The ongoing emergence of COVID-19 and the maturation of cold chain technology, have aided in the rapid development of the fresh produce e-commerce industry. Taking into account the characteristics of consumers' demand for fresh products, this paper constructs a location allocation model of a front warehouse for fresh e-commerce with the objective of minimizing the total cost. An improved immune optimization algorithm is proposed in this paper, and the effectiveness of the proposed algorithm is demonstrated by a real case study. The results show that the improved immune optimization algorithm outperforms the traditional genetic algorithm in terms of solution accuracy; the proposed location model can effectively help fresh produce e-commerce enterprises open new front-end warehouses when demand is increasing, as well as provide optimal economic decision-making for front warehouse layout.
Citation: Dezheng Zhang, Shuai Chen, Na Zhou, Pu Shi. Location optimization of fresh food e-commerce front warehouse[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14899-14919. doi: 10.3934/mbe.2023667
[1] | Ailing Xiang, Liangchen Wang . Boundedness of a predator-prey model with density-dependent motilities and stage structure for the predator. Electronic Research Archive, 2022, 30(5): 1954-1972. doi: 10.3934/era.2022099 |
[2] | Jialu Tian, Ping Liu . Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis. Electronic Research Archive, 2022, 30(3): 929-942. doi: 10.3934/era.2022048 |
[3] | Jiani Jin, Haokun Qi, Bing Liu . Hopf bifurcation induced by fear: A Leslie-Gower reaction-diffusion predator-prey model. Electronic Research Archive, 2024, 32(12): 6503-6534. doi: 10.3934/era.2024304 |
[4] | Xuemin Fan, Wenjie Zhang, Lu Xu . Global dynamics of a predator-prey model with prey-taxis and hunting cooperation. Electronic Research Archive, 2025, 33(3): 1610-1632. doi: 10.3934/era.2025076 |
[5] | Shuxia Pan . Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27(0): 89-99. doi: 10.3934/era.2019011 |
[6] | Yuan Tian, Yang Liu, Kaibiao Sun . Complex dynamics of a predator-prey fishery model: The impact of the Allee effect and bilateral intervention. Electronic Research Archive, 2024, 32(11): 6379-6404. doi: 10.3934/era.2024297 |
[7] | Érika Diz-Pita . Global dynamics of a predator-prey system with immigration in both species. Electronic Research Archive, 2024, 32(2): 762-778. doi: 10.3934/era.2024036 |
[8] | Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150 |
[9] | Pinglan Wan . Dynamic behavior of stochastic predator-prey system. Electronic Research Archive, 2023, 31(5): 2925-2939. doi: 10.3934/era.2023147 |
[10] | Ling Xue, Min Zhang, Kun Zhao, Xiaoming Zheng . Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions. Electronic Research Archive, 2022, 30(12): 4530-4552. doi: 10.3934/era.2022230 |
The ongoing emergence of COVID-19 and the maturation of cold chain technology, have aided in the rapid development of the fresh produce e-commerce industry. Taking into account the characteristics of consumers' demand for fresh products, this paper constructs a location allocation model of a front warehouse for fresh e-commerce with the objective of minimizing the total cost. An improved immune optimization algorithm is proposed in this paper, and the effectiveness of the proposed algorithm is demonstrated by a real case study. The results show that the improved immune optimization algorithm outperforms the traditional genetic algorithm in terms of solution accuracy; the proposed location model can effectively help fresh produce e-commerce enterprises open new front-end warehouses when demand is increasing, as well as provide optimal economic decision-making for front warehouse layout.
This paper is devoted to the existence of weak solutions to the Cauchy problem for the two-component Novikov equation [18]
{mt+uvmx+(2vux+uvx)m=0,m=u−uxx,t>0,nt+uvnx+(2uvx+vux)n=0,n=v−vxx. | (1) |
Note that this system reduces respectively to the Novikov equation [23]
mt+3uuxm+u2mx=0, | (2) |
when
mt+2uxm+umx=0, | (3) |
when
The CH equation was proposed as a nonlinear model describing the unidirectional propagation of the shallow water waves over a flat bottom [1]. Based on the Hamiltonian theory of integrable systems, it was found earlier by using the method of recursion operator due to Fuchssteiner and Fokas [10]. It can also be obtained by using the tri-Hamiltonian duality approach related to the bi-Hamiltonian representation of the Korteweg-de Vries (KdV) equation [9,25]. The CH equation exhibits several remarkable properties. One is the the existence of the multi-peaked solitons on the line
The Novikov equation (2) can be viewed as a cubic generalization of the CH equation, which was introduced by Novikov [23,24] in the classification for a class of equations while they possesses higher-order generalized symmetries. Eq. (2) was proved to be integrable since it enjoys Lax-pair and bi-Hamiltonian structure [14], and is equivalent to the first equation in the negative flow of the Sawada-Kotera hierarchy via Liouville transformation [16]. The Novikov equation (2) also admits peaked solitons over the line
As the two-component generalization of Novikov equation (2), the so-called Geng-Xue system [11]
mt+3vuxm+uvmx=0,nt+3uvxn+uvnx=0, | (4) |
has been studied extensively [11,13]. The integrability [11,19], dynamics and structure of the peaked solitons of (4) [21] were discussed. In [13], well-posedness and wave breaking phenomena of the Cauchy problem of (4) were discussed. The single peakons and multi-peakons of system (4) were constructed in [21] by using compatibility of Lax-pair, which are not the weak solutions in the sense of distribution. Furthermore, the Geng-Xue system does not have the
The main object in this work is to investigate the existence of weak solutions to system (1). It is of great interest to understand the effect from interactions among the two-components, nonlinear dispersion and various nonlinear terms. More specifically, we shall consider the Cauchy problem of (1) and aim to leverage ideas from previous works on CH and Novikov equations. The weak solution of the Cauchy problem associated with (1) is established in Theorem 3.1.
The remainder of this paper is organized as follows. In the next section 2, we review some basic results and lemmas as well as invariant properties of momentum densities
In this section, we recall the local well-posedness, some properties of strong and weak solutions to equation (1) and several approximation results.
First, we introduce some notations. Throughout the paper, we denote the convolution by
With
{mt+uvmx+(2vux+uvx)m=0,m=u−uxx,t>0,x∈R,nt+uvnx+(2uvx+vux)n=0,n=v−vxx,u(0,x)=u0(x),v(0,x)=v0(x),x∈R. | (5) |
Note that if
{ut+uvux+Px∗(12u2xv+uuxvx+u2v)+12P∗(u2xvx)=0,t>0,x∈R,vt+uvvx+Px∗(12v2xu+vvxux+v2u)+12P∗(v2xux)=0,u(0,x)=u0(x),v(0,x)=v0(x),x∈R. | (6) |
Next we recall the local well-posedness and the conservation laws.
Lemma 2.1. [12] Let
u,v∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)) |
Moreover, the solution depends continuously on the initial data, i.e. the mapping
Lemma 2.2. [12] Let
∫R(u2(t,x)+u2x(t,x))dx=∫R(u20+u20x)dx,∫R(v2(t,x)+v2x(t,x))dx=∫R(v20+v20x)dx,∫R(u(t,x)v(t,x)+ux(t,x)vx(t,x))dx=∫R(u0v0+u0xv0x)dx. |
Moreover, we have
|u(t,x)|≤√22‖u0‖1,|v(t,x)|≤√22‖v0‖1. |
Note that equation (1) has the solitary waves with corner at their peaks. Obviously, such solitons are not strong solutions to equation (6). In order to provide a mathematical framework for the study of these solitons, we define the notion of weak solutions to equation (6). Let
Fu(u,v)=uvux+Px∗(12u2xv+uuxvx+u2v)+12P∗(u2xvx),Fv(u,v)=uvvx+Px∗(12v2xu+vvxux+v2u)+12P∗(v2xux). |
Then equation (6) can be written as
{ut+Fu(u,v)=0,vt+Fv(u,v)=0,u(0,x)=u0(x),v(0,x)=v0(x). | (7) |
Lemma 2.3. [22] Let
f,g∈L2((0,T);H1(R))anddfdt,dgdt∈L2((0,T);H−1(R)), |
then
⟨f(t),g(t)⟩−⟨f(s),g(s)⟩=∫ts⟨df(τ)dτ,g(τ)⟩dτ+∫ts⟨dg(τ)dτ,f(τ)⟩dτ |
for all
Throughout this paper, let
ρn=(∫Rρ(ξ)dξ)−1nρ(nx),x∈R,n≥1, |
where
ρ(x)={e1x2−1,for|x|<1,0,for|x|≥1. |
Next, we recall two crucial approximation results and two identities.
Lemma 2.4. [7] Let
[ρn∗(fμ)−(ρn∗f)(ρn∗μ)]→0,asn→∞inL1(R). |
Lemma 2.5. [7] Let
ρn∗(fg)−(ρn∗f)(ρn∗g)→0,asn→∞inL∞(R). |
Lemma 2.6. [7] Assume that
ddt∫R|ρn∗u|dx=∫R(ρn∗ut)sgn(ρn∗u)dx |
and
ddt∫R|ρn∗ux|dx=∫R(ρn∗uxt)sgn(ρn∗ux)dx. |
Consider the flow governed by
{dq(t,x)dt=(uv)(t,q),t>0,x∈R,q(0,x)=x,x∈R. | (8) |
Applying classical results in the theory of ODEs, one can obtain the following useful result on the above initial value problem.
Lemma 2.7. [12] Let
qx=exp(∫t0(uv)x(s,q(s,x))ds),∀(t,x)∈[0,T)×R. |
Furthermore, setting
m(t,q)=exp(−∫t0(2vux+uvx)(s,q(s,x))ds)m0,n(t,q)=exp(−∫t0(2uvx+vux)(s,q(s,x))ds)n0,∀(t,x)∈[0,T)×R. |
Theorem 2.8. Let
u,v∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)). |
Set
(i).m(t,⋅)≥0,n(t,⋅)≥0,u(t,⋅)≥0,v(t,⋅)≥0and|ux(t,⋅)|≤u(t,⋅),|vx(t,⋅)|≤v(t,⋅)onR;(ii).‖u(t,⋅)‖L1≤‖m(t,⋅)‖L1,‖u(t,⋅)‖L∞≤√22‖u(t,⋅)‖1=√22‖u0‖1,and‖v(t,⋅)‖L1≤‖n(t,⋅)‖L1,‖v(t,⋅)‖L∞≤√22‖v(t,⋅)‖1=√22‖v0‖1;(iii).‖ux(t,⋅)‖L1≤‖m(t,⋅)‖L1and‖vx(t,⋅)‖L1≤‖n(t,⋅)‖L1. |
Moreover, if
‖m(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖m0‖L1and‖n(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖n0‖L1. |
Proof. Let
u(t,x)=e−x2∫x−∞eym(t,y)dy+ex2∫∞xe−ym(t,y)dy, | (9) |
and
ux(t,x)=−e−x2∫x−∞eym(t,y)dy+ex2∫∞xe−ym(t,y)dy. | (10) |
From the above two relations and
|ux(t,x)|≤u(t,x)≤√22‖u(t,x)‖1. |
In view of Lemma 2.2, we obtain that
u(t,x)≤√22‖u0‖1,∀(t,x)∈R+×R. |
Since
((mn)13)t+((mn)13uv)x=0, |
it immediately follows that
ddt∫Rm(t,x)dx=−∫∞−∞(uvmx+(2vux+uvx)m)dx=∫∞−∞(vuxm−(uvm)x)dx≤‖u‖L∞‖v‖L∞∫∞−∞m(t,x)dx≤‖u0‖1‖v0‖1∫∞−∞m(t,x)dx. |
Since
‖m(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖m0‖L1. |
Similarly, we find
‖n(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖n0‖L1. |
This completes the proof of Theorem 2.8.
In this section, we will prove that there exists a unique global weak solution to equation (6), provided the initial data
Theorem 3.1. Let
u,v∈W1,∞(Rx×R)∩L∞(R+;H1(R)) |
with the initial data
Proof. First, we shall prove
‖u0‖L1=‖P∗m0‖L1=sup‖f‖L∞≤1∫Rf(x)(P∗m0)(x)dx=sup‖f‖L∞≤1∫Rf(x)∫RP(x−y)dm0(y)dx=sup‖f‖L∞≤1∫R(P∗f)(y)dm0(y)≤sup‖f‖L∞≤1‖P‖L1‖f‖L∞‖m0‖M(R)=‖m0‖M(R). | (11) |
Similarly, we have
‖v0‖L1≤‖n0‖M(R). | (12) |
We first prove that there exists a corresponding
Let us define
un0⟶u0H1(R),n→∞,vn0⟶v0H1(R),n→∞, | (13) |
and for all
‖un0‖1=‖ρn∗u0‖1≤‖u0‖1,‖vn0‖1≤‖v0‖1,‖un0‖L1=‖ρn∗u0‖L1≤‖u0‖L1,‖vn0‖L1≤‖v0‖L1, | (14) |
in view of Young's inequality. Note that for all
mn0=un0−un0,xx=ρn∗m0≥0,andnn0=vn0−vn0,xx=ρn∗v0≥0. |
Comparing with the proof of relation (11) and (12), we get
‖mn0‖L1≤‖m0‖M(R),and‖nn0‖L1≤‖n0‖M(R),n≥1. | (15) |
By Theorem 2.8, we obtain that there exists a global strong solution
un=un(⋅,un0),vn=vn(⋅,vn0)∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)) |
for every
‖unx(t,⋅)‖L∞≤‖un(t,⋅)‖L∞≤‖un(t,⋅)‖1=‖un0‖1≤‖u0‖1,‖vnx(t,⋅)‖L∞≤‖vn(t,⋅)‖L∞≤‖vn(t,⋅)‖1=‖vn0‖1≤‖v0‖1. | (16) |
By the above inequality, we have
‖un(t,⋅)vn(t,⋅)unx(t,⋅)‖L2≤‖un(t,⋅)‖L∞‖vn(t,⋅)‖L∞‖unx(t,⋅)‖L2≤‖un(t,⋅)‖21‖vn(t,⋅)‖1≤‖u0‖21‖v0‖1. | (17) |
Similarly, we have
‖vn(t,⋅)un(t,⋅)vnx(t,⋅)‖L2≤‖v0‖21‖u0‖1. | (18) |
By Young's inequality and (16), for all
‖Px∗(12(unx)2vn+ununxvnx+(un)2vn)+12P∗((unx)2vnx)‖L2≤‖Px‖L2‖12(unx)2vn+ununxvnx+(un)2vn‖L1+12‖P‖L2‖(unx)2vnx‖L1≤12‖unx‖2L2‖vn‖L∞+12‖un‖L∞‖unx‖L2‖vnx‖L2+‖un‖2L2‖vn‖L∞+12‖vnx‖L∞‖unx‖2L2≤52‖un‖21‖vn‖1≤52‖u0‖21‖v0‖1. | (19) |
Similarly, we get
‖Px∗(12(vnx)2un+vnunxvnx+(vn)2un)+12P∗((vnx)2unx)‖L2≤52‖v0‖21‖u0‖1. | (20) |
Combining (17)-(20) with equation (6) for all
‖ddtun(t,⋅)‖L2≤72‖u0‖21‖v0‖1,and‖ddtvn(t,⋅)‖L2≤72‖v0‖21‖u0‖1. | (21) |
For fixed
∫T0∫R([un(t,x)]2+[unx(t,x)]2+[unt(t,x)]2)dxdt≤(‖u0‖21+494‖u0‖41‖v0‖21)T,∫T0∫R([vn(t,x)]2+[vnx(t,x)]2+[vnt(t,x)]2)dxdt≤(‖v0‖21+494‖v0‖41‖u0‖21)T. | (22) |
It follows that the sequence
unk⇀uweaklyinH1(0,T)×R)fornk→∞ | (23) |
and
unk⟶u,a.e.on(0,T)×Rfornk→∞, | (24) |
for some
V[unkx(t,⋅)]=‖unkxx(t,⋅)‖L1≤‖unk(t,⋅)‖L1+‖mnk(t,⋅)‖L1≤2‖mnk(t,⋅)‖L1≤2e‖unk0‖1‖vnk0‖1t‖mnk0‖L1≤2e‖u0‖1‖v0‖1t‖m0‖M(R) |
and
‖unkx(t,⋅)‖L∞≤‖unk(t,⋅)‖1=‖unk0(t,⋅)‖1≤‖u0‖1. |
Applying Helly's theorem, we obtain that there exists a subsequence, denoted again by
V[ˆu(t,⋅)]≤2e‖u0‖1‖v0‖1t‖m0‖M(R). |
Since for almost all
unkx⟶uxa.e.on(0,T)×Rfornk→∞, | (25) |
and for a.e.
V[ux(t,⋅)]=‖uxx(t,⋅)‖M(R)≤2e‖u0‖1‖v0‖1t‖m0‖M(R). |
We can analogously extract a subsequence of
vnk⟶va.e.on(0,T)×Rfornk→∞andvnkx⟶vxa.e.on(0,T)×Rfornk→∞. | (26) |
By Theorem 2.8
‖12(unx)2vn+ununxvnx+(un)2vn+12(unx)2vnx‖L1≤3‖u0‖21‖v0‖1. |
For fixed
Px∗[12(unx)2vn+ununxvnx+(un)2vn]+P∗(12(unx)2vnx)⟶Px∗[12u2xvn+uuxvx+u2v]+P∗(12u2xvx),asn→∞. | (27) |
We can analogously obtain that
Px∗[12(vnx)2un+vnvnxunx+(vn)2un]+P∗(12(vnx)2unx)⟶Px∗[12v2xun+vvxux+v2u]+P∗(12v2xux),asn→∞. | (28) |
Combining (24)-(26) with (27) and (28), we deduce that
Since
u∈Cw,loc(R+;H1(R)). |
For a.e.
‖u(t,⋅)‖L∞≤‖u(t,⋅)‖1≤lim infnk→∞‖un(t,⋅)‖1=lim infnk→∞‖unk0(t,⋅)‖1≤lim infnk→∞‖P‖1‖mnk0(t,⋅)‖L1≤‖m0‖M(R), | (29) |
for a.e.
u∈L∞(R+×R)∩L∞(R+;H1(R)). |
Note that by Theorem 2.8 and (15), we have
‖unx(t,⋅)‖L∞≤‖un(t,⋅)‖L∞≤‖un(t,⋅)‖1≤‖P‖1‖mn0(t,⋅)‖L1≤‖m0(t,⋅)‖M(R). | (30) |
Combining this with (25), we deduce that
ux∈L∞(R+×R). |
This shows that
u∈W1,∞(R+×R)∩L∞(R+;H1(R)). |
Taking the same way as
v∈W1,∞(R+×R)∩L∞(R+;H1(R)). |
Please note that we use the subsequence of
Now, by a regularization technique, we prove that
{ρn∗ut+ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+12ρn∗P∗(u2xvx)=0,ρn∗vt+ρn∗(uvvx)+ρn∗Px∗(12v2xv+vuxvx+v2u)+12ρn∗P∗(v2xux)=0. | (31) |
By differentiation of the first equation of (31), we obtain
ρn∗uxt+ρn∗(uvux)x+ρn∗Px∗(12u2xvx)+ρn∗Pxx∗(12u2xv+uuxvx+u2v)=0. | (32) |
Note that
ρn∗uxt+ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx)=0. | (33) |
Take these two equation (32) and (33) into the integration below, we obtain
12ddt∫R(ρn∗u)2+(ρn∗ux)2dx=∫R(ρn∗u)(ρn∗ut)+(ρn∗ux)(ρn∗uxt)dx=−∫R(ρn∗u)(ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗ux)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (34) |
Note that
limn→∞‖ρn∗u−u‖L2=limn→∞‖ρn∗(uvux)−uvux‖L2=0. |
Therefore, by using H
∫R(ρn∗u)(ρn∗(uvux))dx⟶∫Ru2vuxdx,asn→∞. |
Similarly, for a.e.
∫R(ρn∗u)(ρn∗Px∗(12u2xv+uuxvx+u2v))dx⟶∫RuPx∗(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗u)(ρn∗P∗(12u2xvx))dx⟶∫RuP∗(12u2xvx)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗P∗(12u2xv+uuxvx+u2v))dx⟶∫RuxP∗(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗(12u2xv+uuxvx+u2v))dx⟶∫Rux(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗Px∗(12u2xvx))dx⟶∫RuxPx∗(12u2xvx)dx,asn→∞, |
as
∫R(ρn∗ux)(ρnx∗(uvux))dx=−∫R(ρn,xx∗u)(ρ∗(uvux))dx+∫R(ρn,xx∗u)(ρn∗uv)(ρn∗ux)dx+12∫R(ρn∗ux)2(ρn∗(uv)x)dx. | (35) |
Observe that
∫R(ρn∗ux)2(ρn∗(uv)x)dx⟶∫Ru2x(uv)xdx,asn→∞. |
On the other hand
‖ρnxx∗u‖L1≤‖uxx‖M(R)≤2e‖u0‖1‖v0‖1t‖m0‖M(R),∀t∈[0,T). |
As
‖(ρn∗uv)(ρn∗ux)−(ρn∗(uvux))‖L∞→0,n→∞. |
Therefore,
∫R(ρn,xx∗u)((ρn∗uv)(ρn∗ux)−ρn∗(uvux))dx→0,n→∞. |
In view of the above relations and (35), we obtain
∫R(ρn∗ux)(ρnx∗(uvux))dx→12∫Ru2x(uv)xdx,n→∞. | (36) |
Let us define
Eun(t)=∫R(ρn∗u)2+(ρn∗ux)2dx, | (37) |
and
Gun(t)=−2∫R(ρn∗u)(ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−2∫R(ρn∗ux)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. |
We have proved that for fixed
{ddtEun(t)=Gun(t),n≥1,Gun(t)→0,n→∞. | (38) |
Therefore, we get
Eun(t)−Eun(0)=∫t0Gun(s)ds,t∈[0,T),n≥1. | (39) |
By Young's inequality and H
|Gun(t)|≤Ku(T),n≥1. |
In view of (38) and (39), an application of Lebesgue's dominated convergence theorem yields that for fixed a.e.
limn→∞(Eun(t)−Eun(0))=0. |
By (24) and the above relation, for fixed
Eu(u)=limn→∞Eun(t)=limn→∞Eun(0)=Eu(u0). |
By Theorem 2.8, we infer that for all fixed
Next, we prove that
By differentiation of the second equation of (31), we obtain this relation:
ρn∗vxt+ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux)=0. | (40) |
In view of (31), (33) and (40), we obtain
ddt∫R(ρn∗u)(ρn∗v)+(ρn∗ux)(ρn∗vx)dx=∫R(ρn∗u)(ρn∗vt)+(ρn∗ux)(ρn∗vxt)+(ρn∗ut)(ρn∗v)+(ρn∗uxt)(ρn∗vx)dx=−∫R(ρn∗u)(ρn∗(uvvx)+ρn∗Px∗(12v2xu+vuxvx+v2u) |
+ρn∗P∗(12v2xux))dx−∫R(ρn∗ux)(ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux))dx−∫R(ρn∗v)(ρn∗(vuux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗vx)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (41) |
We can analogously get the similar convergence like the case
It is nature to define
Hn(t)=∫R(ρn∗u)(ρn∗v)+(ρn∗ux)(ρn∗vx)dx, | (42) |
and
Gu,vn(t)=−∫R(ρn∗u)(ρn∗(uvvx)+ρn∗Px∗(12v2xu+vuxvx+v2u)+ρn∗P∗(12v2xux))dx−∫R(ρn∗ux)(ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux))dx−∫R(ρn∗v)(ρn∗(vuux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗vx)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (43) |
And it is easy to get
Hn(t)−Hn(0)=∫t0Gu,vn(s)ds,t∈[0,T),n≥1. | (44) |
Similarly, we get this estimate by using Young's inequality and Holder's inequality:
|Gu,vn(t)|≤Ku,v(T),n≥1. |
An application of Lebesgue's dominated convergence theorem yields that for fixed a.e.
limn→∞[Hn(t)−Hn(0)]=0. |
By these convergence above, for fixed
H(u,v)=limn→∞Hn(t)=limn→∞Hn(0)=H(u0,v0), |
which indicates that
Since
‖m(t,⋅)‖≤3e‖u0‖1‖v0‖1t‖m0‖M(R). |
For any fixed
(u(t,⋅)−uxx(t,⋅))∈M(R). |
Therefore, in view of (24) and (25), we obtain that for all
unk(t,⋅)−unkxx(t,⋅)→u(t,⋅)−uxx(t,⋅)inD′(R). |
Since
u(t,⋅)−uxx(t,⋅)∈M+(R). |
Similarly, we arrive at the conclusion:
v(t,⋅)−vxx(t,⋅)∈M+(R). |
Finally, we show the uniqueness of the weak solutions of equation (6). Let
(f,g)∈W1,∞(R+×R)∩L∞(R+;H1(R))×W1,∞(R+×R)∩L∞(R+;H1(R)) |
Note that
‖u(t,⋅)−uxx(t,⋅)‖M(R)≤3e‖u0‖1‖v0‖1t‖m0‖M(R),‖v(t,⋅)−vxx(t,⋅)‖M(R)≤3e‖u0‖1‖v0‖1t‖n0‖M(R)fora.e.t∈[0,T). |
Define
M(T)=supt∈[0,T){‖u(t,⋅)−uxx(t,⋅)‖M(R)+‖v(t,⋅)−vxx(t,⋅)‖M(R)+‖ˉu(t,⋅)−ˉuxx(t,⋅)‖M(R)+‖ˉv(t,⋅)−ˉvxx(t,⋅)‖M(R)}. |
Then for fixed
‖u(t,⋅)‖L1≤‖P‖L1M(T)=M(T),‖ux(t,⋅)‖L1≤‖Px‖L1M(T)=M(T),‖v(t,⋅)‖L1,‖vx(t,⋅)‖L1,‖ˉu(t,⋅)‖L1,‖ˉux(t,⋅)‖L1,‖ˉv(t,⋅)‖L1and‖ˉvx(t,⋅)‖L1≤M(T). | (45) |
On the other hand, from (29) and (30), we have
‖u(t,⋅)‖L∞≤‖m0‖M(R)≤N,‖ux(t,⋅)‖L∞≤‖m0‖M(R)≤N,‖v(t,⋅)‖L∞≤‖n0‖M(R)≤N,‖vx(t,⋅)‖L∞≤‖n0‖M(R)≤N,‖ˉu(t,⋅)‖L∞,‖ˉux(t,⋅)‖L∞,‖ˉv(t,⋅)‖L∞and‖ˉvx(t,⋅)‖L∞≤N. | (46) |
Let us define
ˆu(t,x)=u(t,x)−ˉu(t,x)andˆv(t,x)=v(t,x)−ˉv(t,x),(t,x)∈[0,T)×R. |
Convoluting equation (6) for
ddt∫R|ρn∗ˆu|dx=∫Rρn∗ˆutsgn(ρn∗ˆu)dx=−∫Rρn∗(ˆuvux+ˉuuxˆv+ˉuˉvˆux)sgn(ρn∗ˆu)dx−∫Rρn∗Pxx∗(12ˆu(ux+ˉux)v+12ˉu2xˆv+ˆuuxvx+ˉuvxˆux+ˉuˉuxˆvx+ˆu(u+ˉu)v+u2ˆv)sgn(ρnx∗ˆu)dx−∫Rρn∗12P∗(ˆux(ux+ˉux)vx+ˉu2xˆvx)sgn(ρn∗ˆu)dx. | (47) |
Using (46) and Young's inequality, we infer that for a.e.
ddt∫R|ρn∗ˆu|dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx). | (48) |
where
ddt∫R|ρn∗ˆux|dx=∫Rρn∗ˆuxtsgn(ρnx∗ˆu)dx=−∫Rρn∗(ˆuvux+ˉuuxˆv+ˉuˉvˆux)xsgn(ρnx∗ˆu)dx−∫Rρn∗Pxx∗(12ˆu(ux+ˉux)v+12ˉu2xˆv+ˆuuxvx+ˉuvxˆux+ˉuˉuxˆvx+ˆu(u+ˉu)v+u2ˆv)sgn(ρnx∗ˆu)dx−∫Rρn∗12Px∗(ˆux(ux+ˉux)vx+ˉu2xˆvx)sgn(ρnx∗ˆu)dx=I1+I2+I3. | (49) |
For the term
I1=−∫Rρn∗(ˆuxvux+ˆuuxvx+ˆuvuxx+ˉuxuxˆv+ˉuuxxˆv+ˉuuxˆvx+ˉuxˉvˆux+ˉuˉvxˆux+ˉuˉvˆuxx)sgn(ρnx∗ˆu)dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)−∫Rρn∗(ˆuvuxx+ˉuuxxˆv+ˉuˉvˆuxx)sgn(ρnx∗ˆu)dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)−∫R(ρn∗ˆuv)(ρn∗uxx)sgn(ρnx∗ˆu)dx−∫R(ρn∗ˉuˆv)(ρn∗uxx)sgn(ρnx∗ˆu)dx−∫R(ρn∗ˉuˉv)(ρn∗ˆuxx)sgn(ρnx∗ˆu)dx+Rn(t) |
≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)+∫R(ρn∗(ˆuv)x)(ρn∗ux)sgn(ρnx∗ˆu)dx+∫R(ρn∗(ˉuˆv)x)(ρn∗ux)sgn(ρnx∗ˆu)dx+∫R(ρn∗(ˉuˉv)x)(ρn∗ˆux)sgn(ρnx∗ˆu)dx+Rn(t)≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)+Rn(t), | (50) |
where C is a constant depending on
{Rn(t)⟶0,n→∞,|Rn(t)|≤κ(T),n≥1,t∈[0,T). | (51) |
For the second term
I2=−∫Rρn∗Pxx∗(12ˆu(ux+ˉux)v+12ˉu2xˆv+ˆuuxvx+ˉuvxˆux+ˉuˉuxˆvx+ˆu(u+ˉu)v+u2ˆv)sgn(ρnx∗ˆu)dx≤2∫Rρn∗|12ˆu(ux+ˉux)v+12ˉu2xˆv+ˆuuxvx+ˉuvxˆux+ˉuˉuxˆvx+ˆu(u+ˉu)v+u2ˆv|dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx). | (52) |
For the final term
I3=−∫Rρn∗12Px∗(ˆux(ux+ˉux)vx+ˉu2xˆvx)sgn(ρnx∗ˆu)dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx). | (53) |
Adding these three terms, we obtain
ddt∫R|ρn∗ˆux|dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)+Rn(t). | (54) |
For these terms
ddt∫R|ρn∗ˆv|dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx),ddt∫R|ρn∗ˆvx|dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)+Rn(t). | (55) |
From (48), (54) and (55), we infer that
ddt(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)+Rn(t). | (56) |
If
(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)≤e∫t0C+˜Rn(τ)dτ(|ρn∗ˆu|+|ρn∗ˆux|+|ρn∗ˆv|+|ρn∗ˆvx|)(0,x), | (57) |
where
(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)≤eCt(|ρn∗ˆu|+|ρn∗ˆux|+|ρn∗ˆv|+|ρn∗ˆvx|)(0,x), | (58) |
As
[1] |
J. Li, X. Xiang, X. Tao, Research of the operational mechanism of the fresh food e-commerce supply chain and "aricultural and supermarket docking" mode in China, Sci. Res., 4 (2016), 55. https://doi.org/10.11648/j.sr.20160402.16 doi: 10.11648/j.sr.20160402.16
![]() |
[2] |
B. Meng, X. Zhang, W. Hua, L. Liu, K. Ma, Development and application of phase change material in fresh e-commerce cold chain logistics: A review, J. Energy Storage, 55 (2022). https://doi.org/10.1016/J.EST.2022.105373 doi: 10.1016/J.EST.2022.105373
![]() |
[3] |
M. Yu, A. Nagurney, Competitive food supply chain networks with application to fresh produce, Eur. J. Oper. Res., 224 (2013), 273–282. https://doi.org/10.1016/j.ejor.2012.07.033 doi: 10.1016/j.ejor.2012.07.033
![]() |
[4] | T. Zheng, F. Li, Research on the development of store-warehouse integration, front-warehouse and community-group mode under the new retail situation, in Proceedings of 2020 International Conference on World Economy and Project Management (WEPM 2020), (2020), 4. https://doi.org/10.26914/c.cnkihy.2020.004796 |
[5] |
Q. Wu, Research on the influence of logistics service quality on consumers' repeated purchase willingness under the group-buying mode of agricultural products community, Acad. J. Bus. Manage., 4 (2022), 40–49. https://doi.org/10.25236/AJBM.2022.041906 doi: 10.25236/AJBM.2022.041906
![]() |
[6] |
Y. Jiang, P. Lai, C. H. Chang, K. F. Yuen, S. Li, X. Wang, Sustainable management for fresh food e-commerce logistics services, Sustainability, 13 (2021), 3456. https://doi.org/10.3390/SU13063456 doi: 10.3390/SU13063456
![]() |
[7] | F. Wan, J. Qin, X. Wang, Location selection of fresh e-commerce's front warehouse under new retail model, in 2022 International Conference on Artificial Intelligence, Internet and Digital Economy (ICAID 2022) 2022 International Conference on Artificial Intelligence, Internet and Digital Economy (ICAID 2022), 2022. https://doi.org/10.2991/978-94-6463-010-7_83 |
[8] |
M. Nekutova, L. Svadlenka, N. Kudlackova, Warehouse location problem as a strategical and operative logistic decision, Appl. Mech. Materials, 803 (2015), 40–46. https://doi.org/10.4028/www.scientific.net/AMM.803.40 doi: 10.4028/www.scientific.net/AMM.803.40
![]() |
[9] |
M. Momenitabar, Z. D. Ebrahimi, M. Arani, J. Mattson, P. Ghasemi, Designing a sustainable closed-loop supply chain network considering lateral resupply and backup suppliers using fuzzy inference system, Environ. Dev. Sustainability, 2022 (2022), 1–34. https://doi.org/10.1007/S10668-022-02332-4 doi: 10.1007/S10668-022-02332-4
![]() |
[10] |
G. Fariba, K. Vikas, G. Peiman, Investigating a citrus fruit supply chain network considering CO2 emissions using meta-heuristic algorithms, Ann. Oper. Res., 2022 (2022), 1–55. https://doi.org/10.1007/s10479-022-05005-7 doi: 10.1007/s10479-022-05005-7
![]() |
[11] |
M. Mohsen, D. E. Zhila, G. Peiman, Designing a sustainable bioethanol supply chain network: A combination of machine learning and meta-heuristic algorithms, Ind. Crops Products, 189 (2022), 115848. https://doi.org/10.1016/J.INDCROP.2022.115848 doi: 10.1016/J.INDCROP.2022.115848
![]() |
[12] |
Y. Wang, J. Zhang, X. Guan, M. Xu, Z. Wang, H. Wang, Collaborative multiple centers fresh logistics distribution network optimization with resource sharing and temperature control constraints, Expert Syst. Appl., 165 (2021), 113838. https://doi.org/10.1016/j.eswa.2020.113838 doi: 10.1016/j.eswa.2020.113838
![]() |
[13] |
K. Govindan, A. Jafarian, R. Khodaverdi, K. Devika, Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food, Int. J. Prod. Econ., 152 (2014), 9–28. https://doi.org/10.1016/j.ijpe.2013.12.028 doi: 10.1016/j.ijpe.2013.12.028
![]() |
[14] |
S. Wang, F. Tao, Y. Shi, Optimization of location–routing problem for cold chain logistics considering carbon footprint, Int. J. Environ. Res. Public Health, 15 (2018), 86. https://doi.org/10.3390/ijerph15010086 doi: 10.3390/ijerph15010086
![]() |
[15] |
H. Wang, H. Ran, X. Dang, Location optimization of fresh agricultural products cold chain distribution center under carbon emission constraints, Sustainability, 14 (2022), 6726. https://doi.org/10.3390/SU14116726 doi: 10.3390/SU14116726
![]() |
[16] |
S. Liu, Multimodal transportation route optimization of cold chain container in time-varying network considering carbon emissions, Sustainability, 15 (2023), 4435. https://doi.org/10.3390/su15054435 doi: 10.3390/su15054435
![]() |
[17] |
N. M. M. Torre, V. A. P. Salomon, E. Loche, S. A. Gazale, V. M. Palermo, Warehouse location for product distribution by e-commerce in Brazil: Comparing symmetrical MCDM applications, Symmetry, 14 (2022), 1987. https://doi.org/10.3390/SYM14101987 doi: 10.3390/SYM14101987
![]() |
[18] |
X. Wang, Location selection of marine product E-commerce distribution centers based on effective covering model, J. Coastal Res., 110 (2020), 15–19. https://doi.org/10.2112/JCR-SI110-004.1 doi: 10.2112/JCR-SI110-004.1
![]() |
[19] |
A. Ahmadi-Javid, E. Amiri, M. Meskar, A profit-maximization location-routing-pricing problem: A branch-and-price algorithm, Eur. J. Oper. Res., 271 (2018), 866–881. https://doi.org/10.1016/j.ejor.2018.02.020 doi: 10.1016/j.ejor.2018.02.020
![]() |
[20] |
R. Macedo, C. Alves, S. Hanafi, B. Jarboui, N. Mladenović, B. Ramos, et al., Skewed general variable neighborhood search for the location routing scheduling problem, Comput. Oper. Res., 61 (2015), 143–152. https://doi.org/10.1016/j.cor.2015.03.011 doi: 10.1016/j.cor.2015.03.011
![]() |
[21] |
Y. Zhang, Logistics distribution scheduling model of supply chain based on genetic algorithm, J. Ind. Prod. Eng., 39 (2022), 83–88. https://doi.org/10.1080/21681015.2021.1958938 doi: 10.1080/21681015.2021.1958938
![]() |
[22] |
S. A. Torabi, I. Shokr, S. Tofighi, J. Heydari, Integrated relief pre-positioning and procurement planning in humanitarian supply chains, Transp. Res. Part E, 113 (2018), 123–146. https://doi.org/10.1016/j.tre.2018.03.012 doi: 10.1016/j.tre.2018.03.012
![]() |
[23] |
A. Pagès‐Bernaus, H. Ramalhinho, A. A. Juan, L. Calvet, Designing e-commerce supply chains: A stochastic facility-location approach, Int. Tran. Oper. Res., 26 (2019), 507–528. https://doi.org/10.1111/itor.12433 doi: 10.1111/itor.12433
![]() |
[24] |
C. Erdin, H. E. Akbaş, A comparative analysis of fuzzy TOPSIS and geographic information systems (GIS) for the location selection of shopping malls: A case study from Turkey, Sustainability, 11 (2019), 3837. https://doi.org/10.3390/su11143837 doi: 10.3390/su11143837
![]() |
[25] |
A. Silva, D. Aloise, L. C. Coelho, C. Rocha, Heuristics for the dynamic facility location problem with modular capacities, Eur. J. Oper. Res., 290 (2020), 435–452. https://doi.org/10.1016/j.ejor.2020.08.018 doi: 10.1016/j.ejor.2020.08.018
![]() |
[26] |
H. Zhang, K. Zhang, Y. Zhou, L. Ma, Z. Zhang, An immune algorithm for solving the optimization problem of locating the battery swapping stations, Knowl.-Based Syst., 248 (2022). https://doi.org/10.1016/J.KNOSYS.2022.108883 doi: 10.1016/J.KNOSYS.2022.108883
![]() |
[27] |
R. Shang, W. Zhang, F. Li, L. Jiao, R. Stolkin, Multi-objective artificial immune algorithm for fuzzy clustering based on multiple kernels, Swarm Evol. Comput., 50 (2019). https://doi.org/10.1016/j.swevo.2019.01.001 doi: 10.1016/j.swevo.2019.01.001
![]() |
1. | Byungsoo Moon, Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation, 2021, 14, 1937-1632, 4409, 10.3934/dcdss.2021123 | |
2. | K.H. Karlsen, Ya. Rybalko, Global semigroup of conservative weak solutions of the two-component Novikov equation, 2025, 86, 14681218, 104393, 10.1016/j.nonrwa.2025.104393 |