Processing math: 100%
Research article Special Issues

Does supply chain finance business model innovation improve capital allocation efficiency? Evidence from the cost of capital

  • Received: 05 June 2023 Revised: 06 August 2023 Accepted: 10 August 2023 Published: 15 August 2023
  • Based on the sample of China's A-share listed companies from 2008 to 2021 and the text analysis data of supply chain finance, this study examines whether the supply chain finance business model innovation can improve the efficiency of capital allocation. Results showed that: 1) Firms with a supply chain finance business model have a low cost of capital, particularly the cost of equity capital; 2) The supply chain finance business model reduces the cost of capital in firms with low strategic commitment and a high degree of information asymmetry; 3) The supply chain finance business model innovation can reduce the cost of capital when the degree of competition in the external product market is low and the internal enterprise scale is large. The above findings can greatly inform the optimization of equity finance market supply, the promotion of innovation, and the provision of investment and financing and business decisions that are consistent with sustainable development goals.

    Citation: Ping Wang, Rui Chen, Qiqing Huang. Does supply chain finance business model innovation improve capital allocation efficiency? Evidence from the cost of capital[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16421-16446. doi: 10.3934/mbe.2023733

    Related Papers:

    [1] Rinaldo M. Colombo, Mauro Garavello . A Well Posed Riemann Problem for the p--System at a Junction. Networks and Heterogeneous Media, 2006, 1(3): 495-511. doi: 10.3934/nhm.2006.1.495
    [2] Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016
    [3] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [4] Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008
    [5] Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012
    [6] Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005
    [7] Jan Friedrich, Simone Göttlich, Annika Uphoff . Conservation laws with discontinuous flux function on networks: a splitting algorithm. Networks and Heterogeneous Media, 2023, 18(1): 1-28. doi: 10.3934/nhm.2023001
    [8] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [9] Michael Herty, J.-P. Lebacque, S. Moutari . A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826. doi: 10.3934/nhm.2009.4.813
    [10] Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
  • Based on the sample of China's A-share listed companies from 2008 to 2021 and the text analysis data of supply chain finance, this study examines whether the supply chain finance business model innovation can improve the efficiency of capital allocation. Results showed that: 1) Firms with a supply chain finance business model have a low cost of capital, particularly the cost of equity capital; 2) The supply chain finance business model reduces the cost of capital in firms with low strategic commitment and a high degree of information asymmetry; 3) The supply chain finance business model innovation can reduce the cost of capital when the degree of competition in the external product market is low and the internal enterprise scale is large. The above findings can greatly inform the optimization of equity finance market supply, the promotion of innovation, and the provision of investment and financing and business decisions that are consistent with sustainable development goals.





    [1] E. Hofmann, Supply chain finance: Some conceptual insights, Logistic Management-Innovative Logistikkonzepte, (2005), 203–214. https://doi.org/10.1007/978-3-322-82165-2_16 doi: 10.1007/978-3-322-82165-2_16
    [2] D. A. Wuttke, C. Blome, K. Foerstl, M. Henke, Managing the innovation adoption of supply chain finance--empirical evidence from six European case studies, J. Bus. Logist., 34 (2013), 148–166. https://doi.org/10.1111/jbl.12016 doi: 10.1111/jbl.12016
    [3] E. Camerinelli, Supply chain finance, J. Payments Strat. Syst., 3 (2009), 114–128. Available from: http://peterdawson.pbworks.com/w/file/fetch/69172087/SCF.pdf
    [4] H. C. Pfohl, M. Gomm, Supply chain finance: Optimizing financial flows in supply chains, Logist. Res., 1 (2009), 149–161. https://doi.org/10.1007/s12159-009-0020-y doi: 10.1007/s12159-009-0020-y
    [5] S. D. Lekkakos, A. Serrano, Supply chain finance for small and medium sized enterprises: The case of reverse factoring, Int. J. Phys. Distrib. Logist. Manag., 46 (2016), 367–392. https://doi.org/10.1108/IJPDLM-07-2014-0165 doi: 10.1108/IJPDLM-07-2014-0165
    [6] M. Wandfluh, E. Hofmann, P. Schoensleben, Financing buyer-supplier dyads: An empirical analysis on financial collaboration in the supply chain, Int. J. of Logist. Res. Appl., 19 (2016), 200–217. https://doi.org/10.1080/13675567.2015.1065803 doi: 10.1080/13675567.2015.1065803
    [7] J. Chod, N, Trichakis, G. Tsoukalas, H. Aspegren, M, Weber, On the financing benefits of supply chain transparency and blockchain adoption, Manag. Sci., 66 (2020), 4359–4919. https://doi.org/10.1287/mnsc.2019.3434 doi: 10.1287/mnsc.2019.3434
    [8] Y. Omran, M, Henke, R. Heines, E. Hofmann, Blockchain-driven supply chain finance: towards a conceptual framework from a buyer perspective, in 26th Annual Conference of the International Purchasing and Supply Education and Research Association, 4 (2017). Available from: https://www.alexandria.unisg.ch/251095
    [9] A. Goldfarb, C. Tucker, Digital economics, J. Econ. Lit., 57 (2019), 3–43. https://doi.org/10.1257/jel.20171452 doi: 10.1257/jel.20171452
    [10] H. Song, M. Y. Li, K. K. Yu, Big data analytics in digital platforms: How do dinancial service providers customise supply chain finance? Int. J. Oper. Prod. Manage., 41 (2021), 410–435. https://doi.org/10.1108/IJOPM-07-2020-0485 doi: 10.1108/IJOPM-07-2020-0485
    [11] E. Hofmann, S. Zumsteg, Win-win and No-win situations in supply chain finance: the case of accounts receivable programs, Supply Chain Forum, 16 (2015), 30–50. https://doi.org/10.1080/16258312.2015.11716350 doi: 10.1080/16258312.2015.11716350
    [12] L. M. Gelsomino, R, Mangiaracina, A. Perego, A. Tumino, Supply chain finance: A literature review, Int. J. Phys. Distrib. Logist. Manag., 46 (2016), 348–366. https://doi.org/10.1108/IJPDLM-08-2014-0173 doi: 10.1108/IJPDLM-08-2014-0173
    [13] A. Pan, L. Xu, B. Li, R. Ling, The impact of supply chain finance on firm cash holdings: Evidence from China, Pac.-Basin Financ. J., 63 (2020), 101402. https://doi.org/10.1016/j.pacfin.2020.101402 doi: 10.1016/j.pacfin.2020.101402
    [14] B. Sundarakani, R. de Souza, M. Goh, S. M. Wagner, S. Manikandan, Modeling carbon footprints across the supply chain, Int. J. Prod. Econ., 128 (2011), 43–50. http://doi.org/10.1016/j.ijpe.2010.01.018 doi: 10.1016/j.ijpe.2010.01.018
    [15] Y. Tsao, E. Nugraha Ridhwan Amir, V. Thanh, M. Dachyar, Designing an eco-efficient supply chain network considering carbon trade and trade-credit: A robust fuzzy optimization approach, Comput. Ind. Eng., 160 (2021), 107595. http://doi.org/10.1016/j.cie.2021.107595 doi: 10.1016/j.cie.2021.107595
    [16] A. I. Nicolae, Working capital financing in reverse supply chains-new perspectives (auto-financing), Eurasian J. Econ. Financ., 6 (2018), 35–46. http://doi.org/10.15604/ejef.2018.06.01.004 doi: 10.15604/ejef.2018.06.01.004
    [17] L. Zhang, R. Long, H. Chen, X. Huang, Performance changes analysis of industrial enterprises under energy constraints, Resour. Conserv. Recy., 136 (2018), 248–256. https://doi.org/10.1016/j.resconrec.2018.04.032 doi: 10.1016/j.resconrec.2018.04.032
    [18] S. Shao, Z. Hu, J. Cao, L. Yang, D. Guan, Environmental regulation and enterprise innovation: A review, Bus. Strateg. Environ., 29 (2020), 1465–1478. https://doi.org/10.1002/bse.2446 doi: 10.1002/bse.2446
    [19] H. G. Huntington, Crude oil trade and current account deficits. Energy Econ., 50 (2015), 70–79. https://doi.org/10.1016/j.eneco.2015.03.030 doi: 10.1016/j.eneco.2015.03.030
    [20] H. Sun, R. U. Awan, M. A. Nawaz, M. Mohsin, A. K. Rasheed, N. Iqbal, Assessing the socio-economic viability of solar commercialization and electrification in south Asian countries, Environ. Dev. Sustain., 23 (2021), 9875–9897. https://doi.org/10.1007/s10668-020-01038-9 doi: 10.1007/s10668-020-01038-9
    [21] K. Zhang, Y. Wang, Z. Huang, Do the Green Credit Guidelines Affect Renewable Energy Investment? Empirical Research from China, Sustainability, 13 (2021), 1–18. https://doi.org/10.3390/su13169331 doi: 10.3390/su13169331
    [22] X He, L. Tang, Exploration on building of visualization platform to innovate business operation pattern of supply chain finance, Phys. Proced., 33 (2012), 1886–1893. https://doi.org/ 10.1016/j.phpro.2012.05.298 doi: 10.1016/j.phpro.2012.05.298
    [23] P. Trkman, K. McCormack, Supply Chain Risk in Turbulent Environments--A Conceptual Model for Managing Supply Chain Network Risk, Int. J. Prod. Econ., 119 (2009), 247–258. https://doi.org/10.1016/j.ijpe.2009.03.002 doi: 10.1016/j.ijpe.2009.03.002
    [24] X. D. Zhao, K, Yeung, Q. P. Huang, X. Song, Improving the predictability of business failure of supply chain finance clients by using external big dataset, Ind. Manag. Data Syst., 115 (2015), 1683-1703. https://doi.org/10.1108/IMDS-04-2015-0161 doi: 10.1108/IMDS-04-2015-0161
    [25] Z. X. Chen, J. Chen, Z. G. Zhang, X. Zhi, Does network governance based on banks' e-commerce platform facilitate supply chain financing, China Agric. Econ. Rev., 11 (2019), 688–703. https://doi.org/10.1108/CAER-06-2018-0132 doi: 10.1108/CAER-06-2018-0132
    [26] Z. Ali, B. Gong, A. Mehreen, Predicting supply chain effectiveness through supply chain finance: Evidence from small and medium enterprises, Int. J. Logist. Manag., 30 (2019), 488–505. https://doi.org/10.1108/IJLM-05-2018-0118 doi: 10.1108/IJLM-05-2018-0118
    [27] T. Muganyi, L. Yan, Y. Yin, H. Sun, X. Gong, F. Taghizadeh-Hesary, Fintech, regtech and financial development: evidence from China, Financi. Innov., 8 (2022), 1–20. https://doi.org/10.1186/s40854-021-00313-6 doi: 10.1186/s40854-021-00313-6
    [28] O. Guedhami, D. Mishra, Excess control, corporate governance and implied cost of equity: international evidence, Financ. Rev., 44 (2009), 489–524. https://doi.org/10.1111/j.1540-6288.2009.00227.x doi: 10.1111/j.1540-6288.2009.00227.x
    [29] C. Botosan, Disclosure level and the cost of equity capital, Account. Rev., 72 (1997), 323–349. https://doi.org/10.1016/S0361-3682(97)80165-1 doi: 10.1016/S0361-3682(97)80165-1
    [30] H. Ashbaugh-Skaife, D. W. Collins, R. K. Jr. William, The discovery and reporting of internal control deficiencies prior to sox-mandated audits, J. Account. Econ., 44 (2017), 166–192. https://doi.org/ 10.1016/j.jacceco.2006.10.001 doi: 10.1016/j.jacceco.2006.10.001
    [31] D. W. Diamond, R. E. Verrecchia, Disclosure, liquidity, and the cost of capital, J. Financ., 46 (1991), 1325–1359. https://doi.org/10.1111/j.1540-6261.1991.tb04620.x doi: 10.1111/j.1540-6261.1991.tb04620.x
    [32] M. G. Hertzel, Z. Li, M. S. Officer, K. J. Rodgers, Inter-firm linkages and the wealth effects of financial distress along the supply chain, J. Financ. Econ., 87 (2008), 374–387. https://doi.org/10.1016/j.jfineco.2007.01.005 doi: 10.1016/j.jfineco.2007.01.005
    [33] P. N. Patatoukas, Customer-base concentration: implications for firm performance and capital markets, Account. Rev., 87 (2012), 363–392. https://doi.org/10.2308/accr-10198 doi: 10.2308/accr-10198
    [34] J. Wang, Do firms' relationships with principal customers/suppliers affect shareholders' income? J. Corp. Financ., 18 (2012), 860–878. https://doi.org/10.1016/j.jcorpfin.2012.06.007 doi: 10.1016/j.jcorpfin.2012.06.007
    [35] D. Dhaliwal, J. S. Judd, M. Serfling, S. Shaikh, Customer concentration risk and the cost of equity capital, J. Account. Econ., 61 (2016), 23–48. https://doi.org/10.1016/j.jacceco.2015.03.005 doi: 10.1016/j.jacceco.2015.03.005
    [36] C. Truong, T. H. Nguyen, T. Huynh, Customer satisfaction and the cost of capital, Rev. Account. Stud., 26 (2020), 293–342. https://doi.org/10.1007/s11142-020-09555-8 doi: 10.1007/s11142-020-09555-8
    [37] M. Hong, J. J. He, K. X. Zhang, Z. D. Guo, Does digital transformation of enterprises help reduce the cost of equity capital, Math. Biosci. Eng., 20 (2023), 6498–6516. http://doi.org/10.3934/mbe.2023280 doi: 10.3934/mbe.2023280
    [38] E. Hofmann, H. Kotzab, A supply chain oriented approach of working capital management, J. Bus. Logist., 31 (2010), 305–330. https://doi.org/10.1002/j.2158-1592.2010.tb00154.x doi: 10.1002/j.2158-1592.2010.tb00154.x
    [39] M. L. Gomm, Supply chain finance: applying finance theory to supply chain management to enhance finance in supply chains, Int. J. Logist.-Res. App., 13 (2010), 133–142. https://doi.org/10.1080/13675560903555167 doi: 10.1080/13675560903555167
    [40] T. T. Zhang, C. Y. Zhang, Q. F. Pei. Misconception of providing supply chain finance: Its stabilising role, Int. J. Prod. Econ., 213 (2019), 175–184. https://doi.org/10.1016/j.ijpe.2019.03.008 doi: 10.1016/j.ijpe.2019.03.008
    [41] P. Polak, R, Simal, M. Hamdan, Post-crisis emerging role of the treasure, Eur. J Sci. Res., 86 (2012), 319–339.
    [42] G. Bi, Y. Fei, X. Yuan. D. Wang, Joint operational and financial collaboration in a capital-constrained supply chain under manufacturer collateral, Asia Pac. J. Oper. Res., 35 (2018), 1–23. http://doi.org/10.1142/S0217595918500100 doi: 10.1142/S0217595918500100
    [43] F. Caniato, L. M. Gelsomino, A. Perego, S. Rnchi, Does finance solve the supply chain financing problem?, Supply Chain Manag., 21 (2016), 534–549. https://doi.org/10.1108/SCM-11-2015-0436 doi: 10.1108/SCM-11-2015-0436
    [44] D. Easley, M. O'Hara, Information and the cost of capital, J. Financ., 59 (2004), 1553–1583. http://doi.org/10.1111/j.1540-6261.2004.00672.x doi: 10.1111/j.1540-6261.2004.00672.x
    [45] C. P. Himmelberg, R. G. Hubbard, I. Love, Investor protection, ownership, and the cost of capital, Working paper, Columbia University, (2002). http://doi.org/10.2139/ssrn.1692686
    [46] D. I. Blackman, C. Holland, The management of financial supply chains: from adversarial to co-operative strategies, IFIP Int. Feder. Inform. Process., 226 (2006), 82–95. http://doi.org/10.1007/978-0-387-39229-5_8 doi: 10.1007/978-0-387-39229-5_8
    [47] W. M. Randll, T. Farris Ⅱ, Supply chain financing: Using cash-to-cash variables to strengthen the supply chain, Int. J. Phys. Distr. Logist. Manag., 39 (2009), 669–689. https://doi.org/10.1108/09600030910996314 doi: 10.1108/09600030910996314
    [48] J. F. Lamoureux, T. A. Evans, Supply chain finance: A new means to support the competitiveness and resilience of global value chains, Export Develop., (2011).
    [49] F. Z. Barrane, N. O. Ndubisi, S. Kamble, G. E. Karuranga, D. Poulin, Building trust in multi-stakeholder collaborations for new product development in the digital transformation era, Benchmark. Int. J., 28 (2020), 205–228. https://doi.org/10.1108/BIJ-04-2020-0164 doi: 10.1108/BIJ-04-2020-0164
    [50] J. T. Brander, B. Lewis. Oligopoly and financial structure: The limited liability effect, Am. Econ. Rev., 76 (1986), 956–970. https://doi.org/10.1017/CBO9780511528231.025 doi: 10.1017/CBO9780511528231.025
    [51] F. Hawlitschek, B. Notheisen, T, Teubner, The limits of trust-free systems: A literature review on blockchain technology and trust in the sharing economy, Electron. Commer. Res. Appl., 29 (2008), 50–63. https://doi.org/10.1016/j.elerap.2018.03.005 doi: 10.1016/j.elerap.2018.03.005
    [52] M. Poitevin, Financial signalling and the 'deep-pocket' argument, Rand J. Econ., 20 (1989), 26–40. Available from: http://links.jstor.org/sici?sici = 0741-6261%28198921%2920%3A1%3C26%3AFSAT%22A%3E2.0.CO%3B2-P & origin = repec
    [53] I. C. L. Ng, New business and economic models in the connected digital economy, J. Revenue Pricing Manag., 13 (2014), 149–155. https://doi.org/10.1057/rpm.2013.27 doi: 10.1057/rpm.2013.27
    [54] S. Templar, E. Hofmann, C. Findlay, Financing the end-to-end supply chain: a reference guide to supply chain finance, Kogan Page Publishers, ISBN: 978-0-7494-7141-5, (2020).
    [55] H. Yang, W. Zhuo, L. Shao, Equilibrium evolution in a two-echelon supply chain with financially constrained retailers: The impact of equity financing, Int. J. Prod. Econ., 185 (2017), 139–149. https://doi.org/10.1016/j.ijpe.2016.12.027 doi: 10.1016/j.ijpe.2016.12.027
    [56] N. Yan, X. He, Y. Liu, Financing the capital-constrained supply chain with loss aversion: Supplier finance vs. supplier investment, Omega, 88 (2019), 162–178. https://doi.org/10.1016/j.omega.2018.08.003 doi: 10.1016/j.omega.2018.08.003
    [57] X. F. Chen, A. Wang, Trade credit contract with limited liability in the supply chain with budget constraints, Ann. Oper. Res., 196 (2012), 153–165. https://doi.org/10.1007/s10479-012-1119-0 doi: 10.1007/s10479-012-1119-0
    [58] B. Li, S. M. An, D. P. Song, Selection of financing strategies with a risk-averse supplier in a capital-constrained supply chain, Transp. Res. E. Logist. Transp. Rev., 118 (2018), 163–183. https://doi.org/10.1016/j.tre.2018.06.007 doi: 10.1016/j.tre.2018.06.007
    [59] Q. Zhang, M. Dong, J. Luo, A. Segerstedt, Supply chain coordination with trade credit and quantity discount incorporating default risk, Int. J. Prod. Econ., 153 (2014), 352-360. https://doi.org/10.1016/j.ijpe.2014.03.019 doi: 10.1016/j.ijpe.2014.03.019
    [60] S. K. Devalkar, H, Krishnan, The impact of working capital financing costs on the efficiency of trade credit, Prod. Oper. Manag., 28 (2019), 878–889. https://doi.org/ 10.1111/poms.12954 doi: 10.1111/poms.12954
    [61] Y. He, X. Zhao, L. Zhao, H. Ju, Coordinating a supply chain with effort and price dependent stochastic demand, Appl. Math. Model., 33 (2009), 2777–2790. https://doi.org/ 10.1016/j.apm.2008.08.016 doi: 10.1016/j.apm.2008.08.016
    [62] W. D. Du, J. Y. Mao, Developing and maintaining clients' trust through institutional mechanisms in online service markets for digital entrepreneurs: A process model, J. Strategic Inf. Syst., 27 (2018), 296–310. https://doi.org/10.1016/j.jsis.2018.07.001 doi: 10.1016/j.jsis.2018.07.001
    [63] Z. F. Lu, K. T. Ye, Analysis of equity financing preference of listed companies in China - is equity financing preference due to low financing cost, Econom. Res., 4 (2004), 50–59. Available from: https://kns.cnki.net/kcms2/article/abstract?v = N6L1kuKE8iKewN7EAJVpO6NkGgVnV-HRjUsAJUBB1MweE2XgOoRSDknD3XI6ZcX-1QSXOHyn-h0J1w4pgVwzhDbViD08eXZdH-buh8qJ-lft64oEvqX7Wg = = & uniplatform = NZKPT & language = gb (In Chinese)
    [64] Y. L. Zhang, Q. Gong, Z. Rong, Technical innovation, equity financing and financial structure transformation, Manag. World, 278 (2016), 65–80. https://doi.org/10.19744/j.cnki.11-1235/f.2016.11.006 (In Chinese) doi: 10.19744/j.cnki.11-1235/f.2016.11.006(InChinese)
    [65] P. Wang, The cost of capital: Theory and estimation technology, Beijing: Economic Management Press, 12 (2018), 281–318. ISBN: 978-7-5096-5448-4 (In Chinese)
    [66] J. A. Pittman, S. Fortin, 2004. Auditor choice and the cost of debt capital for newly public firms, J. Account. Econ., 37 (2004), 113–136. https://doi.org/10.1016/j.jacceco.2003.06.005 doi: 10.1016/j.jacceco.2003.06.005
    [67] K. K. Li, P. Mohanram, Evaluating cross-sectional forecasting models for implied cost of capital, Rev. Account. Stud., 19 (2014), 1152–1185. https://doi.org/10.1007/s11142-014-9282-y doi: 10.1007/s11142-014-9282-y
    [68] Y. Zou, P. Wang, L. M. Zhang, Corporate earnings forecast and cost of capital estimation: cross-sectional regression model forecast vs. analyst forecast, Math. Statist. Manag., 38 (2019), 172–190. https://doi.org/10.13860/j.cnki.sltj.20180817-002 (In Chinese) doi: 10.13860/j.cnki.sltj.20180817-002(InChinese)
    [69] M. J. Gordon, The savings investment and valuation of a corporation, Rev. Econ. Stat., 44 (1962), 37–51. Available from: http://s.dic.cool/S/0FDyxCAB
    [70] J. Claus, J. Thomas, Equity premia as low as three percent? Evidence from analysts' earnings forecasts for domestic and international stock markets, J. Financ., 56 (2001), 1629–1666. https://doi.org/10.1111/0022-1082.00384 doi: 10.1111/0022-1082.00384
    [71] J. A. Ohlson, B. E. Juettner-Nauroth, Expected EPS and EPS growth as determinants of value, Rev. Account. Stud., 10 (2005), 349–365. https://doi.org/10.1007/s11142-005-1535-3 doi: 10.1007/s11142-005-1535-3
    [72] W. Gebhardt, C, Lee, B, Swaminathan, Toward an implied cost of capital, J. Account. Res., 39 (2001), 135–176. https://doi.org/10.1111/1475-679X.00007 doi: 10.1111/1475-679X.00007
    [73] P. D. Easton, PE ratios, PEG ratios, and estimating the implied expected rate of return on equity capital, Account. Rev., 79 (2004), 73–95. https://doi.org/10.2308/accr.2004.79.1.73 doi: 10.2308/accr.2004.79.1.73
    [74] C. Huang, F. T. Chan, S. H. Chung, Recent contributions to supply chain finance: Towards a theoretical and practical research agenda, Int. J. Prod. Res., 60 (2022), 493–516. https://doi.org/10.1080/00207543.2021.1964706 doi: 10.1080/00207543.2021.1964706
    [75] E. F. Fama, K. R. French, The cross-section of expected stock returns, J. Financ., 47 (1992), 427–465. http://doi.org/10.1111/j.1540-6261.1992.tb04398.x doi: 10.1111/j.1540-6261.1992.tb04398.x
    [76] A. B. Crittenden, V. L. Crittenden, W. F. Crittenden, The digitalization triumvirate: How incumbents survive, Bus. Horiz., 62 (2019), 259–266. http://doi.org/10.1016/j.bushor.2018.11.005 doi: 10.1016/j.bushor.2018.11.005
    [77] U. Bititci, S. V. Martinez, P. Albores, Creating and managing value in collaborative Networks, Int. J. Phys. Distrib. Logist. Manag., 34 (2004), 251–268. http://doi.org/info:doi/10.1108/09600030410533574 doi: 10.1108/09600030410533574
    [78] D. Teece, G. Pisano, A. Shuen, Dynamic capabilities and strategic management, Strateg. Manage. J., 18 (1997), 509–533. http://links.jstor.org/sici?sici = 0143-2095%28199708%2918%3A7%3C509%3ADCASM%3E2.0.C0%3B2-%23
    [79] C. A Botosan, M. A. Plumlee, Assessing alternative proxies for the expected risk premium, Account. Rev., 80 (2005), 21–53. http://doi.org/10.1002/jcb.20087 doi: 10.1002/jcb.20087
    [80] L. Fresard, Financial strength and product market behavior: The real effects of corporate cash holdings, J. Financ., 65 (2010), 1097–1122. https://doi.org/10.1111/j.1540-6261.2010.01562.x doi: 10.1111/j.1540-6261.2010.01562.x
    [81] P. M. Dechow, R. G. Sloan, A, P, Hutton, Detecting earnings management, Account. Rev., 70 (1995), 193–225. https://doi.org/10.2307/258852 doi: 10.2307/258852
    [82] M. Bernini, A. Montagnoli, Competition and financial constraints: A two-sided story, J. Int. Money Finan., 70 (2017), 88–109. https://doi.org/10.1016/j.jimonfin.2016.07.003 doi: 10.1016/j.jimonfin.2016.07.003
    [83] X. Giroud, H. M. Mueller, Corporate governance, product market competition, and equity prices, J. Financ., 66 (2011), 563–600. https://doi.org/10.1111/j.1540-6261.2010.01642.x doi: 10.1111/j.1540-6261.2010.01642.x
    [84] S. J. Nickell, Competition and corporate performance, J. Polit. Econ., 104 (1996), 724–746. https://doi.org/10.1086/262040 doi: 10.1086/262040
    [85] L. J. Danny, F. W. William, G. Z. Zach, Concentrated supply chain membership and financial performance: chain-and firm-level perspectives, J. Oper. Manag., 28 (2010), 1–16. https://doi.org/10.1016/j.jom.2009.06.002 doi: 10.1016/j.jom.2009.06.002
  • This article has been cited by:

    1. R. M. Colombo, M. Herty, V. Sachers, On 2×2 Conservation Laws at a Junction, 2008, 40, 0036-1410, 605, 10.1137/070690298
    2. BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART, EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA, 2010, 20, 0218-2025, 1859, 10.1142/S0218202510004817
    3. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057
    4. M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks, 2010, 33, 01704214, 845, 10.1002/mma.1197
    5. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    6. Jochen Kall, Rukhsana Kausar, Stephan Trenn, Modeling water hammers via PDEs and switched DAEs with numerical justification, 2017, 50, 24058963, 5349, 10.1016/j.ifacol.2017.08.927
    7. Michael Herty, Coupling Conditions for Networked Systems of Euler Equations, 2008, 30, 1064-8275, 1596, 10.1137/070688535
    8. Kristen DeVault, Pierre A. Gremaud, Vera Novak, Mette S. Olufsen, Guillaume Vernières, Peng Zhao, Blood Flow in the Circle of Willis: Modeling and Calibration, 2008, 7, 1540-3459, 888, 10.1137/07070231X
    9. CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042
    10. Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray, Anatoly Zlotnik, 2019, Chapter 8, 978-3-030-27549-5, 59, 10.1007/978-3-030-27550-1_8
    11. Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper, 2012, Chapter 7, 978-3-0348-0132-4, 123, 10.1007/978-3-0348-0133-1_7
    12. Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye, Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks, 2010, 31, 1064-8275, 4633, 10.1137/080722138
    13. Jeroen J. Stolwijk, Volker Mehrmann, Error Analysis and Model Adaptivity for Flows in Gas Networks, 2018, 26, 1844-0835, 231, 10.2478/auom-2018-0027
    14. Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x
    15. Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko, Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results, 2021, 13, 2073-8994, 1300, 10.3390/sym13071300
    16. Rinaldo M. Colombo, Mauro Garavello, On the Cauchy Problem for the p-System at a Junction, 2008, 39, 0036-1410, 1456, 10.1137/060665841
    17. J.B. Collins, P.A. Gremaud, Analysis of a domain decomposition method for linear transport problems on networks, 2016, 109, 01689274, 61, 10.1016/j.apnum.2016.06.004
    18. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066
    19. Martin Gugat, Michael Herty, Siegfried Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, 2017, 12, 1556-181X, 371, 10.3934/nhm.2017016
    20. H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373
    21. Yannick Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, 2020, 269, 00220396, 1192, 10.1016/j.jde.2020.01.005
    22. Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi, Numerical modelling of open channel junctions using the Riemann problem approach, 2019, 57, 0022-1686, 662, 10.1080/00221686.2018.1534283
    23. Mapundi K. Banda, Michael Herty, Towards a space mapping approach to dynamic compressor optimization of gas networks, 2011, 32, 01432087, 253, 10.1002/oca.929
    24. Rinaldo M. Colombo, 2011, Chapter 13, 978-1-4419-9553-7, 267, 10.1007/978-1-4419-9554-4_13
    25. Seok Woo Hong, Chongam Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, 2011, 65, 02712091, 707, 10.1002/fld.2212
    26. Michael Herty, Mohammed Seaïd, Assessment of coupling conditions in water way intersections, 2013, 71, 02712091, 1438, 10.1002/fld.3719
    27. Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759
    28. R. Borsche, A. Klar, Flooding in urban drainage systems: coupling hyperbolic conservation laws for sewer systems and surface flow, 2014, 76, 02712091, 789, 10.1002/fld.3957
    29. Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034
    30. Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017
    31. Mapundi Kondwani Banda, 2015, Chapter 9, 978-3-319-11321-0, 439, 10.1007/978-3-319-11322-7_9
    32. Yogiraj Mantri, Sebastian Noelle, Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law, 2021, 429, 00219991, 110011, 10.1016/j.jcp.2020.110011
    33. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    34. Mauro Garavello, 2011, Chapter 15, 978-1-4419-9553-7, 293, 10.1007/978-1-4419-9554-4_15
    35. Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke, A multiscale approach to liquid flows in pipes I: The single pipe, 2012, 219, 00963003, 856, 10.1016/j.amc.2012.06.054
    36. Raul Borsche, Jochen Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, 2014, 273, 00219991, 658, 10.1016/j.jcp.2014.05.042
    37. Mapundi K. Banda, Michael Herty, Multiscale modeling for gas flow in pipe networks, 2008, 31, 01704214, 915, 10.1002/mma.948
    38. Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022
    39. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004
    40. Raul Borsche, Numerical schemes for networks of hyperbolic conservation laws, 2016, 108, 01689274, 157, 10.1016/j.apnum.2016.01.006
    41. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3
    42. Christian Contarino, Eleuterio F. Toro, Gino I. Montecinos, Raul Borsche, Jochen Kall, Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes, 2016, 315, 00219991, 409, 10.1016/j.jcp.2016.03.049
    43. Michael Herty, Nouh Izem, Mohammed Seaid, Fast and accurate simulations of shallow water equations in large networks, 2019, 78, 08981221, 2107, 10.1016/j.camwa.2019.03.049
    44. F. Daude, P. Galon, A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction, 2018, 362, 00219991, 375, 10.1016/j.jcp.2018.01.055
    45. Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3
    46. Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66
    47. F. Daude, R.A. Berry, P. Galon, A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model, 2019, 354, 00457825, 820, 10.1016/j.cma.2019.06.010
    48. Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112
    49. Mouhamadou Samsidy Goudiaby, Gunilla Kreiss, Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data, 2020, 17, 0219-8916, 185, 10.1142/S021989162050006X
    50. Michael Herty, Mohammed Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, 2008, 56, 02712091, 485, 10.1002/fld.1531
    51. RINALDO M. COLOMBO, CRISTINA MAURI, EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION, 2008, 05, 0219-8916, 547, 10.1142/S0219891608001593
    52. Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye, On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections, 2015, 276, 03770427, 81, 10.1016/j.cam.2014.08.021
    53. Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin, The interface coupling of the gas dynamics equations, 2008, 66, 0033-569X, 659, 10.1090/S0033-569X-08-01087-X
    54. Sara Grundel, Michael Herty, Hyperbolic discretization of simplified Euler equation via Riemann invariants, 2022, 106, 0307904X, 60, 10.1016/j.apm.2022.01.006
    55. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    56. Edwige Godlewski, Pierre-Arnaud Raviart, 2021, Chapter 7, 978-1-0716-1342-9, 627, 10.1007/978-1-0716-1344-3_7
    57. Jens Brouwer, Ingenuin Gasser, Michael Herty, Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks, 2011, 9, 1540-3459, 601, 10.1137/100813580
    58. Raul Borsche, Jochen Kall, High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models, 2016, 327, 00219991, 678, 10.1016/j.jcp.2016.10.003
    59. MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS, A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS, 2013, 10, 0219-8916, 431, 10.1142/S021989161350015X
    60. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    61. Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576
    62. Gunhild A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, 2014, 9, 1556-181X, 65, 10.3934/nhm.2014.9.65
    63. Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison, 2024, Mathematical Modeling of Chattering and the Optimal Design of a Valve*, 979-8-3503-1633-9, 76, 10.1109/CDC56724.2024.10886245
    64. Michael T. Redle, Michael Herty, An asymptotic-preserving scheme for isentropic flow in pipe networks, 2025, 20, 1556-1801, 254, 10.3934/nhm.2025013
    65. Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini, Coherence of Coupling Conditions for the Isothermal Euler System, 2025, 0170-4214, 10.1002/mma.10847
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2695) PDF downloads(298) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog