Review

Distributed shop scheduling: A comprehensive review on classifications, models and algorithms


  • In the intelligent manufacturing environment, modern industry is developing at a faster pace, and there is an urgent need for reasonable production scheduling to ensure an organized production order and a dependable production guarantee for enterprises. Additionally, production cooperation between enterprises and different branches of enterprises is increasingly common, and distributed manufacturing has become a prevalent production model. In light of these developments, this paper presents the research background and current state of distributed shop scheduling. It summarizes relevant research on issues that align with the new manufacturing model, explores hot topics and concerns and focuses on the classification of distributed parallel machine scheduling, distributed flow shop scheduling, distributed job shop scheduling and distributed assembly shop scheduling. The paper investigates these scheduling problems in terms of single-objective and multi-objective optimization, as well as processing constraints. It also summarizes the relevant optimization algorithms and their limitations. It also provides an overview of research methods and objects, highlighting the development of solution methods and research trends for new problems. Finally, the paper analyzes future research directions in this field.

    Citation: Jianguo Duan, Mengting Wang, Qinglei Zhang, Jiyun Qin. Distributed shop scheduling: A comprehensive review on classifications, models and algorithms[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 15265-15308. doi: 10.3934/mbe.2023683

    Related Papers:

    [1] Abdulaziz S. Alghamdi, Muhammad Ahsan-ul-Haq, Ayesha Babar, Hassan M. Aljohani, Ahmed Z. Afify . The discrete power-Ailamujia distribution: properties, inference, and applications. AIMS Mathematics, 2022, 7(5): 8344-8360. doi: 10.3934/math.2022465
    [2] Monthira Duangsaphon, Sukit Sokampang, Kannat Na Bangchang . Bayesian estimation for median discrete Weibull regression model. AIMS Mathematics, 2024, 9(1): 270-288. doi: 10.3934/math.2024016
    [3] Saurabh L. Raikar, Dr. Rajesh S. Prabhu Gaonkar . Jaya algorithm in estimation of P[X > Y] for two parameter Weibull distribution. AIMS Mathematics, 2022, 7(2): 2820-2839. doi: 10.3934/math.2022156
    [4] Rasha Abd El-Wahab Attwa, Shimaa Wasfy Sadk, Hassan M. Aljohani . Investigation the generalized extreme value under liner distribution parameters for progressive type-Ⅱ censoring by using optimization algorithms. AIMS Mathematics, 2024, 9(6): 15276-15302. doi: 10.3934/math.2024742
    [5] Haiping Ren, Xue Hu . Estimation for inverse Weibull distribution under progressive type-Ⅱ censoring scheme. AIMS Mathematics, 2023, 8(10): 22808-22829. doi: 10.3934/math.20231162
    [6] Xue Hu, Haiping Ren . Statistical inference of the stress-strength reliability for inverse Weibull distribution under an adaptive progressive type-Ⅱ censored sample. AIMS Mathematics, 2023, 8(12): 28465-28487. doi: 10.3934/math.20231457
    [7] A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310
    [8] Heba S. Mohammed, Zubair Ahmad, Alanazi Talal Abdulrahman, Saima K. Khosa, E. H. Hafez, M. M. Abd El-Raouf, Marwa M. Mohie El-Din . Statistical modelling for Bladder cancer disease using the NLT-W distribution. AIMS Mathematics, 2021, 6(9): 9262-9276. doi: 10.3934/math.2021538
    [9] Qasim Ramzan, Muhammad Amin, Ahmed Elhassanein, Muhammad Ikram . The extended generalized inverted Kumaraswamy Weibull distribution: Properties and applications. AIMS Mathematics, 2021, 6(9): 9955-9980. doi: 10.3934/math.2021579
    [10] Nora Nader, Dina A. Ramadan, Hanan Haj Ahmad, M. A. El-Damcese, B. S. El-Desouky . Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Fréchet-inverted Weibull distribution. AIMS Mathematics, 2023, 8(12): 31217-31245. doi: 10.3934/math.20231598
  • In the intelligent manufacturing environment, modern industry is developing at a faster pace, and there is an urgent need for reasonable production scheduling to ensure an organized production order and a dependable production guarantee for enterprises. Additionally, production cooperation between enterprises and different branches of enterprises is increasingly common, and distributed manufacturing has become a prevalent production model. In light of these developments, this paper presents the research background and current state of distributed shop scheduling. It summarizes relevant research on issues that align with the new manufacturing model, explores hot topics and concerns and focuses on the classification of distributed parallel machine scheduling, distributed flow shop scheduling, distributed job shop scheduling and distributed assembly shop scheduling. The paper investigates these scheduling problems in terms of single-objective and multi-objective optimization, as well as processing constraints. It also summarizes the relevant optimization algorithms and their limitations. It also provides an overview of research methods and objects, highlighting the development of solution methods and research trends for new problems. Finally, the paper analyzes future research directions in this field.



    Discrete lifetime data—such as the number of appliance failures of a particular brand within a given time frame, the total number of machine operations prior to a failure, the number of bullets fired by a weapon before the first malfunction, and the anticipated lifespan of humans (in years)—are frequently handled in reliability lifetime studies. For more classic examples, see Szymkowiak and Iwinska [1]. Data scientists typically employ discrete models as analysis tools, such as the Poisson distribution, negative binomial distribution, and geometric distribution, in order to more correctly define, analyze, and model these data. But in many situations, these discrete distribution functions are not the best options. For instance, seasonal or periodic data cannot be handled by the Poisson distribution, while underdispersed data cannot be described by the negative binomial distribution. More suitable discrete lifetime distributions are required to explore many additional kinds of complex discrete lifespan data. Discretizing continuous random variables is a useful strategy that yields a discrete life model with characteristics that are comparable to the continuous model.

    The essential concept of discretizing continuous random variables was first presented by Roy [2]. Specifically, let Y be a continuous random variable with a survival function denoted by S(y). Define the random variable Z=[Y] as the maximum integer less than or equal to Y. The probability mass function (PMF) P(Z=z) of Z can be expressed as

    P(Z=z)=SY(z)SY(z+1).

    Many researchers have introduced various new models for discrete life distributions by the approach. For instance, the discrete normal distribution was first introduced by Roy [3]. Using the generic method of discretizing a continuous distribution, Krishna and Pundir [4] introduced the discrete Burr and Pareto distributions. In addition, Bracquemond and Gaudoin [5] provided an extensive overview of discrete distributions, such as the Weibull distribution, that are employed in reliability to describe discrete lifetimes of nonrepairable systems. It is well-known that the Weibull distribution has become the most commonly used distribution for analyzing continuous life data due to its ability to fit various types of data and relatively simple structure (Johnson et al. [6]). At least three cases exist for the corresponding discrete Weibull distribution: (a) the Type Ⅰ discrete Weibull distribution, which maintains the form of the continuous survival function (SF), as introduced by Nakagawa and Osaki [7]; (b) the Type Ⅱ discrete Weibull distribution, as suggested by Stein and Dattero [8]; and (c) the three-parameter discrete Weibull distribution, as introduced by Padgett and Spurrier [9]. The most popular of them is the Type Ⅰ discrete Weibull distribution, whose features have been extensively researched by numerous academics. Englehardt and Li [10] employed the discrete Weibull distribution to analyze pathogen counts in treated water over time. Barbiero [11,12] compared several parameter estimation methods of this distribution, and solved the minimum Chi-square and least squares estimation. Vila et al. [13] studied in detail the basic theoretical properties of the Type Ⅰ discrete Weibull and analyzed the censored data. Yoo [14] extended the application of the discrete Weibull regression model to accommodate missing data. In addition, El-Morshedy et al. [15] conducted a detailed study on a new bivariate exponential discrete Weibull distribution.

    The primary goal in this study is to enhance the current techniques for estimating the complex discrete probability distribution model. The probability distribution's score function typically lacks an explicit analytical solution, hence the Newton approach is usually used to estimate the numerical solution for parameter estimation. Nevertheless, the algorithm's low convergence and strong dependence on the initial value make it challenging to achieve the best estimation outcomes. Recently, Liu et al. [16] employed the majorize minimize (MM) algorithm to enhance the resolution of the maximum likelihood estimation for the simplex distribution. Li and Tian [17] introduced a novel root-finding method known as the upper-crossing/solution (US) algorithm. In contrast to conventional iterative algorithms (like Newton's algorithm), the US algorithm can lessen the influence of initial values and achieve a strong, stable convergence to the objective equation's real root at each iteration. The benefits of this technique have been illustrated through the use of a few classic models, such as the Weibull distribution, gamma distribution, zeta distribution, and generalized Poisson distribution. Cai [18] has improved the maximum likelihood estimation of generalized gamma distribution parameters by combining the US algorithm with the second-derivative lower-bound function (SeLF) algorithm.

    The essence of the US algorithm is to identify a U-function U(θ|θ(t)), which simplifies the solution of the complicated nonlinear equation h(θ)=0 to the solution of the equation U(θ|θ(t))=0 with an explicit solution. Li and Tian [17] presented a variety of approaches to discover the U-function, among which the first-derivative lower bound (FLB) function method requires only by using the first derivative of the objective function h(θ), thereby diminishing algorithmic complexity. In previous research on the US algorithm, it was generally used to solve the roots of univariate nonlinear equations or the maximum likelihood estimation problem of a multi-parameter probability distribution with an explicit partial score function. Specifically, for a probability distribution with two parameters (α,β), while solving for maximum likelihood estimation, the estimator of the parameter α can be explicitly expressed by the other estimator of the parameter β(α). However, there is no further discussion provided in Li and Tian [17] about whether this approach can be applicable in more complex multi-parameter distributions, where an estimator of one parameter cannot be clearly represented by the other, and it is an issue deserving of more investigation.

    The rest of the paper will proceed as follows. Section 2 provides a detailed introduction to the US algorithm and FLB function method. The application of the suggested approach to the Type Ⅰ discrete Weibull distribution's maximum likelihood parameter estimation is covered in Section 3. Numerical simulation experiments will be conducted in Section 4 in order to evaluate the performance of the employed methods and compare them with alternative estimation approaches. Section 5 will demonstrate the applicability of the US algorithm through the analysis of two real data sets. Conclusions and discussions will be provided in Section 6.

    One of the most frequent issues in numerical computations is figuring out the zero point of a function or an equation's root. In classical statistics, the maximum likelihood estimate (MLE) of parameters and the calculation of maximum a posteriori probability in Bayesian statistics may typically be turned into the problem of solving the zero point of a nonlinear function h(θ). In summary, since h(θ) is a nonlinear function of a single variable θ, we must identify the unique root θ such that

    h(θ)=0,θΘR. (2.1)

    The US algorithm is the most recent method for discovering roots. It has a similar procedure to the commonly used EM (expectation maximum) and MM (maximize minimize) algorithms[17]. There are two primary steps in this process: the upper-crossing step (U-step) and the solution step (S-step). The two primary advantages of this algorithm are as follows:

    (a) It converges strongly and stably to the root θ of the Eq (2.1) with each iteration, that is, for an iterative points set sequence {θ(t)}t=0, there is

    θ(0)<θ(1)<<θ(t)<θorθ<θ(t)<<θ(1)<θ(0).

    (b) The Newton algorithm's sensitivity to the initial value is decreased.

    Two new symbols, sgn(α) and sgn(α), are introduced regarding the changing direction (CD) inequalities in order to simplify the explanation of the US algorithm. The specific definition is presented as follows: for two functions f1(x) and f2(x) on the same domain Q,

    f1(x)sgn(α)f2(x){f1(x)f2(x),α>0,f1(x)=f2(x),α=0,f1(x)f2(x),α<0,

    and

    f1(x)sgn(α)f2(x){f1(x)f2(x),α>0,f1(x)=f2(x),α=0,f1(x)f2(x),α<0.

    It is typically challenging to locate the root θ of the nonlinear equation h(θ)=0 directly. The US algorithm aims to create an alternative function U(θ|θ(T)) to replace h(θ), transforming the challenge of solving complex nonlinear equations into solving the equation U(θ|θ(T)) with explicit solutions. First, we assume that

    h(θ)<0,θ>θ and h(θ)>0,θ<θ. (2.2)

    If h(θ)<0 when θ<θ, then both sides of the equation h(θ)=0 can be multiplied by -1, which can also obtain the same root θ satisfying the assumption (2.2). Let θ(t) represent the solution after the (t-1)-th iteration, and the function U(θ|θ(t)) satisfying the following criteria is designated as the U-function of h(θ) at θ=θ(t):

    h(θ)U(θ|θ(t)),θ<θ(t),h(θ(t))=U(θ(t)|θ(t)),θ=θ(t),h(θ)U(θ|θ(t)),θ>θ(t). (2.3)

    According to the definition of the CD inequalities symbol, the above condition may be represented as

    h(θ)sgn(θθ(t))U(θ|θ(t)),θ,θ(t)Θ. (2.4)

    As described above, the US algorithm is an iterative approach for solving nonlinear equations, with each iteration including a U-step and an S-step. The purpose of the U-step is to find a U-function that satisfies the condition (2.4), whereas the S-step involves solving the simplified U-equation: U(θ|θ(t))=0 to obtain its root θ(t+1),

    θ(t+1)=sol{U(θ|θ(t))=0,θ,θ(t)Θ}. (2.5)

    In typical scenarios, θ(t+1) can be explicitly expressed, even as a linear equation. Through the iterative execution of these two steps, {θ(t)}t=0 can gradually converge to the real root θ of the U-equation.

    There are numerous U-functions for a given objective function h(θ); as Eq (2.4) illustrates, distinct U-functions correlate to distinct US algorithms. We may express the U-function using the lower-order derivatives of the goal function h(θ). This can be accomplished by a variety of techniques, such as the first-derivative lower bound (FLB), second-derivative lower-upper bound (SLUB) constants method, and third-derivative lower bound (TLB) constant method [17]. These three methodologies enhance efficient solutions when the objective function is complex and the solution is not closed, each with a distinct convergence speed. In terms of maximizing the objective function, the US algorithm based on the FLB approach shares qualities with the EM algorithm and the MM algorithm, both of which exhibit linear convergence. The FLB function technique, which is dependent on the target function's first-order derivative, is mostly used in this article to generate the required U-function. First for parameter space Θ, we suppose that there exists a certain first-derivative lower bound function b(θ) for the first derivative of h(θ), i.e.,

    h(θ)b(θ),θΘ. (2.6)

    The U-function of h(θ) at θ=θ(t) can be formally defined as follows

    U(θ|θ(t))Δ=h(θ(t))+θθ(t)b(z)dz,θ,θ(t)Θ. (2.7)

    In fact,

    h(θ)U(θ|θ(t))=[h(θ)h(θ(t))]θθ(t)b(z)dz=θθ(t)h(z)dzθθ(t)b(z)dz=θθ(t)[h(z)b(z)]dzsgn(θθ(t))0,θ,θ(t)Θ.

    Let θ be the unique root of the equation h(θ)=0, and then the corresponding US iteration is as follows:

    θ(t+1)=sol{U(θ|θ(t))=h(θ(t))+θθ(t)b(z)dz=0,θ,θ(t)>0}Δ=g(θ(t)), (2.8)

    where g(θ(t))=g(θ)+(θ(t)θ)h(θ)+0.5(θ(t)θ)2h(ˆθ) is the first-order Taylor expansion around θ, and θ is a point between θ(t) and θ.

    Although Li and Tian [17] proposed the idea of the US algorithm, in practical applications, only the distribution of univariate and binary parameters were studied. In the case of binary parameter distribution, when discussing the solution of the scoring equation, only one parameter can be explicitly expressed with another parameter. However, when one parameter cannot be explicitly expressed by the other parameter for this more general and complex situation, whether the US algorithm can be effectively applied is not further discussed, which is the issue to be carried out in this article. For the parameters of interest, the new FLB functions are constructed in this article, then, starting with initial values, the iterative values are updated using the corresponding S-step until the convergence criteria are met.

    The discrete Weibull distribution's score function has a complex double exponential form, which makes it impossible to depict its solution and, thus, prevents its two parameters from being mutually expressed. For investigating the US algorithm's applicability in complicated models, we combine the US algorithm with the FLB method in this section to optimize the maximum likelihood estimation.

    Assuming a random variable following the Weibull distribution W(λ,β), where λ>0 and β>0, the cumulative distribution function (CDF) of the Weibull distribution is defined as H(t,λ,β)=1eλtβ, where t>0. Define α=eλ, and then 0<α<1. If the probability mass function (PMF) for a random variable X can be represented as

    P(X=x;α,β)=α([x]1)βα[x]β,(x1),

    then we say that X follows the Type Ⅰ discrete Weibull distribution, denoted as XDW(θ). Here, [x] represents the maximum integer less than or equal to x. When β = 1, the discrete Weibull distribution degenerates to the geometric distribution Geo(q) with q=1α.

    Naturally, the cumulative distribution function of X takes the following form:

    F(x;α,β)=1α[x]β.

    This section will go into detail on the application of the US algorithm for maximum likelihood estimation of the Type Ⅰ discrete Weibull distribution. Assume X is a random variable with the Type Ⅰ discrete Weibull distribution DW(θ), where the parameter vector θ=(α,β)T is in the parameter space ΘR2. Let x=(x1,...,xn) denote the observed values of the random sample (X1,...,Xn). Then, the log-likelihood function of the parameter vector θ is given by

    (θ|x)=ni=1log(α(xi1)βα(xi)β).

    First, the first-order partial derivative of (θ|x) with respect to α can be calculated as

    (θ|x)α=ni=1α1[α(xi1)β(xi1)βαxβixβiα(xi1)βαxβi]Δ=h1(α). (3.1)

    Next, we construct the FLB function regarding the parameter α:

    h1(α)=ni=1[[(xi1)β1](xi1)βα(xi1)β2(xβi1)xβiαxβi2](α(xi1)βαxβi)(α(xi1)βαxβi)2ni=1[α(xi1)β(xi1)βαxβi1xβi]((xi1)βα(xi1)β1xβiαxβi1)(α(xi1)βαxβi)2ni=1[α2(xi1)β2[(xi1)β+(xi1)2β]+αxβi+(xi1)β2[(xi1)2β+x2βi]+α2xβi2[x2β+xβii]](α(xi1)βαxβi)ni=1α2(xi1)β2[2(xi1)2β+2x2βi+(xi1)β+xβi](α(xi1)βαxβi)2ni=14x2βi+2xβi(αα2)2=ni=13[4x2βi+2xβi][1α2+1(1α)2]Δ=b1(α). (3.2)

    Then, the US iteration of α can be obtained as follows:

    α(t+1)=sol[Uα(α,β|α(t),β(t))=h1(α(t))+αα(t)b1(z)dz=0]=sol[C1+3C2[1α11α]3C2[1α(t)11α(t)]=0]]=sol[(C3C1)α2(6C2+C3C1)α+3C2=0], (3.3)

    where C1=h1(α(t)), C2=ni=1[4x2β(t)i+2xβ(t)i], and C3=3C2[1α(t)11α(t)]. Similarly, we can obtain the first-order partial derivative of (θ|x) with respect to β,

    (θ|x)β=ni=1logα[α(xi1)β(xi1)βlog(xi1)αxβixβilog(xi)α(xi1)βαxβi]Δ=h2(β). (3.4)

    In order to construct the FLB function and derive the US algorithm without explicit solutions for the two parameters, we need the following two lemmas.

    Lemma 1. [18] Given that θ>0, we have

    eθ4e2max(θ(t)1,0)(2θ(t)θ)2,0θ2θ(t)andθ(t)>0.

    Lemma 2. [18] For any θ0, we have

    eθ23θ2.

    We will then build the FLB function with respect to β. First, we calculate h2(β)'s first derivative.

    h2(β)=ni=1log(α)[log2(xi1)(xi1)2βα2(xi1)β(1logα)+log2(xi)x2βiα2(xi1)β(1log(α))](α(xi1)βαxβi)2+ni=1log(α)[2log(α)log(xi)log(xi1)xβi(xi1)βlog2(xi1)(xi1)βlog2(xi)xβi]α2xβi(α(xi1)βαxβi)2ni=1[2log2(xi)x2βiα2(xi1)β[1log(α)]2log2(xi1)(xi1)βα2xβi[1log(α)]](α(xi1)βαxβi)ni=12log(α)(1log(α))log2(xi)x2βiα2(xi1)β(α(xi1)βαxβi)22log(α)(1log(α))[1α]2[ni=1log2(xi)x2βi].

    It can be deduced from Lemma 1 and Lemma 2 that

    ni=1log2(xi)x2βi=ni=1e2βlog(xi)log2(xi)ni=1[4e2max(2β(t)log(xi)1,0)I(log(xi)>0)[4β(t)log(xi)2β]2+2I(log(xi)0)3[2βlog(xi)]2]log2(xi)=ni=1[4e2max(2β(t)log(xi)1,0)I(xi>1)(4β(t)2β)2+I(xi=1)6β2],

    where I() is the indicator function. Then, the corresponding FLB function is obtained as follows:

    2log(α)(1log(α))[1α]2ni=1[e2max(2β(t)log(xi)1,0)I(xi>1)(2β(t)β)2+I(xi=1)6β2]Δ=b2(β). (3.5)

    Therefore, the US iterative process for parameter β can be given by

    β(t+1)=sol[Uβ(α,β|α(t+1),β(t))=h2(β(t))+ββ(t)b2(z)dz=0]=sol[h2(β(t))+a1[a22β(t)βI(xi=1)6β]a1[a2β(t)I(xi=1)6β(t)]]=sol[6a3β2a4β+a5=0], (3.6)

    where

    a1=2log(α(t+1))(1log(α(t+1)))(1α(t+1))2,a2=e2max(2β(t)log(xi)1,0)I(xi>1),a3=h2(β(t))a1[a2β(t)I(xi=1)6β(t)],a4=12a3β(t)+6a1a2+a1I(xi=1),a5=2a1I(xi=1)β(t).

    The algorithm process for estimating two parameters can be described as follows. In the first stage, we determine the FLB functions for parameters α and β using Eqs (3.2) and (3.5), respectively. Subsequently, we set two initial values α(t) and β(t), calculate Eq (3.3) to get α(t+1), and then compute β(t+1) via Eq (3.6) using α(t+1) and β(t). If both of the estimates for the parameters satisfy the convergence criteria, then their corresponding values will be returned. Otherwise, we resume to update the iteration value and repeat the preceding steps until the two estimated parameters converge.

    Algorithm :Calculating the MLEs of α and β via the US algorithm.
    Input: The initial value α(0) and β(0); The observed data Xobs={xi}ni=0;
    Output: ˆα,ˆβ.
    1 Select FLB function for parameters α and β, respectively;
    2 Set initial values α(t),β(t), t = 0;
    3 repeat
    4   Using α(t) and β(t), calculate α(t+1) based on (3.3);
    5   Using α(t+1) and β(t), calculate β(t+1) based on (3.6), update t = t + 1;
    6 until convergence.

    In this section, we conduct simulation studies to confirm the applicability to complex nonlinear equations and compare its performance to that of the classic Newton algorithm. First, we provide the calculation steps for parameter estimation using the Newton algorithm as follows:

    Step 1 : α(t+1)=α(t)(θ|x)α(α(t),β(t))/2(θ|x)α2(α(t),β(t)),Step 2 : β(t+1)=β(t)(θ|x)β(α(t+1),β(t))/2(θ|x)β2(α(t+1),β(t)).

    The sample size of the studies is set as n = (50,100,200), and the parameters are set as α=(0.2,0.4,0.6,0.8) and β=(0.5,1.0,1.5,2.0), respectively. We independently generated X(k)1,,X(k)niidDW(α,β), where k=1,,K(K = 1000). The MLE of the parameters under the US algorithm were computed via Eqs (3.2) and (3.4). For every combination of parameters, we ran 1000 iterations of the experiments and evaluated the two methods' fitting performance using the convergence percentage and the mean squared error (MSE) of parameter estimation.

    Tables 14 display the outcomes of the two algorithms' simulations for each scenario. The MSE of the parameters under both algorithms progressively drops as the sample size rises, according to the statistics in the table, suggesting that both techniques are asymptotically unbiased. When the value of β is fixed, as the value of α increases, the MSE of β will steadily decrease. Overall, the MSE of both parameters under the US algorithm is smaller than that of the Newton algorithm, suggesting that the US algorithm performs better when it comes to estimation. Furthermore, it is evident from the table's convergence percentages that the US algorithm is more stable.

    Table 1.  The MSE and percentage from simulated data for β=0.5.
    Sample size 50
    Parameters (α,β)=(0.2,0.5) (α,β)=(0.4,0.5)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00312 0.00234 0.00429 0.00345
    MSE (ˆβ) 0.02222 0.02031 0.00931 0.00631
    Parameters (α,β)=(0.6,0.5) (α,β)=(0.8,0.5)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00422 0.00217 0.00233 0.00117
    MSE (ˆβ) 0.00535 0.00115 0.00547 0.00062
    Sample size 100
    Parameters (α,β)=(0.2,0.5) (α,β)=(0.4,0.5)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00149 0.00122 0.00253 0.00208
    MSE (ˆβ) 0.01294 0.01072 0.00451 0.00307
    Parameters (α,β)=(0.6,0.5) (α,β)=(0.8,0.5)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00193 0.00178 0.00106 0.00081
    MSE (ˆβ) 0.00215 0.00079 0.00207 0.00047
    Sample size 200
    Parameters (α,β)=(0.2,0.5) (α,β)=(0.4,0.5)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00082 0.00069 0.00128 0.00117
    MSE (ˆβ) 0.00647 0.00544 0.00244 0.00183
    Parameters (α,β)=(0.6,0.5) (α,β)=(0.8,0.5)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00106 0.00073 0.00064 0.00048
    MSE (ˆβ) 0.00112 0.00057 0.00102 0.00045

     | Show Table
    DownLoad: CSV
    Table 2.  The MSE and percentage from simulated data for β=1.0.
    Sample size 50
    Parameters (α,β)=(0.2,1.0) (α,β)=(0.4,1.0)
    Algorithms Newton US Newton US
    Percentage 87% 100% 100% 100%
    MSE (ˆα) 0.00273 0.00214 0.00542 0.00259
    MSE (ˆβ) 0.06586 0.05798 0.05064 0.02234
    Parameters (α,β)=(0.6,1.0) (α,β)=(0.8,1.0)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00492 0.00297 0.00269 0.00090
    MSE (ˆβ) 0.02579 0.01286 0.01075 0.00106
    Sample size 100
    Parameters (α,β)=(0.2,1.0) (α,β)=(0.4,1.0)
    Algorithms Newton US Newton US
    Percentage 97% 100% 100% 100%
    MSE (ˆα) 0.00160 0.00114 0.00260 0.00150
    MSE (ˆβ) 0.04316 0.02192 0.02013 0.01119
    Parameters (α,β)=(0.6,1.0) (α,β)=(0.8,1.0)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00196 0.00123 0.00132 0.00065
    MSE (ˆβ) 0.01236 0.00674 0.00922 0.00091
    Sample size 200
    Parameters (α,β)=(0.2,1.0) (α,β)=(0.4,1.0)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00078 0.00048 0.00114 0.00074
    MSE (ˆβ) 0.01835 0.00674 0.00866 0.00607
    Parameters (α,β)=(0.6,1.0) (α,β)=(0.8,1.0)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00109 0.00065 0.00051 0.00030
    MSE (ˆβ) 0.00541 0.00320 0.00319 0.00088

     | Show Table
    DownLoad: CSV
    Table 3.  The MSE and percentage from simulated data for β=1.5.
    Sample size 50
    Parameters (α,β)=(0.2,1.5) (α,β)=(0.4,1.5)
    Algorithms Newton US Newton US
    Percentage 39% 100% 98% 100%
    MSE (ˆα) 0.00529 0.00229 0.00520 0.00276
    MSE (ˆβ) 0.10368 0.10098 0.08433 0.05747
    Parameters (α,β)=(0.6,1.5) (α,β)=(0.8,1.5)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00375 0.00309 0.00334 0.00187
    MSE (ˆβ) 0.05022 0.03443 0.04337 0.00426
    Sample size 100
    Parameters (α,β)=(0.2,1.5) (α,β)=(0.4,1.5)
    Algorithms Newton US Newton US
    Percentage 59% 100% 100% 100%
    MSE (ˆα) 0.00141 0.00108 0.00183 0.00152
    MSE (ˆβ) 0.04498 0.04198 0.05027 0.02460
    Parameters (α,β)=(0.6,1.5) (α,β)=(0.8,1.5)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00193 0.00115 0.00123 0.00071
    MSE (ˆβ) 0.02331 0.00817 0.01853 0.00367
    Sample size 200
    Parameters (α,β)=(0.2,1.5) (α,β)=(0.4,1.5)
    Algorithms Newton US Newton US
    Percentage 85% 100% 100% 100%
    MSE (ˆα) 0.00074 0.00070 0.00121 0.00099
    MSE (ˆβ) 0.03839 0.02496 0.01860 0.00719
    Parameters (α,β)=(0.6,1.5) (α,β)=(0.8,1.5)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00067 0.00049 0.00065 0.00048
    MSE (ˆβ) 0.00921 0.00393 0.00960 0.00324

     | Show Table
    DownLoad: CSV
    Table 4.  The MSE and percentage from simulated data for β=2.0.
    Sample size 50
    Parameters (α,β)=(0.2,2.0) (α,β)=(0.4,2.0)
    Algorithms Newton US Newton US
    Percentage 5% 100% 73% 100%
    MSE (ˆα) 0.00589 0.00235 0.00445 0.00286
    MSE (ˆβ) 0.50894 0.15827 0.06508 0.05573
    Parameters (α,β)=(0.6,2.0) (α,β)=(0.8,2.0)
    Algorithms Newton US Newton US
    Percentage 99% 100% 100% 100%
    MSE (ˆα) 0.00478 0.00198 0.00205 0.00153
    MSE (ˆβ) 0.11310 0.01770 0.06167 0.01236
    Sample size 100
    Parameters (α,β)=(0.2,2.0) (α,β)=(0.4,2.0)
    Algorithms Newton US Newton US
    Percentage 7% 100% 89% 100%
    MSE (ˆα) 0.00258 0.00155 0.00213 0.00153
    MSE (ˆβ) 0.02659 0.07759 0.05018 0.03908
    Parameters (α,β)=(0.6,2.0) (α,β)=(0.8,2.0)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00201 0.00092 0.00121 0.00084
    MSE (ˆβ) 0.04086 0.00654 0.03288 0.00463
    Sample size 200
    Parameters (α,β)=(0.2,2.0) (α,β)=(0.4,2.0)
    Algorithms Newton US Newton US
    Percentage 27% 100% 99% 100%
    MSE (ˆα) 0.00136 0.00077 0.00129 0.00102
    MSE (ˆβ) 0.10796 0.05642 0.04357 0.02541
    Parameters (α,β)=(0.6,2.0) (α,β)=(0.8,2.0)
    Algorithms Newton US Newton US
    Percentage 100% 100% 100% 100%
    MSE (ˆα) 0.00116 0.00054 0.00066 0.00041
    MSE (ˆβ) 0.02345 0.00357 0.01886 0.00200

     | Show Table
    DownLoad: CSV

    The trend of the predicted values of α and β using the US algorithm and Newton technique as the number of iterations grows is shown in Figure 1. From a stability standpoint, the Newton method shows significant instability and often requires multiple twists to preserve the correct trend, while the US algorithm approaches the true values of parameters monotonically. From a convergence speed perspective, the FLB method exhibits linear convergence, while the Newton algorithm demonstrates quadratic convergence. Consequently, the FLB method has a comparatively slower convergence rate.

    Figure 1.  Simulation results of both algorithms.

    This section describes the analysis of two different real data sets to illustrate the applicability of the US algorithm. The first data set in Table 5 contains the remission times in weeks of 20 leukemia patients with treatment studied by Hassan et al. [19]. Another data set is from the National Highway Traffic Safety Administration (www-fars.nhtsa.dot.gov) of the United States, which reports the number of fatalities due to motor vehicle accidents among children under the age of 5 in 32 states during the year 2022.

    Table 5.  The leukaemia patients data and the vehicle fatalities data.
    Data 1 1 3 3 6 7 7 10 12 14 15 18 19 22 26 28 29 34 40 48 49
    Data 2 15 1 6 3 23 6 1 25 14 4 13 15 7 14 2 2 8 12 3 6 12 13 2 8 2 10 5 15 47 7 3 4

     | Show Table
    DownLoad: CSV

    We model the two data sets with the Type Ⅰ discrete Weibull distribution and the geometric distribution. The fitting results for the leukemia patients data by two distributions are provided in Table 6. The results of the Cramer-von Mises test, Anderson-Darling test, and Kolmogorov-Smirnov test show that the two distributions can successfully fit the data set. The p-values from the three tests of the Type Ⅰ discrete Weibull distribution employing the US algorithm demonstrate the best fitting effect. Moreover, the values of Akaike information criterion (AIC) [20] and Bayesian information criterion (BIC) [21] also show that the DW distribution based on the US algorithm has better estimation effect.

    Table 6.  Fitting for the leukaemia patients data by the DW distribution and the geometric distribution.
    Methods Estimates AIC BIC p-value(KS) p-value(AD) p-value(CVM)
    DW distribution (New) α=0.9282 β=0.9477 163.1752 165.1667 0.4207 0.1952 0.1533
    DW distribution (US) α=0.9513 β=1.0000 161.9296 163.9211 0.9722 0.8817 0.8463
    Geo distribution q=0.0512 161.9783 162.9741 0.7035 0.4456 0.3946

     | Show Table
    DownLoad: CSV

    Table 7 shows the results of fitting the vehicle fatality data with the Type Ⅰ discrete Weibull distribution and the geometric distribution. Comparing the p-values of the three tests at the significance level α=0.05 reveals that the Geo distribution and the Type Ⅰ discrete Weibull distribution estimated by the Newton algorithm are considered to be insufficient. The fitting effectiveness of the DW distribution using the US algorithm is significant, as indicated by the values of AIC and BIC. The histogram for two different data sets evaluated by the DW distribution and the Geo distribution is shown in Figure 2. Figures 3 and 4 present QQ plots for these two distributions. It is also evident that the US algorithm performs better.

    Table 7.  Fitting for the vehicle fatalities data by the DW distribution and the geometric distribution.
    Methods Estimates AIC BIC p-value(KS) p-value(AD) p-value(CVM)
    DW distribution (New) α=0.9122 β=1.1756 212.8066 215.2212 0.1822 0.1324 0.1755
    DW distribution (US) α=0.8852 β=0.9672 209.7482 212.6796 0.4707 0.3948 0.4147
    Geo distribution q=0.1039 214.4938 215.9596 0.0957 0.0857 0.0941

     | Show Table
    DownLoad: CSV
    Figure 2.  Histogram of leukaemia patients data (left panel) and vehicle fatalities data (right panel), and the correlation density curve fitted by the DW and Geo distributions.
    Figure 3.  QQ plots of the first data for the DW (US) (left panel), DW (Newton) (middle panel), and Geo distributions (right panel).
    Figure 4.  QQ plots of the second data for the DW (US) (left panel), DW (Newton) (middle panel), and Geo distributions (right panel).

    The US algorithm is a novel iterative method with high stability and convergence. The existing research only involves simple models such as univariate nonlinear equations or univariate functions. This paper extends the US algorithm to more complex cases of two parameter discrete distribution functions, where one parameter cannot be explicitly represented by the other parameter estimate. In order to successfully estimate the parameters, this paper combines the FLB method to perform optimization estimation of a distribution function. The simulation results for the Type Ⅰ discrete Weibull distribution demonstrate that the US algorithm has good accuracy and stability. Simultaneously, for the purpose of demonstrating the applicability of the algorithm in complex situations, this paper conducted empirical research on two real data sets that follow the Type Ⅰ discrete Weibull distribution, namely, the data from patients with leukemia and children who die from motor vehicle accidents. After comparing and analyzing the US method with the conventional Newton algorithm, the results show that the recommended strategy has an excellent fitting effect.

    Yuanhang Ouyang: Formal analysis, Writing original draft, Software, Investigation, Methodology, Data curation; Ruyun Yan: Validation, Software, Formal analysis; Jianhua Shi: Validation, Resources, Writing-review and editing, Methodology. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was conducted under a project titled "The National Social Science Fund of China" (20XTJ003).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] G. Tang, H. Mai, How does manufacturing intelligentization influence innovation in china from a nonlinear perspective and economic servitization background?, Sustainability, 14 (2022), 14032–14032. https://doi.org/10.3390/su142114032 doi: 10.3390/su142114032
    [2] H. Zhang, G. Xu, R. Pan, H. Ge, A novel heuristic method for the energy-efficient flexible job-shop scheduling problem with sequence-dependent set-up and transportation time, Eng. Optim., 54 (2022), 1646–1667. https://doi.org/10.1080/0305215X.2021.1949007 doi: 10.1080/0305215X.2021.1949007
    [3] Ö. Tosun, M. K. Marichelvam, N. Tosun, A literature review on hybrid flow shop scheduling, J. Oper. Manage., 12 (2020), 156–194. https://doi.org/10.1504/IJAOM.2020.108263 doi: 10.1504/IJAOM.2020.108263
    [4] L. Wang, Shop Scheduling with Genetic Algorithms, Tsinghua University & Springer Press, Beijing, 2003.
    [5] W. Xu, R. Wu, L. Wang, X. Zhao, X. Li, Solving a multi-objective distributed scheduling problem for building material equipment group enterprises by measuring quality indicator with a product gene evaluation approach, Comput. Ind. Eng., 168 (2022), 108142. https://doi.org/10.1016/j.cie.2022.108142 doi: 10.1016/j.cie.2022.108142
    [6] Y. Koren, S. J. Hu, P. Gu, M. Shpitalni, Open-architecture products, CIRP Ann., 62 (2013), 719–729. https://doi.org/10.1016/j.cirp.2013.06.001 doi: 10.1016/j.cirp.2013.06.001
    [7] F. Tao, Q. Qi, A. Liu, A. Kusiak, Data-driven smart manufacturing, J. Manuf. Syst., 48 (2018), 157–169. https://doi.org/10.1016/j.jmsy.2018.01.006 doi: 10.1016/j.jmsy.2018.01.006
    [8] J. Leng, Z. Chen, W. Sha, Z. Lin, J. Lin, Q. Liu, Digital twins-based flexible operating of open architecture production line for individualized manufacturing, Adv. Eng. Inf., 53 (2022), 101676. https://doi.org/10.1016/j.aei.2022.101676 doi: 10.1016/j.aei.2022.101676
    [9] W. Shen, L. Wang, Q. Hao, Agent-based distributed manufacturing process planning and scheduling: a state-of-the-art survey, IEEE Trans. Syst. Man Cybern. Syst., 36 (2006), 563–577. https://doi.org/10.1109/TSMCC.2006.874022 doi: 10.1109/TSMCC.2006.874022
    [10] R. Agarwal, P. De, C. E. Wells, Cooperative distributed problem solving: an investigation in the domain of job shop scheduling, in Proceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences, IEEE, 3 (1995), 4–12. https://doi.org/10.1109/HICSS.1995.375579
    [11] C. P. Gomes, A. Tate, L. Thomas, A distributed scheduling framework, in Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94, IEEE, (1994), 49–55. https://doi.org/10.1109/TAI.1994.346514
    [12] A. Toptal, I. Sabuncuoglu, Distributed scheduling: a review of concepts and applications, Int. J. Prod. Res., 48 (2010), 5235–5262. https://doi.org/10.1080/00207540903121065 doi: 10.1080/00207540903121065
    [13] Z. Shao, W. Shao, D. Pi, Effective heuristics and metaheuristics for the distributed fuzzy blocking flow-shop scheduling problem, Swarm Evol. Comput., 59 (2020), 100747. https://doi.org/10.1016/j.swevo.2020.100747 doi: 10.1016/j.swevo.2020.100747
    [14] S. Apte, N. Petrovsky, Will blockchain technology revolutionize excipient supply chain management?, J. Excipients Food Chem., 7 (2016), 76–78.
    [15] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, F. Sui, Digital twin-driven product design, manufacturing and service with big data, Int. J. Adv. Manuf. Technol., 94 (2018), 3563–3576. https://doi.org/10.1007/s00170-017-0233-1 doi: 10.1007/s00170-017-0233-1
    [16] J. Yli-Huumo, D. Ko, S. Choi, S. Park, K. Smolander, Where is current research on blockchain technology?—a systematic review, PLoS One, 11 (2016), e163477. https://doi.org/10.1371/journal.pone.0163477 doi: 10.1371/journal.pone.0163477
    [17] J. Leng, P. Jiang, K. Xu, Q. Liu, J. L. Zhao, Y. Bian, et al., Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing, J. Clean. Prod., 234 (2019), 767–778. https://doi.org/10.1016/j.jclepro.2019.06.265 doi: 10.1016/j.jclepro.2019.06.265
    [18] Y. Wu, Cloud-edge orchestration for the internet of things: architecture and AI-powered data processing, IEEE Internet Things, 8 (2021), 12792–12805. https://doi.org/10.1109/JIOT.2020.3014845 doi: 10.1109/JIOT.2020.3014845
    [19] J. Leng, Z. Chen, W. Sha, S. Ye, Q. Liu, X. Chen, Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services, J. Manuf. Syst., 63 (2022), 143–161. https://doi.org/10.1016/j.jmsy.2022.03.008 doi: 10.1016/j.jmsy.2022.03.008
    [20] L. Wang, W. Shen, Process Planning and Scheduling for Distributed Manufacturing, Springer Science & Business Media, 2007.
    [21] P. Wu, Y. Wang, J. Cheng, Y. Li, An improved mixed-integer programming approach for bi-objective parallel machine scheduling and location, Comput. Ind. Eng., 174 (2022), 108813. https://doi.org/10.1016/j.cie.2022.108813 doi: 10.1016/j.cie.2022.108813
    [22] V. Heinz, A. Novák, M. Vlk, Z. Hanzálek, Constraint programming and constructive heuristics for parallel machine scheduling with sequence-dependent setups and common servers, Comput. Ind. Eng., 172 (2022), 108586. https://doi.org/10.1016/j.cie.2022.108586 doi: 10.1016/j.cie.2022.108586
    [23] G. Song, R. Leus, Parallel machine scheduling under uncertainty: Models and exact algorithms, INFORMS J. Comput., 34 (2022), 3059–3079. https://doi.org/10.1287/ijoc.2022.1229 doi: 10.1287/ijoc.2022.1229
    [24] N. Farmand, H. Zarei, M. Rasti-Barzoki, Two meta-heuristic algorithms for optimizing a multi-objective supply chain scheduling problem in an identical parallel machines environment, Int. J. Ind. Eng. Comput., 12 (2021), 249–272. https://doi.org/10.5267/j.ijiec.2021.3.002 doi: 10.5267/j.ijiec.2021.3.002
    [25] M. Abedi, H. Seidgar, H. Fazlollahtabar, R. Bijani, Bi-objective optimisation for scheduling the identical parallel batch-processing machines with arbitrary job sizes, unequal job release times and capacity limits, Int. J. Prod. Res., 53 (2015), 1680–1711. https://doi.org/10.1080/00207543.2014.952795
    [26] Y. Zheng, Y. Yuan, Q. Zheng, D. Lei, A hybrid imperialist competitive algorithm for the distributed unrelated parallel machines scheduling problem, Symmetry, 14 (2022), 204. https://doi.org/10.3390/sym14020204 doi: 10.3390/sym14020204
    [27] R. Logendran, B. McDonell, B. Smucker, Scheduling unrelated parallel machines with sequence-dependent setups, Comput. Oper. Res., 34 (2007), 3420–3438. https://doi.org/10.1016/j.cor.2006.02.006 doi: 10.1016/j.cor.2006.02.006
    [28] J. Behnamian, S. F. Ghomi, The heterogeneous multi-factory production network scheduling with adaptive communication policy and parallel machine, Inf. Sci., 219 (2013), 181–196. https://doi.org/10.1016/j.ins.2012.07.020 doi: 10.1016/j.ins.2012.07.020
    [29] D. Lei, M. Liu, An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance, Comput. Ind. Eng., 141 (2020), 106320–106320. https://doi.org/10.1016/j.cie.2020.106320 doi: 10.1016/j.cie.2020.106320
    [30] G. Bektur, T. Saraç, A mathematical model and heuristic algorithms for an unrelated parallel machine scheduling problem with sequence-dependent setup times, machine eligibility restrictions and a common server, Comput. Ind. Eng., 103 (2018), 46–63. https://doi.org/10.1016/j.cor.2018.10.010
    [31] H. Jouhari, D. Lei, M. A. Al-qaness, , M. A. Elaziz, A. A. Ewees, O. Farouk, Sine-cosine algorithm to enhance simulated annealing for unrelated parallel machine scheduling with setup times, Mathematics, 7 (2019), 1120. https://doi.org/10.3390/math7111120 doi: 10.3390/math7111120
    [32] D. Lei, Y. Yuan, J. Cai, D. Bai, An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling, Int. J. Prod. Res., 58 (2020), 597–614. https://doi.org/10.1080/00207543.2019.1598596 doi: 10.1080/00207543.2019.1598596
    [33] D. Li, J. Wang, R. Qiang, R. Chiong, A hybrid differential evolution algorithm for parallel machine scheduling of lace dyeing considering colour families, sequence-dependent setup and machine eligibility, Int. J. Prod. Res., 59 (2020), 1–17. https://doi.org/10.1080/00207543.2020.1740341
    [34] D. Lei, Y. Yuan, J. Cai, An improved artificial bee colony for multi-objective distributed unrelated parallel machine scheduling, Int. J. Prod. Res., 59 (2020), 1–13. https://doi.org/10.1080/00207543.2020.1775911 doi: 10.1080/00207543.2020.1775911
    [35] B. Shahidi-Zadeh, R. Tavakkoli-Moghaddam, A. Taheri-Moghadam, I. Rastgar, Solving a bi-objective unrelated parallel batch processing machines scheduling problem: A comparison study, Comput. Ind. Eng., 88 (2017), 71–90. https://doi.org/10.1016/j.cor.2017.06.019 doi: 10.1016/j.cor.2017.06.019
    [36] Y. He, C. W. Hui, Automatic rule combination approach for single-stage process scheduling problems, AIChE J., 53 (2007), 2026–2047. https://doi.org/10.1002/aic.11236 doi: 10.1002/aic.11236
    [37] Z. Pan, D. Lei, L. Wang, A knowledge-based two-population optimization algorithm for distributed energy-efficient parallel machines scheduling, IEEE Trans. Cybern., 52 (2020), 5051–5063. https://doi.org/10.1109/TCYB.2020.3026571 doi: 10.1109/TCYB.2020.3026571
    [38] L. Zhang, Q. Deng, Y. Zhao, Q. Fan, X. Liu, G. Gong, Joint optimization of demand-side operational utility and manufacture-side energy consumption in a distributed parallel machine environment, Comput. Ind. Eng., 164 (2022), 107863. https://doi.org/10.1016/j.cie.2021.107863 doi: 10.1016/j.cie.2021.107863
    [39] X. Wu, A. Che, A memetic differential evolution algorithm for energy-efficient parallel machine scheduling, Omega, 82 (2018), 155–165. https://doi.org/10.1016/j.omega.2018.01.001 doi: 10.1016/j.omega.2018.01.001
    [40] J. Behnamian, M. Zandieh, S. F. Ghomi, Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm, Expert Syst. Appl., 36 (2009), 9637–9644. https://doi.org/10.1016/j.eswa.2008.10.007
    [41] M. Yazdani, S. Gohari, B. Naderi, Multi-factory parallel machine problems: Improved mathematical models and artificial bee colony algorithm, Comput. Ind. Eng., 81 (2015), 36–45. https://doi.org/10.1016/j.cie.2014.12.023 doi: 10.1016/j.cie.2014.12.023
    [42] J. Behnamian, S. F. Ghomi, The heterogeneous multi-factory production network scheduling with adaptive communication policy and parallel machine, Inf. Sci., 219 (2013), 181–196. https://doi.org/10.1016/j.ins.2012.07.020 doi: 10.1016/j.ins.2012.07.020
    [43] J. Behnamian, Matheuristic for the decentralized factories scheduling problem, Appl. Math. Model., 47 (2017), 668–684. https://doi.org/10.1016/j.apm.2017.02.033 doi: 10.1016/j.apm.2017.02.033
    [44] J. Behnamian, Heterogeneous networked cooperative scheduling with anarchic particle swarm optimization, IEEE Trans. Eng. Manage., 64 (2017), 166–178. https://doi.org/10.1016/j.apm.2017.02.033 doi: 10.1016/j.apm.2017.02.033
    [45] J. Behnamian, S. M. T. F. Ghomi, Multi-objective multi-factory scheduling, RAIRO-Oper. Res., 55 (2021), S1447–S1467. https://doi.org/10.1051/ro/2020044 doi: 10.1051/ro/2020044
    [46] J. Behnamian, H. Asgari, A hyper-heuristic for distributed parallel machine scheduling with machine-dependent processing and sequence-dependent setup times, RAIRO-Oper. Res., 56 (2022), 4129–4143. https://doi.org/10.1051/ro/2022194 doi: 10.1051/ro/2022194
    [47] S. Hatami, R. Ruiz, C. Andrés-Romano, Heuristics for a distributed parallel machine assembly scheduling problem with eligibility constraints, in 2015 International Conference on Industrial Engineering and Systems Management (IESM), (2015), 145–153. https://doi.org/10.1109/IESM.2015.7380149
    [48] S. Hatami, R. R. García, C. A. Romano, The Distributed Assembly Parallel Machine Scheduling Problem with eligibility constraints, Int. J. Eng. Sci., 3 (2015), 13–23. https://doi.org/10.4995/ijpme.2015.3345 doi: 10.4995/ijpme.2015.3345
    [49] A. Hamzadayı, An effective benders decomposition algorithm for solving the distributed permutation flowshop scheduling problem, Comput. Oper. Res., 123 (2020), 105006. https://doi.org/10.1016/j.cor.2020.105006 doi: 10.1016/j.cor.2020.105006
    [50] V. Fernandez-Viagas, J. M. Framinan, A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 53 (2015), 1111–1123. https://doi.org/10.1080/00207543.2014.948578 doi: 10.1080/00207543.2014.948578
    [51] J. Y. Mao, Q. K. Pan, Z. H. Miao, L. Gao, S. Chen, A hash map-based memetic algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime, Knowl. Based Syst., 242 (2022), 108413. https://doi.org/10.1016/j.knosys.2022.108413 doi: 10.1016/j.knosys.2022.108413
    [52] K. Wang, Y. Huang, H. Qin, A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown, J. Oper. Res. Soc., 67 (2016), 68–82. https://doi.org/10.1057/jors.2015.50 doi: 10.1057/jors.2015.50
    [53] B. Naderi, R. Ruiz, The distributed permutation flowshop scheduling problem, Comput. Oper. Res., 37 (2010), 754–768. https://doi.org/10.1016/j.cor.2009.06.019 doi: 10.1016/j.cor.2009.06.019
    [54] E. Taillard, Some efficient heuristic methods for the flow shop sequencing problem, Eur. J. Oper. Res., 47 (1990), 65–74. https://doi.org/10.1016/0377-2217(90)90090-X doi: 10.1016/0377-2217(90)90090-X
    [55] J. Gao, R. Chen, W. Deng, An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 51 (2013), 641–651. https://doi.org/10.1080/00207543.2011.644819 doi: 10.1080/00207543.2011.644819
    [56] S. Y. Wang, L. Wang, M. Liu, Y. Xu, An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem, Int. J. Prod. Econ., 145 (2013), 387–396. https://doi.org/10.1016/j.ijpe.2013.05.004 doi: 10.1016/j.ijpe.2013.05.004
    [57] D. Ferone, S. Hatami, E. M. González‐Neira, A. A. Juan, P. Festa, A biased‐randomized iterated local search for the distributed assembly permutation flow‐shop problem, Int. Trans. Oper. Res., 27 (2020), 1368–1391. https://doi.org/10.1111/itor.12719 doi: 10.1111/itor.12719
    [58] J. P. Huang, Q. K. Pan, L. Gao, An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times, Swarm Evol. Comput., 59 (2020), 100742. https://doi.org/10.1016/j.swevo.2020.100742 doi: 10.1016/j.swevo.2020.100742
    [59] Y. Xu, L. Wang, S. Wang, M. Liu, An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem, Eng. Optim., 46 (2014), 1269–1283. https://doi.org/10.1080/0305215X.2013.827673 doi: 10.1080/0305215X.2013.827673
    [60] A. Ali, Y. Gajpal, T. Y. Elmekkawy, Distributed permutation flowshop scheduling problem with total completion time objective, Opsearch, (2020), 1–23. https://doi.org/10.1007/s12597-020-00484-3
    [61] A. Hamzadayı, An effective benders decomposition algorithm for solving the distributed permutation flowshop scheduling problem, Comput. Oper. Res., 123 (2020), 105006. https://doi.org/10.1016/j.cor.2020.105006 doi: 10.1016/j.cor.2020.105006
    [62] J. Y. Mao, Q. K. Pan, Z. H. Miao, L. Gao, S. Chen, A hash map-based memetic algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime, Knowl. Based Syst., 242 (2022), 108413. https://doi.org/10.1016/j.knosys.2022.108413 doi: 10.1016/j.knosys.2022.108413
    [63] Y. Yu, F. Q. Zhang, G. D. Yang, Y. Wang, J. P. Huang, Y. Y. Han, A discrete artificial bee colony method based on variable neighborhood structures for the distributed permutation flowshop problem with sequence-dependent setup times, Swarm Evol. Comput., 75 (2022), 101179. https://doi.org/10.1016/j.swevo.2022.101179 doi: 10.1016/j.swevo.2022.101179
    [64] V. Fernandez-Viagas, P. Perez-Gonzalez, J. M. Framinan, The distributed permutation flow shop to minimise the total flowtime, Comput. Ind. Eng., 118 (2018), 464–477. https://doi.org/10.1016/j.cie.2018.03.014 doi: 10.1016/j.cie.2018.03.014
    [65] A. Khare, S. Agrawal, Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 59 (2021), 7266–7282. https://doi.org/10.1080/00207543.2020.1837982 doi: 10.1080/00207543.2020.1837982
    [66] Y. Z. Li, Q. K. Pan, X. He, H. Y. Sang, K. Z. Gao, X. L. Jing, The distributed flowshop scheduling problem with delivery dates and cumulative payoffs, Comput. Ind. Eng., 165 (2022), 107961. https://doi.org/10.1016/j.cie.2022.107961 doi: 10.1016/j.cie.2022.107961
    [67] P. A. Villarinho, J. Panadero, L. S. Pessoa, A. A. Juan, F. L. C. Oliveira, A simheuristic algorithm for the stochastic permutation flow‐shop problem with delivery dates and cumulative payoffs, Int. Trans. Oper. Res., 28 (2021), 716–737. https://doi.org/10.1111/itor.12862 doi: 10.1111/itor.12862
    [68] Q. Li, J. Li, X. Zhang, B. Zhang, A wale optimization algorithm for distributed flow shop with batch delivery, Soft Comput., 25 (2021), 1–14.
    [69] A. P. Rifai, H. T. Nguyen, S. Z. M. Dawal, Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling, Appl. Soft Comput., 40 (2016), 42–57. https://doi.org/10.1016/j.asoc.2015.11.034 doi: 10.1016/j.asoc.2015.11.034
    [70] J. Deng, L. Wang, A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem, Swarm Evol. Comput., 32 (2017), 121–131. https://doi.org/10.1016/j.swevo.2016.06.002 doi: 10.1016/j.swevo.2016.06.002
    [71] Z. Yan, R. Shi, K. Du, L. Yi, The role of green production process innovation in green manufacturing: empirical evidence from OECD countries, Appl. Econ., 54 (2022), 6755–6767. https://doi.org/10.1080/00036846.2022.2083569 doi: 10.1080/00036846.2022.2083569
    [72] C. Zhang, W. Ji, Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop, Procedia CIRP, 83 (2019), 624–629. https://doi.org/10.1016/j.procir.2019.04.095 doi: 10.1016/j.procir.2019.04.095
    [73] X. Wu, A. Che, Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search, Omega, 94 (2020), 102117–102117. https://doi.org/10.1016/j.omega.2019.102117 doi: 10.1016/j.omega.2019.102117
    [74] J. F. Chen, L. Wang, Z. P. Peng, A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling, Swarm Evol. Comput., 50 (2019), 100557–100557. https://doi.org/10.1016/j.swevo.2019.100557 doi: 10.1016/j.swevo.2019.100557
    [75] T. Meng, Q. K. Pan, L. Wang, A distributed permutation flowshop scheduling problem with the customer order constraint, Knowl. Based Syst., 184 (2019), 104894–104894. https://doi.org/10.1016/j.knosys.2019.104894 doi: 10.1016/j.knosys.2019.104894
    [76] K. Wang, Y. Huang, H. Qin, A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown, J. Oper. Res. Soc., 67 (2016), 68–82. https://doi.org/10.1057/jors.2015.50 doi: 10.1057/jors.2015.50
    [77] J. Y. Mao, Q. K. Pan, Z. H. Miao, L. Gao, An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance, Expert Syst. Appl., 169 (2021), 114495. https://doi.org/10.1016/j.eswa.2020.114495 doi: 10.1016/j.eswa.2020.114495
    [78] W. Shao, D. Pi, Z. Shao, Optimization of makespan for the distributed no-wait flow shop scheduling problem with iterated greedy algorithms, Knowl. Based Syst., 137 (2017), 163–181. https://doi.org/10.1016/j.knosys.2017.09.026 doi: 10.1016/j.knosys.2017.09.026
    [79] S. W. Lin, K. C. Ying, Minimizing makespan for solving the distributed no-wait flowshop scheduling problem, Comput. Ind. Eng., 99 (2016), 202–209. https://doi.org/10.1016/j.cie.2016.07.027 doi: 10.1016/j.cie.2016.07.027
    [80] G. Zhang, K. Xing, Differential evolution metaheuristics for distributed limited-buffer flowshop scheduling with makespan criterion, Comput. Oper. Res., 108 (2019), 33–43. https://doi.org/10.1016/j.cor.2019.04.002 doi: 10.1016/j.cor.2019.04.002
    [81] F. Zhao, L. Zhao, L. Wang, H. Song, An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion, Expert Syst. Appl., 160 (2020), 113678. https://doi.org/10.1016/j.eswa.2020.113678 doi: 10.1016/j.eswa.2020.113678
    [82] X. Han, Y. Han, Q. Chen, J. Li, H. Sang, Y. Liu, et al., Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm, Complex Syst., 1 (2021), 198–217. https://doi.org/10.23919/CSMS.2021.0018 doi: 10.23919/CSMS.2021.0018
    [83] X. Han, Y. Han, B. Zhang, H. Qin, J. Li, Y. Liu, et al., An effective iterative greedy algorithm for distributed blocking flowshop scheduling problem with balanced energy costs criterion, Appl. Soft Comput., 129 (2022), 109502. https://doi.org/10.1016/j.asoc.2022.109502 doi: 10.1016/j.asoc.2022.109502
    [84] W. Shao, D. Pi, Z. Shao, A Pareto-based estimation of distribution algorithm for solving multiobjective distributed no-wait flow-shop scheduling problem with sequence-dependent setup time, IEEE Trans. Autom. Sci. Eng., 16 (2019), 1344–1360. https://doi.org/10.1109/TASE.2018.2886303 doi: 10.1109/TASE.2018.2886303
    [85] J. P. Huang, Q. K. Pan, L. Gao, An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times, Swarm Evol. Comput., 59 (2020), 100742. https://doi.org/10.1016/j.swevo.2020.100742 doi: 10.1016/j.swevo.2020.100742
    [86] J. P. Huang, Q. K. Pan, Z. H. Miao, L. Gao, Effective constructive heuristics and discrete bee colony optimization for distributed flowshop with setup times, Eng. Appl. Artif. Intell., 97 (2021), 104016. https://doi.org/10.1016/j.engappai.2020.104016 doi: 10.1016/j.engappai.2020.104016
    [87] T. Meng, Q. K. Pan, L. Wang, A distributed permutation flowshop scheduling problem with the customer order constraint, Knowl. Based Syst., 184 (2019), 104894. https://doi.org/10.1016/j.knosys.2019.104894 doi: 10.1016/j.knosys.2019.104894
    [88] S. Cai, K. Yang, K. Liu, Multi-objective optimization of the distributed permutation flow shop scheduling problem with transportation and eligibility constraints, J. Oper. Res. Soc. China, 6 (2018), 391–416. https://doi.org/10.1007/s40305-017-0165-3 doi: 10.1007/s40305-017-0165-3
    [89] S. Hatami, R. Ruiz, C. A. Romano, Two simple constructive algorithms for the distributed assembly permutation flowshop scheduling problem, in Managing Complexity: Challenges for Industrial Engineering and Operations Management, (2014), 139–145.
    [90] Q. K. Pan, L. Gao, L. X. Yu, F. M. Jose, Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem, Appl. Soft Comput., 81 (2019), 105492. https://doi.org/10.1016/j.asoc.2019.105492 doi: 10.1016/j.asoc.2019.105492
    [91] X. Li, X. Zhang, M. Yin, J. Wang, A genetic algorithm for the distributed assembly permutation flowshop scheduling problem, in 2015 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2015), 3096–3101. https://doi.org/10.1109/CEC.2015.7257275
    [92] D. Ferone, S. Hatami, E. M. González‐Neira, A. A. Juan, P. Festa, A biased‐randomized iterated local search for the distributed assembly permutation flow‐shop problem, Int. Trans. Oper. Res., 27 (2020), 1368–1391. https://doi.org/10.1111/itor.12719 doi: 10.1111/itor.12719
    [93] J. Lin, Z. J. Wang, X. Li, A backtracking search hyper-heuristic for the distributed assembly flow-shop scheduling problem, Swarm Evol. Comput., 36 (2017), 124–135. https://doi.org/10.1016/j.swevo.2017.04.007 doi: 10.1016/j.swevo.2017.04.007
    [94] G. Zhang, K. Xing, F. Cao, Scheduling distributed flowshops with flexible assembly and set-up time to minimise makespan, Int. J. Prod. Res., 56 (2018), 3226–3244. https://doi.org/10.1080/00207543.2017.1401241 doi: 10.1080/00207543.2017.1401241
    [95] J. Deng, L. Wang, S. Y. Wang, X. L. Zheng, A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem, Int. J. Prod. Res., 54 (2016), 3561–3577. https://doi.org/10.1080/00207543.2015.1084063 doi: 10.1080/00207543.2015.1084063
    [96] H. Y. Sang, Q. K. Pan, J. Q. Li, P. Wang, Y. Y. Han, K. Z. Gao, et al., Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion, Swarm Evol. Comput., 44 (2019), 64–73. https://doi.org/10.1016/j.swevo.2018.12.001 doi: 10.1016/j.swevo.2018.12.001
    [97] F. Zhao, X. Hu, L.Wang, Z. Li, A memetic discrete differential evolution algorithm for the distributed permutation flow shop scheduling problem, Complex Intell. Syst., 8 (2022), 141–161. https://doi.org/10.1007/s40747-021-00354-5 doi: 10.1007/s40747-021-00354-5
    [98] F. Xiong, K. Xing, Meta-heuristics for the distributed two-stage assembly scheduling problem with bi-criteria of makespan and mean completion time, Int. J. Prod. Res., 52 (2014), 2743–2766. https://doi.org/10.1080/00207543.2014.884290 doi: 10.1080/00207543.2014.884290
    [99] X. Wu, X. Liu, N. Zhao, An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem, Memet Comput., 11 (2019), 335–355. https://doi.org/10.1007/s12293-018-00278-7 doi: 10.1007/s12293-018-00278-7
    [100] Y. Y. Huang, Q. K. Pan, J. P. Huang, P. N. Suganthan, L. Gao, An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem, Comput. Ind. Eng., 152 (2021), 107021. https://doi.org/10.1016/j.cie.2020.107021 doi: 10.1016/j.cie.2020.107021
    [101] G. Wang, X. Li, L. Gao, P. Li, Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D, Swarm Evol. Comput., 62 (2021), 100858. https://doi.org/10.1016/j.swevo.2021.100858 doi: 10.1016/j.swevo.2021.100858
    [102] G. Wang, X. Li, L. Gao, P. Li, An effective multi-objective whale swarm algorithm for energy-efficient scheduling of distributed welding flow shop, Ann. Oper. Res., 310 (2022), 223–255. https://doi.org/10.1007/s10479-021-03952-1 doi: 10.1007/s10479-021-03952-1
    [103] J. Cai, D. Lei, M. Li, A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop, Int. J. Prod. Res., 59 (2020), 1–18. https://doi.org/10.1080/00207543.2020.1780333 doi: 10.1080/00207543.2020.1780333
    [104] J. Cai, R. Zhou, D. Lei, Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks, Appl. Artif. Intell., 90 (2020), 103540–103540. https://doi.org/10.1016/j.engappai.2020.103540 doi: 10.1016/j.engappai.2020.103540
    [105] C. Lu, Q. Liu, B. Zhang, L. Yin, A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop, Expert Syst. Appl., 204 (2022), 117555. https://doi.org/10.1016/j.eswa.2022.117555 doi: 10.1016/j.eswa.2022.117555
    [106] H. Qin, T. Li, Y. Teng, K. Wang, Integrated production and distribution scheduling in distributed hybrid flow shops, Memet Comput., 13 (2021), 185–202. https://doi.org/10.1007/s12293-021-00329-6 doi: 10.1007/s12293-021-00329-6
    [107] C. Lu, L. Gao, J. Yi, X. Li, Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China, IEEE Trans. Ind. Inf., 17 (2020), 6687–6696. https://doi.org/10.1109/TⅡ.2020.3043734 doi: 10.1109/TⅡ.2020.3043734
    [108] E. Jiang, L. Wang, J. Wang, Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks, Tsinghua Sci. Technol., 26 (2021), 646–663. https://doi.org/10.26599/TST.2021.9010007 doi: 10.26599/TST.2021.9010007
    [109] J. Cai, D. Lei, A cooperated shuffled frog-leaping algorithm for distributed energy-efficient hybrid flow shop scheduling with fuzzy processing time, Complex Intell. Syst., 7 (2021), 2235–2253. https://doi.org/10.1007/s40747-021-00400-2 doi: 10.1007/s40747-021-00400-2
    [110] J. Zheng, L. Wang, J. J. Wang, A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop, Knowl. Based Syst., 194 (2020), 105536. https://doi.org/10.1016/j.knosys.2020.105536 doi: 10.1016/j.knosys.2020.105536
    [111] J. J. Wang, L. Wang, A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop, IEEE Trans. Syst. Man Cybern.: Syst., 50 (2018), 1805–1819. https://doi.org/10.1109/TSMC.2017.2788879 doi: 10.1109/TSMC.2017.2788879
    [112] G. Zhang, K. Xing, Differential evolution metaheuristics for distributed limited-buffer flowshop scheduling with makespan criterion, Comput. Oper. Res., 108 (2019), 33–43. https://doi.org/10.1016/j.cor.2019.04.002 doi: 10.1016/j.cor.2019.04.002
    [113] C. Lu, Y. Huang, L. Meng, L. Gao, B. Zhang, J. Zhou, A Pareto-based collaborative multi-objective optimization algorithm for energy-efficient scheduling of distributed permutation flow-shop with limited buffers, Robot Comput. Integr. Manuf., 74 (2022), 102277. https://doi.org/10.1016/j.rcim.2021.102277 doi: 10.1016/j.rcim.2021.102277
    [114] K. Geng, C. Ye, A memetic algorithm for energy-efficient distributed re-entrant hybrid flow shop scheduling problem, J. Intell. Fuzzy Syst., 41 (2021), 3951–3971. https://doi.org/10.3233/JIFS-202963 doi: 10.3233/JIFS-202963
    [115] J. Dong, C. Ye, Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system, Comput. Ind. Eng., 169 (2022), 108146. https://doi.org/10.1016/j.cie.2022.108146 doi: 10.1016/j.cie.2022.108146
    [116] Y. Alaouchiche, Y. Ouazene, F. Yalaoui, Economic and energetic performance evaluation of unreliable production lines: An integrated analytical approach, IEEE Access, 8 (2020), 185330–185345. https://doi.org/10.1109/ACCESS.2020.3029761 doi: 10.1109/ACCESS.2020.3029761
    [117] B. Naderi, A. Azab, Modeling and heuristics for scheduling of distributed job shops, Expert Syst. Appl., 41 (2014), 7754–7763. https://doi.org/10.1016/j.eswa.2014.06.023 doi: 10.1016/j.eswa.2014.06.023
    [118] M. L. R. Varela, G. D. Putnik, M. M. Cruz-Cunha, Web-based technologies integration for distributed manufacturing scheduling in a virtual enterprise, Int. J. Web Portals (IJWP), 4 (2012), 19–34. https://doi.org/10.4018/jwp.2012040102 doi: 10.4018/jwp.2012040102
    [119] H. Z. Jia, J. Y. Fuh, A. Y. Nee, Y. F. Zhang, Web-based multi-functional scheduling system for a distributed manufacturing environment, Concurr. Eng., 10 (2002), 27–39. https://doi.org/10.1177/1063293X02010001054 doi: 10.1177/1063293X02010001054
    [120] H. Z. Jia, A. Y. Nee, J. Y. Fuh, Y. F. Zhang, A modified genetic algorithm for distributed scheduling problems, J. Intell. Manuf., 14 (2003), 351–362. https://doi.org/10.1023/A:1024653810491 doi: 10.1023/A:1024653810491
    [121] H. Z. Jia, J. Y. Fuh, A. Y. Nee, Y. F. Zhang, Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed manufacturing systems, Comput. Ind. Eng., 53 (2007), 313–320. https://doi.org/10.1016/j.cie.2007.06.024 doi: 10.1016/j.cie.2007.06.024
    [122] F. T. Chan, S. H. Chung, L. Y. Chan, G. Finke, M. K. Tiwari, Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach, Robot Comput. Integr. Manuf., 22 (2006), 493–504. https://doi.org/10.1016/j.rcim.2005.11.005 doi: 10.1016/j.rcim.2005.11.005
    [123] I. J. Jeong, S. B. Yim, A job shop distributed scheduling based on Lagrangian relaxation to minimise total completion time, Int. J. Prod. Res., 47 (2009), 6783–6805. https://doi.org/10.1080/00207540701824217 doi: 10.1080/00207540701824217
    [124] L. De Giovanni, F. Pezzella, An improved genetic algorithm for the distributed and flexible job-shop scheduling problem, Eur. J. Oper. Res., 200 (2010), 395–408. https://doi.org/10.1016/j.ejor.2009.01.008 doi: 10.1016/j.ejor.2009.01.008
    [125] P. Lou, S. K. Ong, A. Y. C. Nee, Agent-based distributed scheduling for virtual job shops, Int. J. Prod. Res., 48 (2010), 3889–3910. https://doi.org/10.1080/00207540902927918 doi: 10.1080/00207540902927918
    [126] B. Naderi, A. Azab, An improved model and novel simulated annealing for distributed job shop problems, J. Adv. Manuf. Technol., 81 (2015), 693–703. https://doi.org/10.1007/s00170-015-7080-8 doi: 10.1007/s00170-015-7080-8
    [127] T. K. Liu, Y. P. Chen, J. H. Chou, Solving distributed and flexible job-shop scheduling problems for a real-world fastener manufacturer, IEEE Access, 2 (2014), 1598–1606. https://doi.org/10.1109/ACCESS.2015.2388486 doi: 10.1109/ACCESS.2015.2388486
    [128] I. Chaouch, O. B. Driss, K. Ghedira, A novel dynamic assignment rule for the distributed job shop scheduling problem using a hybrid ant-based algorithm, Appl. Intell., 49 (2019), 1903–1924. https://doi.org/10.1007/s10489-018-1343-7 doi: 10.1007/s10489-018-1343-7
    [129] Q. Luo, Q. Deng, G. Gong, L. Zhang, W. Han, K. Li, An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers, Expert Syst. Appl., 160 (2020), 113721. https://doi.org/10.1016/j.eswa.2020.113721 doi: 10.1016/j.eswa.2020.113721
    [130] J. Q. Li, P. Duan, J. Cao, X. P. Lin, Y. Y. Han, A hybrid Pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria, IEEE Access, 6 (2018), 58883–58897. https://doi.org/10.1109/ACCESS.2018.2873401 doi: 10.1109/ACCESS.2018.2873401
    [131] F. T. Chan, S. H. Chung, P. L. Y. Chan, An adaptive genetic algorithm with dominated genes for distributed scheduling problems, Expert Syst. Appl., 29 (2005), 364–371. https://doi.org/10.1016/j.eswa.2005.04.009 doi: 10.1016/j.eswa.2005.04.009
    [132] L. Meng, C. Zhang, Y. Ren, B. Zhang, C. Lv, Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem, Comput. Ind. Eng., 142 (2020), 106347. https://doi.org/10.1016/j.cie.2020.106347 doi: 10.1016/j.cie.2020.106347
    [133] B. Marzouki, O. B. Driss, K. Ghédira, Solving distributed and flexible job shop scheduling problem using a chemical reaction optimization metaheuristic, Procedia Comput. Sci., 126 (2018), 1424–1433. https://doi.org/10.1016/j.procs.2018.08.114 doi: 10.1016/j.procs.2018.08.114
    [134] M. Zandieh, A. R. Khatami, S. H. A. Rahmati, Flexible job shop scheduling under condition-based maintenance: improved version of imperialist competitive algorithm, Appl. Soft Comput., 58 (2017), 449–464. https://doi.org/10.1016/j.asoc.2017.04.060 doi: 10.1016/j.asoc.2017.04.060
    [135] P. H. Lu, M. C. Wu, H. Tan, Y. H. Peng, C. F. Chen, A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems, J. Intell. Manuf., 29 (2018), 19–34. https://doi.org/10.1007/s10845-015-1083-z doi: 10.1007/s10845-015-1083-z
    [136] M. C. Wu, C. S. Lin, C. H. Lin, C. F. Chen, Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems, Comput. Oper. Res., 80 (2017), 101–112. https://doi.org/10.1016/j.cor.2016.11.021 doi: 10.1016/j.cor.2016.11.021
    [137] H. C. Chang, T. K. Liu, Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms, J. Intell. Manuf., 28 (2017), 1973–1986. https://doi.org/10.1007/s10845-015-1084-y doi: 10.1007/s10845-015-1084-y
    [138] W. Xu, Y. Hu, W. Luo, L. Wang, R. Wu, A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission, Comput. Ind. Eng., 157 (2021), 107318. https://doi.org/10.1016/j.cie.2021.107318 doi: 10.1016/j.cie.2021.107318
    [139] L. Meng, Y. Ren, B. Zhang, J. Q. Li, H. Sang, C. Zhang, MILP modeling and optimization of energy-efficient distributed flexible job shop scheduling problem, IEEE Access, 8 (2020), 191191–191203. https://doi.org/10.1109/ACCESS.2020.3032548 doi: 10.1109/ACCESS.2020.3032548
    [140] S. Zhang, X. Li, B. Zhang, S. Wang, Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system, Eur. J. Oper. Res., 283 (2020), 441–460. https://doi.org/10.1016/j.ejor.2019.11.016 doi: 10.1016/j.ejor.2019.11.016
    [141] F. Xiong, K. Xing, Meta-heuristics for the distributed two-stage assembly scheduling problem with bi-criteria of makespan and mean completion time, Int. J. Prod. Res., 52 (2014), 2743–2766. https://doi.org/10.1080/00207543.2014.884290 doi: 10.1080/00207543.2014.884290
    [142] S. Yang, Z. Xu, The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery. Int. J. Prod. Res., 59 (2021), 4053-4071. https://doi.org/10.1080/00207543.2020.1757174 doi: 10.1080/00207543.2020.1757174
    [143] Z. Shao, W. Shao, D. Pi, Effective constructive heuristic and metaheuristic for the distributed assembly blocking flow-shop scheduling problem, Appl. Intell., 50 (2020), 4647–4669. https://doi.org/10.1007/s10489-020-01809-x doi: 10.1007/s10489-020-01809-x
    [144] W. Niu, J. Q. Li, A two-stage cooperative evolutionary algorithm for energy-efficient distributed group blocking flow shop with setup carryover in precast systems, Knowl. Based Syst., 257 (2022), 109890. https://doi.org/10.1016/j.knosys.2022.109890 doi: 10.1016/j.knosys.2022.109890
    [145] F. Jolai, H. Asefi, M. Rabiee, P. Ramezani, Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem, Sci. Iran., 20 (2013), 861–872. https://doi.org/10.1016/j.scient.2012.10.044 doi: 10.1016/j.scient.2012.10.044
    [146] J. Deng, L. Wang, S. Y. Wang, X. L. Zheng, A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem, Int. J. Prod. Res., 54 (2016), 3561–3577. https://doi.org/10.1080/00207543.2015.1084063 doi: 10.1080/00207543.2015.1084063
    [147] F. Nikzad, J. Rezaeian, I. Mahdavi, I. Rastgar, Scheduling of multi-component products in a two-stage flexible flow shop, Appl. Soft Comput., 32 (2015), 132–143. https://doi.org/10.1016/j.asoc.2015.03.006 doi: 10.1016/j.asoc.2015.03.006
    [148] A. Azadeh, M. Jeihoonian, B. M. Shoja, S. H. Seyedmahmoudi, An integrated neural network-simulation algorithm for performance optimisation of the bi-criteria two-stage assembly flow-shop scheduling problem with stochastic activities, Int. J. Prod. Res., 50 (2012), 7271–7284. https://doi.org/10.1080/00207543.2011.645511 doi: 10.1080/00207543.2011.645511
    [149] F. Zhao, D. Shao, L. Wang, T. Xu, N. Zhu, An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem, Knowl. Based Syst., 243 (2022), 108471. https://doi.org/10.1016/j.knosys.2022.108471 doi: 10.1016/j.knosys.2022.108471
    [150] G. Zhang, K. Xing, Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment, Comput. Ind. Eng., 125 (2018), 423–433. https://doi.org/10.1016/j.cie.2018.09.007 doi: 10.1016/j.cie.2018.09.007
    [151] D. Lei, B. Su, M. Li, Cooperated teaching-learning-based optimisation for distributed two-stage assembly flow shop scheduling, Int. J. Prod. Res., 59 (2021), 7232–7245. https://doi.org/10.1080/00207543.2020.1836422 doi: 10.1080/00207543.2020.1836422
    [152] N. Shoaardebili, P. Fattahi, Multi-objective meta-heuristics to solve three-stage assembly flow shop scheduling problem with machine availability constraints, Int. J. Prod. Res., 53 (2015), 944–968. https://doi.org/10.1080/00207543.2014.948575 doi: 10.1080/00207543.2014.948575
    [153] Y. Du, J. Q. Li, C. Luo, L. L. Meng, A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations, Swarm Evol. Comput., 62 (2021), 100861. https://doi.org/10.1016/j.swevo.2021.100861 doi: 10.1016/j.swevo.2021.100861
    [154] X. Wu, X. Liu, N. Zhao, An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem, Memet. Comput., 11 (2019), 335–355. https://doi.org/10.1007/s12293-018-00278-7 doi: 10.1007/s12293-018-00278-7
    [155] G. Zhang, K. Xing, G. Zhang, Z. He, Memetic algorithm with meta-Lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem, IEEE Access, 8 (2020), 96115–96128. https://doi.org/10.1109/ACCESS.2020.2996305 doi: 10.1109/ACCESS.2020.2996305
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3525) PDF downloads(380) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog