. Wang, Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior, Discrete Contin. Dyn. Syst. B, 25 (2020), 4721–4736. https://doi.org/10.3934/dcdsb.2020121 doi: 10.3934/dcdsb.2020121
    [5] J. P. Wang, M. X. Wang, Free boundary problems with nonlocal and local diffusions Ⅰ: Global solution, J. Math. Anal. Appl., 490 (2020), 123974. https://doi.org/10.1016/j.jmaa.2020.123974 doi: 10.1016/j.jmaa.2020.123974
    [6] J. F. Cao, W. T. Li, J. Wang, M. Zhao, The Dynamics of a Lotka-Volterra competition model with nonlocal diffusion and free boundaries, Adv. Differ. Equations, 26 (2021), 163–200. https://doi.org/10.57262/ade026-0304-163 doi: 10.57262/ade026-0304-163
    [7] Y. H. Du, W. J. Ni, Analysis of a West Nile virus model with nonlocal diffusion and free boundaries, Nonlinearity, 33 (2020), 4407–4448. https://doi.org/10.1088/1361-6544/ab8bb2 doi: 10.1088/1361-6544/ab8bb2
    [8] M. Zhao, Y. Zhang, W. T. Li, Y. H. Du, The dynamics of a degenerate epidemic model with nonlocal diffusion and free boundaries, J. Differ. Equations, 269 (2020), 3347–3386. https://doi.org/10.1016/j.jde.2020.02.029 doi: 10.1016/j.jde.2020.02.029
    [9] J. F. Cao, Y. Du, F. Li, W. T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772–2814. https://doi.org/10.1016/j.jfa.2019.02.013 doi: 10.1016/j.jfa.2019.02.013
    [10] Y. H. Du, Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405. https://doi.org/10.1137/090771089 doi: 10.1137/090771089
    [11] Y. H. Du, F. Li, M. L. Zhou, Semi-wave and spreading speed of the nonlocal Fisher-KPP equation with free boundaries, J. Math. Pures Appl., 154 (2021), 30–66. https://doi.org/10.1016/j.matpur.2021.08.008 doi: 10.1016/j.matpur.2021.08.008
    [12] W. Y. Zhang, Z. H. Liu, L. Zhou, Dynamics of a nonlocal diffusive Logistic model with free boundaries in time periodic environment, Discrete Contin. Dyn. Syst. B, 26 (2021), 3767–3784. https://doi.org/10.3934/dcdsb.2020256 doi: 10.3934/dcdsb.2020256
    [13] W. W. Ding, R. Peng, L. Wei, The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, J. Differ. Equations, 263 (2017), 2736–2779. https://doi.org/10.1016/j.jde.2017.04.013 doi: 10.1016/j.jde.2017.04.013
    [14] Y. H. Du, Z. M. Guo, R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089–2142. https://doi.org/10.1016/j.jfa.2013.07.016 doi: 10.1016/j.jfa.2013.07.016
    [15] C. X. Lei, Z. G. Lin, Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differ. Equations, 257 (2014), 145–166. https://doi.org/10.1016/j.jde.2014.03.015 doi: 10.1016/j.jde.2014.03.015
    [16] M. X. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483–508. https://doi.org/10.1016/j.jfa.2015.10.014 doi: 10.1016/j.jfa.2015.10.014
    [17] P. Zhou, D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differ. Equations, 256 (2014), 1927–1954. https://doi.org/10.1016/j.jde.2013.12.008 doi: 10.1016/j.jde.2013.12.008
    [18] H. Gu, Z. G. Lin, B. D. Lou, Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries, Proc. Am. Math. Soc., 143 (2015), 1109–1117. https://doi.org/10.1090/S0002-9939-2014-12214-3 doi: 10.1090/S0002-9939-2014-12214-3
    [19] C. H. Wu, Biased movement and the ideal free distribution in some free boundary problems, J. Differ. Equations, 265 (2018), 4251–4282. https://doi.org/10.1016/j.jde.2018.06.002 doi: 10.1016/j.jde.2018.06.002
    [20] N. K. Sun, J. Fang, Propagation dynamics of Fisher-KPP equation with time delay and free boundaries, Calc. Var. Partial Differ. Equations, 58 (2019), 148. https://doi.org/10.1007/s00526-019-1599-8 doi: 10.1007/s00526-019-1599-8
    [21] Y. H. Du, B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673–2724. https://doi.org/10.4171/JEMS/568 doi: 10.4171/JEMS/568
    [22] J. L. Ren, D. D. Zhu, On a reaction-advection-diffusion equation with double free boundaries and mth-order Fisher non-linearity, IMA J. Appl. Math., 84 (2019), 197–227. https://doi.org/10.1093/imamat/hxy057 doi: 10.1093/imamat/hxy057
    [23] G. Bunting, Y. H. Du, K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Networks Heterogen. Media, 7 (2012), 583–603. https://doi.org/10.3934/nhm.2012.7.583 doi: 10.3934/nhm.2012.7.583
    [24] X. Liu, B. D. Lou, On a reaction-diffusion equation with Robin and free boundary conditions, J. Differ. Equations, 259 (2015), 423–453. https://doi.org/10.1016/j.jde.2015.02.012 doi: 10.1016/j.jde.2015.02.012
    [25] Y. Kaneko, Spreading and vanishing behaviors for radially symmetric solutions of free boundary problems for reaction-diffusion equations, Nonlinear Anal. Real World Appl., 18 (2014), 121–140. https://doi.org/10.1016/j.nonrwa.2014.01.008 doi: 10.1016/j.nonrwa.2014.01.008
    [26] Y. H. Du, Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. B, 19 (2014), 3105–3132. https://doi.org/10.3934/dcdsb.2014.19.3105 doi: 10.3934/dcdsb.2014.19.3105
    [27] Y. H. Du, M. X. Wang, M. Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl., 107 (2017), 253–287. https://doi.org/10.1016/j.matpur.2016.06.005 doi: 10.1016/j.matpur.2016.06.005
    [28] J. S. Guo, C. H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differ. Equations, 24 (2012), 873–895. https://doi.org/10.1007/s10884-012-9267-0 doi: 10.1007/s10884-012-9267-0
    [29] J. S. Guo, C. H. Wu, Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1–27. https://doi.org/10.1088/0951-7715/28/1/1 doi: 10.1088/0951-7715/28/1/1
    [30] J. Wang, L. Zhang, Invasion by an inferior or superior competitor: A diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015), 377–398. https://doi.org/10.1016/j.jmaa.2014.09.055 doi: 10.1016/j.jmaa.2014.09.055
    [31] Q. L. Chen, F. Q. Li, F. Wang, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82 (2017), 445–470. https://doi.org/10.1093/imamat/hxw059 doi: 10.1093/imamat/hxw059
    [32] M. X. Wang, Y. Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, Z. Angew. Math. Phys., 67 (2016), 132. https://doi.org/10.1007/s00033-016-0729-9 doi: 10.1007/s00033-016-0729-9
    [33] C. R. Tian, S. G. Ruan, On an advection-reaction-diffusion competition system with double free boundaries modeling invasion and competition of Aedes albopictus and Aedes aegypti mosquitoes, J. Differ. Equations, 265 (2018), 4016–4051. https://doi.org/10.1016/j.jde.2018.05.027 doi: 10.1016/j.jde.2018.05.027
    [34] L. Zhou, S. Zhang, Z. H. Liu, An evolutional free-boundary problem of a reaction-diffusion-advection system, Proc. R. Soc. Edinburgh Sect. A: Math., 147 (2017), 615–648. https://doi.org/10.1017/S0308210516000226 doi: 10.1017/S0308210516000226
    [35] M. X. Wang, On some free boundary problems of the prey-predator model, J. Differ. Equations, 256 (2014), 3365–3394. https://doi.org/10.1016/j.jde.2014.02.013 doi: 10.1016/j.jde.2014.02.013
    [36] M. X. Wang, Y. Zhang, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differ. Equations, 264 (2018), 3527–3558. https://doi.org/10.1016/j.jde.2017.11.027 doi: 10.1016/j.jde.2017.11.027
    [37] J. F. Cao, W. T. Li, J. Wang, F. Y. Yang, A free boundary problem of a diffusive SIRS model with nonlinear incidence, Z. Angew. Math. Phys., 68 (2017), 39. https://doi.org/10.1007/s00033-017-0786-8 doi: 10.1007/s00033-017-0786-8
    [38] J. Ge, K. Kim, Z. G. Lin, H. P. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differ. Equations, 259 (2015), 5486–5509. https://doi.org/10.1016/j.jde.2015.06.035 doi: 10.1016/j.jde.2015.06.035
    [39] Z. G. Lin, H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381–1409. https://doi.org/10.1007/s00285-017-1124-7 doi: 10.1007/s00285-017-1124-7
    [40] Q. L. Chen, F. Q. Li, Z. D. Teng, F. Wang, Global dynamics and asymptotic spreading speeds for a partially degenerate epidemic model with time-delay and free boundaries, J. Dyn. Differ. Equations, 34 (2022), 1209–1236. https://doi.org/10.1007/s10884-020-09934-4 doi: 10.1007/s10884-020-09934-4
    [41] Q. X. Ye, Z. Y. Li, M. X. Wang, Y. P. Wu, Introduction to Reaction Diffusion Equations (in Chinese), 2nd edition, Science Press, Beijing, 2011.
    [42] R. Wang, Y. H. Du, Long-time dynamics of a diffusive epidemic model with free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2201–2238. https://doi.org/10.3934/dcdsb.2020360 doi: 10.3934/dcdsb.2020360
    [43] J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differ. Equations, 249 (2010), 2921–2953. https://doi.org/10.1016/j.jde.2010.07.003 doi: 10.1016/j.jde.2010.07.003
    [44] Z. W. Shen, H. Vo, Nonlocal dispersal equations in time-periodic media: Principal spectral theory, limiting properties and long-time dynamics, J. Differ. Equations, 267 (2019), 1423–1466. https://doi.org/10.1016/j.jde.2019.02.013 doi: 10.1016/j.jde.2019.02.013
    [45] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Harlow, Essex: Longman Scientific and Technical, 1991.
    [46] P. Bates, G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428–440. https://doi.org/10.1016/j.jmaa.2006.09.007 doi: 10.1016/j.jmaa.2006.09.007
    [47] M. Marcus, L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: The subcritical case, Arch. Ration. Mech. Anal., 144 (1998), 201–231. https://doi.org/10.1007/s002050050116 doi: 10.1007/s002050050116
    [48] J. P. Gao, S. G. Guo, W. X. Shen, Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media, Discrete Contin. Dyn. Syst. B, 26 (2021), 2645–2676. https://doi.org/10.3934/dcdsb.2020199 doi: 10.3934/dcdsb.2020199
    [49] F. X. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807–838. https://doi.org/10.1016/S0362-546X(01)00787-8 doi: 10.1016/S0362-546X(01)00787-8
    [50] H. M. Huang, M. X. Wang, A nonlocal SIS epidemic problem with double free boundaries, Z. Angew. Math. Phys., 70 (2019), 109. https://doi.org/10.1007/s00033-019-1156-5 doi: 10.1007/s00033-019-1156-5
    [51] M. X. Wang, J. F. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differ. Equations, 26 (2014), 655–672. https://doi.org/10.1007/s10884-014-9363-4 doi: 10.1007/s10884-014-9363-4
  • This article has been cited by:

    1. Hassan Eltayeb Gadain, Said Mesloub, Application of Triple- and Quadruple-Generalized Laplace Transform to (2+1)- and (3+1)-Dimensional Time-Fractional Navier–Stokes Equation, 2024, 13, 2075-1680, 780, 10.3390/axioms13110780
    2. Manoj Singh, Fractional view analysis of coupled Whitham- Broer-Kaup and Jaulent-Miodek equations, 2024, 15, 20904479, 102830, 10.1016/j.asej.2024.102830
    3. Manoj Singh, Mohammad Tamsir, Yasser Salah El Saman, Sarita Pundhir, Approximation of Two-Dimensional Time-Fractional Navier-Stokes Equations involving Atangana-Baleanu Derivative, 2024, 9, 2455-7749, 646, 10.33889/IJMEMS.2024.9.3.033
    4. Elkhateeb Sobhy Aly, Manoj Singh, Mohammed Ali Aiyashi, Mohammed Daher Albalwi, Modeling monkeypox virus transmission: Stability analysis and comparison of analytical techniques, 2024, 22, 2391-5471, 10.1515/phys-2024-0056
    5. Manoj Singh, Mukesh Pal Singh, Mohammad Tamsir, Mohammad Asif, Analysis of Fractional-Order Nonlinear Dynamical Systems by Using Different Techniques, 2025, 11, 2349-5103, 10.1007/s40819-025-01865-2
    6. Rania Saadeh, Ahmad Qazza, Abdelilah Kamal H. Sedeeg, Ghassan Abufoudeh, Exploration of a New Approach Related to Atangana-Baleanu Derivatives for Solving Fractional Partial Differential Equations, 2025, 10, 2455-7749, 896, 10.33889/IJMEMS.2025.10.4.043
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1685) PDF downloads(161) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog