[1]
|
G. Tang, H. Mai, How does manufacturing intelligentization influence innovation in china from a nonlinear perspective and economic servitization background?, Sustainability, 14 (2022), 14032–14032. https://doi.org/10.3390/su142114032 doi: 10.3390/su142114032
|
[2]
|
H. Zhang, G. Xu, R. Pan, H. Ge, A novel heuristic method for the energy-efficient flexible job-shop scheduling problem with sequence-dependent set-up and transportation time, Eng. Optim., 54 (2022), 1646–1667. https://doi.org/10.1080/0305215X.2021.1949007 doi: 10.1080/0305215X.2021.1949007
|
[3]
|
Ö. Tosun, M. K. Marichelvam, N. Tosun, A literature review on hybrid flow shop scheduling, J. Oper. Manage., 12 (2020), 156–194. https://doi.org/10.1504/IJAOM.2020.108263 doi: 10.1504/IJAOM.2020.108263
|
[4]
|
L. Wang, Shop Scheduling with Genetic Algorithms, Tsinghua University & Springer Press, Beijing, 2003.
|
[5]
|
W. Xu, R. Wu, L. Wang, X. Zhao, X. Li, Solving a multi-objective distributed scheduling problem for building material equipment group enterprises by measuring quality indicator with a product gene evaluation approach, Comput. Ind. Eng., 168 (2022), 108142. https://doi.org/10.1016/j.cie.2022.108142 doi: 10.1016/j.cie.2022.108142
|
[6]
|
Y. Koren, S. J. Hu, P. Gu, M. Shpitalni, Open-architecture products, CIRP Ann., 62 (2013), 719–729. https://doi.org/10.1016/j.cirp.2013.06.001 doi: 10.1016/j.cirp.2013.06.001
|
[7]
|
F. Tao, Q. Qi, A. Liu, A. Kusiak, Data-driven smart manufacturing, J. Manuf. Syst., 48 (2018), 157–169. https://doi.org/10.1016/j.jmsy.2018.01.006 doi: 10.1016/j.jmsy.2018.01.006
|
[8]
|
J. Leng, Z. Chen, W. Sha, Z. Lin, J. Lin, Q. Liu, Digital twins-based flexible operating of open architecture production line for individualized manufacturing, Adv. Eng. Inf., 53 (2022), 101676. https://doi.org/10.1016/j.aei.2022.101676 doi: 10.1016/j.aei.2022.101676
|
[9]
|
W. Shen, L. Wang, Q. Hao, Agent-based distributed manufacturing process planning and scheduling: a state-of-the-art survey, IEEE Trans. Syst. Man Cybern. Syst., 36 (2006), 563–577. https://doi.org/10.1109/TSMCC.2006.874022 doi: 10.1109/TSMCC.2006.874022
|
[10]
|
R. Agarwal, P. De, C. E. Wells, Cooperative distributed problem solving: an investigation in the domain of job shop scheduling, in Proceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences, IEEE, 3 (1995), 4–12. https://doi.org/10.1109/HICSS.1995.375579
|
[11]
|
C. P. Gomes, A. Tate, L. Thomas, A distributed scheduling framework, in Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94, IEEE, (1994), 49–55. https://doi.org/10.1109/TAI.1994.346514
|
[12]
|
A. Toptal, I. Sabuncuoglu, Distributed scheduling: a review of concepts and applications, Int. J. Prod. Res., 48 (2010), 5235–5262. https://doi.org/10.1080/00207540903121065 doi: 10.1080/00207540903121065
|
[13]
|
Z. Shao, W. Shao, D. Pi, Effective heuristics and metaheuristics for the distributed fuzzy blocking flow-shop scheduling problem, Swarm Evol. Comput., 59 (2020), 100747. https://doi.org/10.1016/j.swevo.2020.100747 doi: 10.1016/j.swevo.2020.100747
|
[14]
|
S. Apte, N. Petrovsky, Will blockchain technology revolutionize excipient supply chain management?, J. Excipients Food Chem., 7 (2016), 76–78.
|
[15]
|
F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, F. Sui, Digital twin-driven product design, manufacturing and service with big data, Int. J. Adv. Manuf. Technol., 94 (2018), 3563–3576. https://doi.org/10.1007/s00170-017-0233-1 doi: 10.1007/s00170-017-0233-1
|
[16]
|
J. Yli-Huumo, D. Ko, S. Choi, S. Park, K. Smolander, Where is current research on blockchain technology?—a systematic review, PLoS One, 11 (2016), e163477. https://doi.org/10.1371/journal.pone.0163477 doi: 10.1371/journal.pone.0163477
|
[17]
|
J. Leng, P. Jiang, K. Xu, Q. Liu, J. L. Zhao, Y. Bian, et al., Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing, J. Clean. Prod., 234 (2019), 767–778. https://doi.org/10.1016/j.jclepro.2019.06.265 doi: 10.1016/j.jclepro.2019.06.265
|
[18]
|
Y. Wu, Cloud-edge orchestration for the internet of things: architecture and AI-powered data processing, IEEE Internet Things, 8 (2021), 12792–12805. https://doi.org/10.1109/JIOT.2020.3014845 doi: 10.1109/JIOT.2020.3014845
|
[19]
|
J. Leng, Z. Chen, W. Sha, S. Ye, Q. Liu, X. Chen, Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services, J. Manuf. Syst., 63 (2022), 143–161. https://doi.org/10.1016/j.jmsy.2022.03.008 doi: 10.1016/j.jmsy.2022.03.008
|
[20]
|
L. Wang, W. Shen, Process Planning and Scheduling for Distributed Manufacturing, Springer Science & Business Media, 2007.
|
[21]
|
P. Wu, Y. Wang, J. Cheng, Y. Li, An improved mixed-integer programming approach for bi-objective parallel machine scheduling and location, Comput. Ind. Eng., 174 (2022), 108813. https://doi.org/10.1016/j.cie.2022.108813 doi: 10.1016/j.cie.2022.108813
|
[22]
|
V. Heinz, A. Novák, M. Vlk, Z. Hanzálek, Constraint programming and constructive heuristics for parallel machine scheduling with sequence-dependent setups and common servers, Comput. Ind. Eng., 172 (2022), 108586. https://doi.org/10.1016/j.cie.2022.108586 doi: 10.1016/j.cie.2022.108586
|
[23]
|
G. Song, R. Leus, Parallel machine scheduling under uncertainty: Models and exact algorithms, INFORMS J. Comput., 34 (2022), 3059–3079. https://doi.org/10.1287/ijoc.2022.1229 doi: 10.1287/ijoc.2022.1229
|
[24]
|
N. Farmand, H. Zarei, M. Rasti-Barzoki, Two meta-heuristic algorithms for optimizing a multi-objective supply chain scheduling problem in an identical parallel machines environment, Int. J. Ind. Eng. Comput., 12 (2021), 249–272. https://doi.org/10.5267/j.ijiec.2021.3.002 doi: 10.5267/j.ijiec.2021.3.002
|
[25]
|
M. Abedi, H. Seidgar, H. Fazlollahtabar, R. Bijani, Bi-objective optimisation for scheduling the identical parallel batch-processing machines with arbitrary job sizes, unequal job release times and capacity limits, Int. J. Prod. Res., 53 (2015), 1680–1711. https://doi.org/10.1080/00207543.2014.952795
|
[26]
|
Y. Zheng, Y. Yuan, Q. Zheng, D. Lei, A hybrid imperialist competitive algorithm for the distributed unrelated parallel machines scheduling problem, Symmetry, 14 (2022), 204. https://doi.org/10.3390/sym14020204 doi: 10.3390/sym14020204
|
[27]
|
R. Logendran, B. McDonell, B. Smucker, Scheduling unrelated parallel machines with sequence-dependent setups, Comput. Oper. Res., 34 (2007), 3420–3438. https://doi.org/10.1016/j.cor.2006.02.006 doi: 10.1016/j.cor.2006.02.006
|
[28]
|
J. Behnamian, S. F. Ghomi, The heterogeneous multi-factory production network scheduling with adaptive communication policy and parallel machine, Inf. Sci., 219 (2013), 181–196. https://doi.org/10.1016/j.ins.2012.07.020 doi: 10.1016/j.ins.2012.07.020
|
[29]
|
D. Lei, M. Liu, An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance, Comput. Ind. Eng., 141 (2020), 106320–106320. https://doi.org/10.1016/j.cie.2020.106320 doi: 10.1016/j.cie.2020.106320
|
[30]
|
G. Bektur, T. Saraç, A mathematical model and heuristic algorithms for an unrelated parallel machine scheduling problem with sequence-dependent setup times, machine eligibility restrictions and a common server, Comput. Ind. Eng., 103 (2018), 46–63. https://doi.org/10.1016/j.cor.2018.10.010
|
[31]
|
H. Jouhari, D. Lei, M. A. Al-qaness, , M. A. Elaziz, A. A. Ewees, O. Farouk, Sine-cosine algorithm to enhance simulated annealing for unrelated parallel machine scheduling with setup times, Mathematics, 7 (2019), 1120. https://doi.org/10.3390/math7111120 doi: 10.3390/math7111120
|
[32]
|
D. Lei, Y. Yuan, J. Cai, D. Bai, An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling, Int. J. Prod. Res., 58 (2020), 597–614. https://doi.org/10.1080/00207543.2019.1598596 doi: 10.1080/00207543.2019.1598596
|
[33]
|
D. Li, J. Wang, R. Qiang, R. Chiong, A hybrid differential evolution algorithm for parallel machine scheduling of lace dyeing considering colour families, sequence-dependent setup and machine eligibility, Int. J. Prod. Res., 59 (2020), 1–17. https://doi.org/10.1080/00207543.2020.1740341
|
[34]
|
D. Lei, Y. Yuan, J. Cai, An improved artificial bee colony for multi-objective distributed unrelated parallel machine scheduling, Int. J. Prod. Res., 59 (2020), 1–13. https://doi.org/10.1080/00207543.2020.1775911 doi: 10.1080/00207543.2020.1775911
|
[35]
|
B. Shahidi-Zadeh, R. Tavakkoli-Moghaddam, A. Taheri-Moghadam, I. Rastgar, Solving a bi-objective unrelated parallel batch processing machines scheduling problem: A comparison study, Comput. Ind. Eng., 88 (2017), 71–90. https://doi.org/10.1016/j.cor.2017.06.019 doi: 10.1016/j.cor.2017.06.019
|
[36]
|
Y. He, C. W. Hui, Automatic rule combination approach for single-stage process scheduling problems, AIChE J., 53 (2007), 2026–2047. https://doi.org/10.1002/aic.11236 doi: 10.1002/aic.11236
|
[37]
|
Z. Pan, D. Lei, L. Wang, A knowledge-based two-population optimization algorithm for distributed energy-efficient parallel machines scheduling, IEEE Trans. Cybern., 52 (2020), 5051–5063. https://doi.org/10.1109/TCYB.2020.3026571 doi: 10.1109/TCYB.2020.3026571
|
[38]
|
L. Zhang, Q. Deng, Y. Zhao, Q. Fan, X. Liu, G. Gong, Joint optimization of demand-side operational utility and manufacture-side energy consumption in a distributed parallel machine environment, Comput. Ind. Eng., 164 (2022), 107863. https://doi.org/10.1016/j.cie.2021.107863 doi: 10.1016/j.cie.2021.107863
|
[39]
|
X. Wu, A. Che, A memetic differential evolution algorithm for energy-efficient parallel machine scheduling, Omega, 82 (2018), 155–165. https://doi.org/10.1016/j.omega.2018.01.001 doi: 10.1016/j.omega.2018.01.001
|
[40]
|
J. Behnamian, M. Zandieh, S. F. Ghomi, Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm, Expert Syst. Appl., 36 (2009), 9637–9644. https://doi.org/10.1016/j.eswa.2008.10.007
|
[41]
|
M. Yazdani, S. Gohari, B. Naderi, Multi-factory parallel machine problems: Improved mathematical models and artificial bee colony algorithm, Comput. Ind. Eng., 81 (2015), 36–45. https://doi.org/10.1016/j.cie.2014.12.023 doi: 10.1016/j.cie.2014.12.023
|
[42]
|
J. Behnamian, S. F. Ghomi, The heterogeneous multi-factory production network scheduling with adaptive communication policy and parallel machine, Inf. Sci., 219 (2013), 181–196. https://doi.org/10.1016/j.ins.2012.07.020 doi: 10.1016/j.ins.2012.07.020
|
[43]
|
J. Behnamian, Matheuristic for the decentralized factories scheduling problem, Appl. Math. Model., 47 (2017), 668–684. https://doi.org/10.1016/j.apm.2017.02.033 doi: 10.1016/j.apm.2017.02.033
|
[44]
|
J. Behnamian, Heterogeneous networked cooperative scheduling with anarchic particle swarm optimization, IEEE Trans. Eng. Manage., 64 (2017), 166–178. https://doi.org/10.1016/j.apm.2017.02.033 doi: 10.1016/j.apm.2017.02.033
|
[45]
|
J. Behnamian, S. M. T. F. Ghomi, Multi-objective multi-factory scheduling, RAIRO-Oper. Res., 55 (2021), S1447–S1467. https://doi.org/10.1051/ro/2020044 doi: 10.1051/ro/2020044
|
[46]
|
J. Behnamian, H. Asgari, A hyper-heuristic for distributed parallel machine scheduling with machine-dependent processing and sequence-dependent setup times, RAIRO-Oper. Res., 56 (2022), 4129–4143. https://doi.org/10.1051/ro/2022194 doi: 10.1051/ro/2022194
|
[47]
|
S. Hatami, R. Ruiz, C. Andrés-Romano, Heuristics for a distributed parallel machine assembly scheduling problem with eligibility constraints, in 2015 International Conference on Industrial Engineering and Systems Management (IESM), (2015), 145–153. https://doi.org/10.1109/IESM.2015.7380149
|
[48]
|
S. Hatami, R. R. García, C. A. Romano, The Distributed Assembly Parallel Machine Scheduling Problem with eligibility constraints, Int. J. Eng. Sci., 3 (2015), 13–23. https://doi.org/10.4995/ijpme.2015.3345 doi: 10.4995/ijpme.2015.3345
|
[49]
|
A. Hamzadayı, An effective benders decomposition algorithm for solving the distributed permutation flowshop scheduling problem, Comput. Oper. Res., 123 (2020), 105006. https://doi.org/10.1016/j.cor.2020.105006 doi: 10.1016/j.cor.2020.105006
|
[50]
|
V. Fernandez-Viagas, J. M. Framinan, A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 53 (2015), 1111–1123. https://doi.org/10.1080/00207543.2014.948578 doi: 10.1080/00207543.2014.948578
|
[51]
|
J. Y. Mao, Q. K. Pan, Z. H. Miao, L. Gao, S. Chen, A hash map-based memetic algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime, Knowl. Based Syst., 242 (2022), 108413. https://doi.org/10.1016/j.knosys.2022.108413 doi: 10.1016/j.knosys.2022.108413
|
[52]
|
K. Wang, Y. Huang, H. Qin, A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown, J. Oper. Res. Soc., 67 (2016), 68–82. https://doi.org/10.1057/jors.2015.50 doi: 10.1057/jors.2015.50
|
[53]
|
B. Naderi, R. Ruiz, The distributed permutation flowshop scheduling problem, Comput. Oper. Res., 37 (2010), 754–768. https://doi.org/10.1016/j.cor.2009.06.019 doi: 10.1016/j.cor.2009.06.019
|
[54]
|
E. Taillard, Some efficient heuristic methods for the flow shop sequencing problem, Eur. J. Oper. Res., 47 (1990), 65–74. https://doi.org/10.1016/0377-2217(90)90090-X doi: 10.1016/0377-2217(90)90090-X
|
[55]
|
J. Gao, R. Chen, W. Deng, An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 51 (2013), 641–651. https://doi.org/10.1080/00207543.2011.644819 doi: 10.1080/00207543.2011.644819
|
[56]
|
S. Y. Wang, L. Wang, M. Liu, Y. Xu, An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem, Int. J. Prod. Econ., 145 (2013), 387–396. https://doi.org/10.1016/j.ijpe.2013.05.004 doi: 10.1016/j.ijpe.2013.05.004
|
[57]
|
D. Ferone, S. Hatami, E. M. González‐Neira, A. A. Juan, P. Festa, A biased‐randomized iterated local search for the distributed assembly permutation flow‐shop problem, Int. Trans. Oper. Res., 27 (2020), 1368–1391. https://doi.org/10.1111/itor.12719 doi: 10.1111/itor.12719
|
[58]
|
J. P. Huang, Q. K. Pan, L. Gao, An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times, Swarm Evol. Comput., 59 (2020), 100742. https://doi.org/10.1016/j.swevo.2020.100742 doi: 10.1016/j.swevo.2020.100742
|
[59]
|
Y. Xu, L. Wang, S. Wang, M. Liu, An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem, Eng. Optim., 46 (2014), 1269–1283. https://doi.org/10.1080/0305215X.2013.827673 doi: 10.1080/0305215X.2013.827673
|
[60]
|
A. Ali, Y. Gajpal, T. Y. Elmekkawy, Distributed permutation flowshop scheduling problem with total completion time objective, Opsearch, (2020), 1–23. https://doi.org/10.1007/s12597-020-00484-3
|
[61]
|
A. Hamzadayı, An effective benders decomposition algorithm for solving the distributed permutation flowshop scheduling problem, Comput. Oper. Res., 123 (2020), 105006. https://doi.org/10.1016/j.cor.2020.105006 doi: 10.1016/j.cor.2020.105006
|
[62]
|
J. Y. Mao, Q. K. Pan, Z. H. Miao, L. Gao, S. Chen, A hash map-based memetic algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime, Knowl. Based Syst., 242 (2022), 108413. https://doi.org/10.1016/j.knosys.2022.108413 doi: 10.1016/j.knosys.2022.108413
|
[63]
|
Y. Yu, F. Q. Zhang, G. D. Yang, Y. Wang, J. P. Huang, Y. Y. Han, A discrete artificial bee colony method based on variable neighborhood structures for the distributed permutation flowshop problem with sequence-dependent setup times, Swarm Evol. Comput., 75 (2022), 101179. https://doi.org/10.1016/j.swevo.2022.101179 doi: 10.1016/j.swevo.2022.101179
|
[64]
|
V. Fernandez-Viagas, P. Perez-Gonzalez, J. M. Framinan, The distributed permutation flow shop to minimise the total flowtime, Comput. Ind. Eng., 118 (2018), 464–477. https://doi.org/10.1016/j.cie.2018.03.014 doi: 10.1016/j.cie.2018.03.014
|
[65]
|
A. Khare, S. Agrawal, Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 59 (2021), 7266–7282. https://doi.org/10.1080/00207543.2020.1837982 doi: 10.1080/00207543.2020.1837982
|
[66]
|
Y. Z. Li, Q. K. Pan, X. He, H. Y. Sang, K. Z. Gao, X. L. Jing, The distributed flowshop scheduling problem with delivery dates and cumulative payoffs, Comput. Ind. Eng., 165 (2022), 107961. https://doi.org/10.1016/j.cie.2022.107961 doi: 10.1016/j.cie.2022.107961
|
[67]
|
P. A. Villarinho, J. Panadero, L. S. Pessoa, A. A. Juan, F. L. C. Oliveira, A simheuristic algorithm for the stochastic permutation flow‐shop problem with delivery dates and cumulative payoffs, Int. Trans. Oper. Res., 28 (2021), 716–737. https://doi.org/10.1111/itor.12862 doi: 10.1111/itor.12862
|
[68]
|
Q. Li, J. Li, X. Zhang, B. Zhang, A wale optimization algorithm for distributed flow shop with batch delivery, Soft Comput., 25 (2021), 1–14.
|
[69]
|
A. P. Rifai, H. T. Nguyen, S. Z. M. Dawal, Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling, Appl. Soft Comput., 40 (2016), 42–57. https://doi.org/10.1016/j.asoc.2015.11.034 doi: 10.1016/j.asoc.2015.11.034
|
[70]
|
J. Deng, L. Wang, A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem, Swarm Evol. Comput., 32 (2017), 121–131. https://doi.org/10.1016/j.swevo.2016.06.002 doi: 10.1016/j.swevo.2016.06.002
|
[71]
|
Z. Yan, R. Shi, K. Du, L. Yi, The role of green production process innovation in green manufacturing: empirical evidence from OECD countries, Appl. Econ., 54 (2022), 6755–6767. https://doi.org/10.1080/00036846.2022.2083569 doi: 10.1080/00036846.2022.2083569
|
[72]
|
C. Zhang, W. Ji, Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop, Procedia CIRP, 83 (2019), 624–629. https://doi.org/10.1016/j.procir.2019.04.095 doi: 10.1016/j.procir.2019.04.095
|
[73]
|
X. Wu, A. Che, Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search, Omega, 94 (2020), 102117–102117. https://doi.org/10.1016/j.omega.2019.102117 doi: 10.1016/j.omega.2019.102117
|
[74]
|
J. F. Chen, L. Wang, Z. P. Peng, A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling, Swarm Evol. Comput., 50 (2019), 100557–100557. https://doi.org/10.1016/j.swevo.2019.100557 doi: 10.1016/j.swevo.2019.100557
|
[75]
|
T. Meng, Q. K. Pan, L. Wang, A distributed permutation flowshop scheduling problem with the customer order constraint, Knowl. Based Syst., 184 (2019), 104894–104894. https://doi.org/10.1016/j.knosys.2019.104894 doi: 10.1016/j.knosys.2019.104894
|
[76]
|
K. Wang, Y. Huang, H. Qin, A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown, J. Oper. Res. Soc., 67 (2016), 68–82. https://doi.org/10.1057/jors.2015.50 doi: 10.1057/jors.2015.50
|
[77]
|
J. Y. Mao, Q. K. Pan, Z. H. Miao, L. Gao, An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance, Expert Syst. Appl., 169 (2021), 114495. https://doi.org/10.1016/j.eswa.2020.114495 doi: 10.1016/j.eswa.2020.114495
|
[78]
|
W. Shao, D. Pi, Z. Shao, Optimization of makespan for the distributed no-wait flow shop scheduling problem with iterated greedy algorithms, Knowl. Based Syst., 137 (2017), 163–181. https://doi.org/10.1016/j.knosys.2017.09.026 doi: 10.1016/j.knosys.2017.09.026
|
[79]
|
S. W. Lin, K. C. Ying, Minimizing makespan for solving the distributed no-wait flowshop scheduling problem, Comput. Ind. Eng., 99 (2016), 202–209. https://doi.org/10.1016/j.cie.2016.07.027 doi: 10.1016/j.cie.2016.07.027
|
[80]
|
G. Zhang, K. Xing, Differential evolution metaheuristics for distributed limited-buffer flowshop scheduling with makespan criterion, Comput. Oper. Res., 108 (2019), 33–43. https://doi.org/10.1016/j.cor.2019.04.002 doi: 10.1016/j.cor.2019.04.002
|
[81]
|
F. Zhao, L. Zhao, L. Wang, H. Song, An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion, Expert Syst. Appl., 160 (2020), 113678. https://doi.org/10.1016/j.eswa.2020.113678 doi: 10.1016/j.eswa.2020.113678
|
[82]
|
X. Han, Y. Han, Q. Chen, J. Li, H. Sang, Y. Liu, et al., Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm, Complex Syst., 1 (2021), 198–217. https://doi.org/10.23919/CSMS.2021.0018 doi: 10.23919/CSMS.2021.0018
|
[83]
|
X. Han, Y. Han, B. Zhang, H. Qin, J. Li, Y. Liu, et al., An effective iterative greedy algorithm for distributed blocking flowshop scheduling problem with balanced energy costs criterion, Appl. Soft Comput., 129 (2022), 109502. https://doi.org/10.1016/j.asoc.2022.109502 doi: 10.1016/j.asoc.2022.109502
|
[84]
|
W. Shao, D. Pi, Z. Shao, A Pareto-based estimation of distribution algorithm for solving multiobjective distributed no-wait flow-shop scheduling problem with sequence-dependent setup time, IEEE Trans. Autom. Sci. Eng., 16 (2019), 1344–1360. https://doi.org/10.1109/TASE.2018.2886303 doi: 10.1109/TASE.2018.2886303
|
[85]
|
J. P. Huang, Q. K. Pan, L. Gao, An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times, Swarm Evol. Comput., 59 (2020), 100742. https://doi.org/10.1016/j.swevo.2020.100742 doi: 10.1016/j.swevo.2020.100742
|
[86]
|
J. P. Huang, Q. K. Pan, Z. H. Miao, L. Gao, Effective constructive heuristics and discrete bee colony optimization for distributed flowshop with setup times, Eng. Appl. Artif. Intell., 97 (2021), 104016. https://doi.org/10.1016/j.engappai.2020.104016 doi: 10.1016/j.engappai.2020.104016
|
[87]
|
T. Meng, Q. K. Pan, L. Wang, A distributed permutation flowshop scheduling problem with the customer order constraint, Knowl. Based Syst., 184 (2019), 104894. https://doi.org/10.1016/j.knosys.2019.104894 doi: 10.1016/j.knosys.2019.104894
|
[88]
|
S. Cai, K. Yang, K. Liu, Multi-objective optimization of the distributed permutation flow shop scheduling problem with transportation and eligibility constraints, J. Oper. Res. Soc. China, 6 (2018), 391–416. https://doi.org/10.1007/s40305-017-0165-3 doi: 10.1007/s40305-017-0165-3
|
[89]
|
S. Hatami, R. Ruiz, C. A. Romano, Two simple constructive algorithms for the distributed assembly permutation flowshop scheduling problem, in Managing Complexity: Challenges for Industrial Engineering and Operations Management, (2014), 139–145.
|
[90]
|
Q. K. Pan, L. Gao, L. X. Yu, F. M. Jose, Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem, Appl. Soft Comput., 81 (2019), 105492. https://doi.org/10.1016/j.asoc.2019.105492 doi: 10.1016/j.asoc.2019.105492
|
[91]
|
X. Li, X. Zhang, M. Yin, J. Wang, A genetic algorithm for the distributed assembly permutation flowshop scheduling problem, in 2015 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2015), 3096–3101. https://doi.org/10.1109/CEC.2015.7257275
|
[92]
|
D. Ferone, S. Hatami, E. M. González‐Neira, A. A. Juan, P. Festa, A biased‐randomized iterated local search for the distributed assembly permutation flow‐shop problem, Int. Trans. Oper. Res., 27 (2020), 1368–1391. https://doi.org/10.1111/itor.12719 doi: 10.1111/itor.12719
|
[93]
|
J. Lin, Z. J. Wang, X. Li, A backtracking search hyper-heuristic for the distributed assembly flow-shop scheduling problem, Swarm Evol. Comput., 36 (2017), 124–135. https://doi.org/10.1016/j.swevo.2017.04.007 doi: 10.1016/j.swevo.2017.04.007
|
[94]
|
G. Zhang, K. Xing, F. Cao, Scheduling distributed flowshops with flexible assembly and set-up time to minimise makespan, Int. J. Prod. Res., 56 (2018), 3226–3244. https://doi.org/10.1080/00207543.2017.1401241 doi: 10.1080/00207543.2017.1401241
|
[95]
|
J. Deng, L. Wang, S. Y. Wang, X. L. Zheng, A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem, Int. J. Prod. Res., 54 (2016), 3561–3577. https://doi.org/10.1080/00207543.2015.1084063 doi: 10.1080/00207543.2015.1084063
|
[96]
|
H. Y. Sang, Q. K. Pan, J. Q. Li, P. Wang, Y. Y. Han, K. Z. Gao, et al., Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion, Swarm Evol. Comput., 44 (2019), 64–73. https://doi.org/10.1016/j.swevo.2018.12.001 doi: 10.1016/j.swevo.2018.12.001
|
[97]
|
F. Zhao, X. Hu, L.Wang, Z. Li, A memetic discrete differential evolution algorithm for the distributed permutation flow shop scheduling problem, Complex Intell. Syst., 8 (2022), 141–161. https://doi.org/10.1007/s40747-021-00354-5 doi: 10.1007/s40747-021-00354-5
|
[98]
|
F. Xiong, K. Xing, Meta-heuristics for the distributed two-stage assembly scheduling problem with bi-criteria of makespan and mean completion time, Int. J. Prod. Res., 52 (2014), 2743–2766. https://doi.org/10.1080/00207543.2014.884290 doi: 10.1080/00207543.2014.884290
|
[99]
|
X. Wu, X. Liu, N. Zhao, An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem, Memet Comput., 11 (2019), 335–355. https://doi.org/10.1007/s12293-018-00278-7 doi: 10.1007/s12293-018-00278-7
|
[100]
|
Y. Y. Huang, Q. K. Pan, J. P. Huang, P. N. Suganthan, L. Gao, An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem, Comput. Ind. Eng., 152 (2021), 107021. https://doi.org/10.1016/j.cie.2020.107021 doi: 10.1016/j.cie.2020.107021
|
[101]
|
G. Wang, X. Li, L. Gao, P. Li, Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D, Swarm Evol. Comput., 62 (2021), 100858. https://doi.org/10.1016/j.swevo.2021.100858 doi: 10.1016/j.swevo.2021.100858
|
[102]
|
G. Wang, X. Li, L. Gao, P. Li, An effective multi-objective whale swarm algorithm for energy-efficient scheduling of distributed welding flow shop, Ann. Oper. Res., 310 (2022), 223–255. https://doi.org/10.1007/s10479-021-03952-1 doi: 10.1007/s10479-021-03952-1
|
[103]
|
J. Cai, D. Lei, M. Li, A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop, Int. J. Prod. Res., 59 (2020), 1–18. https://doi.org/10.1080/00207543.2020.1780333 doi: 10.1080/00207543.2020.1780333
|
[104]
|
J. Cai, R. Zhou, D. Lei, Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks, Appl. Artif. Intell., 90 (2020), 103540–103540. https://doi.org/10.1016/j.engappai.2020.103540 doi: 10.1016/j.engappai.2020.103540
|
[105]
|
C. Lu, Q. Liu, B. Zhang, L. Yin, A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop, Expert Syst. Appl., 204 (2022), 117555. https://doi.org/10.1016/j.eswa.2022.117555 doi: 10.1016/j.eswa.2022.117555
|
[106]
|
H. Qin, T. Li, Y. Teng, K. Wang, Integrated production and distribution scheduling in distributed hybrid flow shops, Memet Comput., 13 (2021), 185–202. https://doi.org/10.1007/s12293-021-00329-6 doi: 10.1007/s12293-021-00329-6
|
[107]
|
C. Lu, L. Gao, J. Yi, X. Li, Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China, IEEE Trans. Ind. Inf., 17 (2020), 6687–6696. https://doi.org/10.1109/TⅡ.2020.3043734 doi: 10.1109/TⅡ.2020.3043734
|
[108]
|
E. Jiang, L. Wang, J. Wang, Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks, Tsinghua Sci. Technol., 26 (2021), 646–663. https://doi.org/10.26599/TST.2021.9010007 doi: 10.26599/TST.2021.9010007
|
[109]
|
J. Cai, D. Lei, A cooperated shuffled frog-leaping algorithm for distributed energy-efficient hybrid flow shop scheduling with fuzzy processing time, Complex Intell. Syst., 7 (2021), 2235–2253. https://doi.org/10.1007/s40747-021-00400-2 doi: 10.1007/s40747-021-00400-2
|
[110]
|
J. Zheng, L. Wang, J. J. Wang, A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop, Knowl. Based Syst., 194 (2020), 105536. https://doi.org/10.1016/j.knosys.2020.105536 doi: 10.1016/j.knosys.2020.105536
|
[111]
|
J. J. Wang, L. Wang, A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop, IEEE Trans. Syst. Man Cybern.: Syst., 50 (2018), 1805–1819. https://doi.org/10.1109/TSMC.2017.2788879 doi: 10.1109/TSMC.2017.2788879
|
[112]
|
G. Zhang, K. Xing, Differential evolution metaheuristics for distributed limited-buffer flowshop scheduling with makespan criterion, Comput. Oper. Res., 108 (2019), 33–43. https://doi.org/10.1016/j.cor.2019.04.002 doi: 10.1016/j.cor.2019.04.002
|
[113]
|
C. Lu, Y. Huang, L. Meng, L. Gao, B. Zhang, J. Zhou, A Pareto-based collaborative multi-objective optimization algorithm for energy-efficient scheduling of distributed permutation flow-shop with limited buffers, Robot Comput. Integr. Manuf., 74 (2022), 102277. https://doi.org/10.1016/j.rcim.2021.102277 doi: 10.1016/j.rcim.2021.102277
|
[114]
|
K. Geng, C. Ye, A memetic algorithm for energy-efficient distributed re-entrant hybrid flow shop scheduling problem, J. Intell. Fuzzy Syst., 41 (2021), 3951–3971. https://doi.org/10.3233/JIFS-202963 doi: 10.3233/JIFS-202963
|
[115]
|
J. Dong, C. Ye, Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system, Comput. Ind. Eng., 169 (2022), 108146. https://doi.org/10.1016/j.cie.2022.108146 doi: 10.1016/j.cie.2022.108146
|
[116]
|
Y. Alaouchiche, Y. Ouazene, F. Yalaoui, Economic and energetic performance evaluation of unreliable production lines: An integrated analytical approach, IEEE Access, 8 (2020), 185330–185345. https://doi.org/10.1109/ACCESS.2020.3029761 doi: 10.1109/ACCESS.2020.3029761
|
[117]
|
B. Naderi, A. Azab, Modeling and heuristics for scheduling of distributed job shops, Expert Syst. Appl., 41 (2014), 7754–7763. https://doi.org/10.1016/j.eswa.2014.06.023 doi: 10.1016/j.eswa.2014.06.023
|
[118]
|
M. L. R. Varela, G. D. Putnik, M. M. Cruz-Cunha, Web-based technologies integration for distributed manufacturing scheduling in a virtual enterprise, Int. J. Web Portals (IJWP), 4 (2012), 19–34. https://doi.org/10.4018/jwp.2012040102 doi: 10.4018/jwp.2012040102
|
[119]
|
H. Z. Jia, J. Y. Fuh, A. Y. Nee, Y. F. Zhang, Web-based multi-functional scheduling system for a distributed manufacturing environment, Concurr. Eng., 10 (2002), 27–39. https://doi.org/10.1177/1063293X02010001054 doi: 10.1177/1063293X02010001054
|
[120]
|
H. Z. Jia, A. Y. Nee, J. Y. Fuh, Y. F. Zhang, A modified genetic algorithm for distributed scheduling problems, J. Intell. Manuf., 14 (2003), 351–362. https://doi.org/10.1023/A:1024653810491 doi: 10.1023/A:1024653810491
|
[121]
|
H. Z. Jia, J. Y. Fuh, A. Y. Nee, Y. F. Zhang, Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed manufacturing systems, Comput. Ind. Eng., 53 (2007), 313–320. https://doi.org/10.1016/j.cie.2007.06.024 doi: 10.1016/j.cie.2007.06.024
|
[122]
|
F. T. Chan, S. H. Chung, L. Y. Chan, G. Finke, M. K. Tiwari, Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach, Robot Comput. Integr. Manuf., 22 (2006), 493–504. https://doi.org/10.1016/j.rcim.2005.11.005 doi: 10.1016/j.rcim.2005.11.005
|
[123]
|
I. J. Jeong, S. B. Yim, A job shop distributed scheduling based on Lagrangian relaxation to minimise total completion time, Int. J. Prod. Res., 47 (2009), 6783–6805. https://doi.org/10.1080/00207540701824217 doi: 10.1080/00207540701824217
|
[124]
|
L. De Giovanni, F. Pezzella, An improved genetic algorithm for the distributed and flexible job-shop scheduling problem, Eur. J. Oper. Res., 200 (2010), 395–408. https://doi.org/10.1016/j.ejor.2009.01.008 doi: 10.1016/j.ejor.2009.01.008
|
[125]
|
P. Lou, S. K. Ong, A. Y. C. Nee, Agent-based distributed scheduling for virtual job shops, Int. J. Prod. Res., 48 (2010), 3889–3910. https://doi.org/10.1080/00207540902927918 doi: 10.1080/00207540902927918
|
[126]
|
B. Naderi, A. Azab, An improved model and novel simulated annealing for distributed job shop problems, J. Adv. Manuf. Technol., 81 (2015), 693–703. https://doi.org/10.1007/s00170-015-7080-8 doi: 10.1007/s00170-015-7080-8
|
[127]
|
T. K. Liu, Y. P. Chen, J. H. Chou, Solving distributed and flexible job-shop scheduling problems for a real-world fastener manufacturer, IEEE Access, 2 (2014), 1598–1606. https://doi.org/10.1109/ACCESS.2015.2388486 doi: 10.1109/ACCESS.2015.2388486
|
[128]
|
I. Chaouch, O. B. Driss, K. Ghedira, A novel dynamic assignment rule for the distributed job shop scheduling problem using a hybrid ant-based algorithm, Appl. Intell., 49 (2019), 1903–1924. https://doi.org/10.1007/s10489-018-1343-7 doi: 10.1007/s10489-018-1343-7
|
[129]
|
Q. Luo, Q. Deng, G. Gong, L. Zhang, W. Han, K. Li, An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers, Expert Syst. Appl., 160 (2020), 113721. https://doi.org/10.1016/j.eswa.2020.113721 doi: 10.1016/j.eswa.2020.113721
|
[130]
|
J. Q. Li, P. Duan, J. Cao, X. P. Lin, Y. Y. Han, A hybrid Pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria, IEEE Access, 6 (2018), 58883–58897. https://doi.org/10.1109/ACCESS.2018.2873401 doi: 10.1109/ACCESS.2018.2873401
|
[131]
|
F. T. Chan, S. H. Chung, P. L. Y. Chan, An adaptive genetic algorithm with dominated genes for distributed scheduling problems, Expert Syst. Appl., 29 (2005), 364–371. https://doi.org/10.1016/j.eswa.2005.04.009 doi: 10.1016/j.eswa.2005.04.009
|
[132]
|
L. Meng, C. Zhang, Y. Ren, B. Zhang, C. Lv, Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem, Comput. Ind. Eng., 142 (2020), 106347. https://doi.org/10.1016/j.cie.2020.106347 doi: 10.1016/j.cie.2020.106347
|
[133]
|
B. Marzouki, O. B. Driss, K. Ghédira, Solving distributed and flexible job shop scheduling problem using a chemical reaction optimization metaheuristic, Procedia Comput. Sci., 126 (2018), 1424–1433. https://doi.org/10.1016/j.procs.2018.08.114 doi: 10.1016/j.procs.2018.08.114
|
[134]
|
M. Zandieh, A. R. Khatami, S. H. A. Rahmati, Flexible job shop scheduling under condition-based maintenance: improved version of imperialist competitive algorithm, Appl. Soft Comput., 58 (2017), 449–464. https://doi.org/10.1016/j.asoc.2017.04.060 doi: 10.1016/j.asoc.2017.04.060
|
[135]
|
P. H. Lu, M. C. Wu, H. Tan, Y. H. Peng, C. F. Chen, A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems, J. Intell. Manuf., 29 (2018), 19–34. https://doi.org/10.1007/s10845-015-1083-z doi: 10.1007/s10845-015-1083-z
|
[136]
|
M. C. Wu, C. S. Lin, C. H. Lin, C. F. Chen, Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems, Comput. Oper. Res., 80 (2017), 101–112. https://doi.org/10.1016/j.cor.2016.11.021 doi: 10.1016/j.cor.2016.11.021
|
[137]
|
H. C. Chang, T. K. Liu, Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms, J. Intell. Manuf., 28 (2017), 1973–1986. https://doi.org/10.1007/s10845-015-1084-y doi: 10.1007/s10845-015-1084-y
|
[138]
|
W. Xu, Y. Hu, W. Luo, L. Wang, R. Wu, A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission, Comput. Ind. Eng., 157 (2021), 107318. https://doi.org/10.1016/j.cie.2021.107318 doi: 10.1016/j.cie.2021.107318
|
[139]
|
L. Meng, Y. Ren, B. Zhang, J. Q. Li, H. Sang, C. Zhang, MILP modeling and optimization of energy-efficient distributed flexible job shop scheduling problem, IEEE Access, 8 (2020), 191191–191203. https://doi.org/10.1109/ACCESS.2020.3032548 doi: 10.1109/ACCESS.2020.3032548
|
[140]
|
S. Zhang, X. Li, B. Zhang, S. Wang, Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system, Eur. J. Oper. Res., 283 (2020), 441–460. https://doi.org/10.1016/j.ejor.2019.11.016 doi: 10.1016/j.ejor.2019.11.016
|
[141]
|
F. Xiong, K. Xing, Meta-heuristics for the distributed two-stage assembly scheduling problem with bi-criteria of makespan and mean completion time, Int. J. Prod. Res., 52 (2014), 2743–2766. https://doi.org/10.1080/00207543.2014.884290 doi: 10.1080/00207543.2014.884290
|
[142]
|
S. Yang, Z. Xu, The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery. Int. J. Prod. Res., 59 (2021), 4053-4071. https://doi.org/10.1080/00207543.2020.1757174 doi: 10.1080/00207543.2020.1757174
|
[143]
|
Z. Shao, W. Shao, D. Pi, Effective constructive heuristic and metaheuristic for the distributed assembly blocking flow-shop scheduling problem, Appl. Intell., 50 (2020), 4647–4669. https://doi.org/10.1007/s10489-020-01809-x doi: 10.1007/s10489-020-01809-x
|
[144]
|
W. Niu, J. Q. Li, A two-stage cooperative evolutionary algorithm for energy-efficient distributed group blocking flow shop with setup carryover in precast systems, Knowl. Based Syst., 257 (2022), 109890. https://doi.org/10.1016/j.knosys.2022.109890 doi: 10.1016/j.knosys.2022.109890
|
[145]
|
F. Jolai, H. Asefi, M. Rabiee, P. Ramezani, Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem, Sci. Iran., 20 (2013), 861–872. https://doi.org/10.1016/j.scient.2012.10.044 doi: 10.1016/j.scient.2012.10.044
|
[146]
|
J. Deng, L. Wang, S. Y. Wang, X. L. Zheng, A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem, Int. J. Prod. Res., 54 (2016), 3561–3577. https://doi.org/10.1080/00207543.2015.1084063 doi: 10.1080/00207543.2015.1084063
|
[147]
|
F. Nikzad, J. Rezaeian, I. Mahdavi, I. Rastgar, Scheduling of multi-component products in a two-stage flexible flow shop, Appl. Soft Comput., 32 (2015), 132–143. https://doi.org/10.1016/j.asoc.2015.03.006 doi: 10.1016/j.asoc.2015.03.006
|
[148]
|
A. Azadeh, M. Jeihoonian, B. M. Shoja, S. H. Seyedmahmoudi, An integrated neural network-simulation algorithm for performance optimisation of the bi-criteria two-stage assembly flow-shop scheduling problem with stochastic activities, Int. J. Prod. Res., 50 (2012), 7271–7284. https://doi.org/10.1080/00207543.2011.645511 doi: 10.1080/00207543.2011.645511
|
[149]
|
F. Zhao, D. Shao, L. Wang, T. Xu, N. Zhu, An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem, Knowl. Based Syst., 243 (2022), 108471. https://doi.org/10.1016/j.knosys.2022.108471 doi: 10.1016/j.knosys.2022.108471
|
[150]
|
G. Zhang, K. Xing, Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment, Comput. Ind. Eng., 125 (2018), 423–433. https://doi.org/10.1016/j.cie.2018.09.007 doi: 10.1016/j.cie.2018.09.007
|
[151]
|
D. Lei, B. Su, M. Li, Cooperated teaching-learning-based optimisation for distributed two-stage assembly flow shop scheduling, Int. J. Prod. Res., 59 (2021), 7232–7245. https://doi.org/10.1080/00207543.2020.1836422 doi: 10.1080/00207543.2020.1836422
|
[152]
|
N. Shoaardebili, P. Fattahi, Multi-objective meta-heuristics to solve three-stage assembly flow shop scheduling problem with machine availability constraints, Int. J. Prod. Res., 53 (2015), 944–968. https://doi.org/10.1080/00207543.2014.948575 doi: 10.1080/00207543.2014.948575
|
[153]
|
Y. Du, J. Q. Li, C. Luo, L. L. Meng, A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations, Swarm Evol. Comput., 62 (2021), 100861. https://doi.org/10.1016/j.swevo.2021.100861 doi: 10.1016/j.swevo.2021.100861
|
[154]
|
X. Wu, X. Liu, N. Zhao, An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem, Memet. Comput., 11 (2019), 335–355. https://doi.org/10.1007/s12293-018-00278-7 doi: 10.1007/s12293-018-00278-7
|
[155]
|
G. Zhang, K. Xing, G. Zhang, Z. He, Memetic algorithm with meta-Lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem, IEEE Access, 8 (2020), 96115–96128. https://doi.org/10.1109/ACCESS.2020.2996305 doi: 10.1109/ACCESS.2020.2996305
|