[1]
|
S. Agarwal, J. O. D. Terrail, F. Jurie, Recent advances in object detection in the age of deep convolutional neural networks, preprint, arXiv: 1809.03193.
|
[2]
|
R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in 2014 IEEE Conference on Computer Vision and Pattern Recognition, (2014), 580–587. https://doi.org/10.1109/CVPR.2014.81
|
[3]
|
R. Girshick, Fast R-CNN, in 2015 IEEE International Conference on Computer Vision (ICCV), (2015), 1440–1448. https://doi.org/10.1109/ICCV.2015.169
|
[4]
|
S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2016), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 doi: 10.1109/TPAMI.2016.2577031
|
[5]
|
K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 386–397. https://doi.org/10.1109/TPAMI.2018.2844175 doi: 10.1109/TPAMI.2018.2844175
|
[6]
|
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, real-time object detection, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 779–88. https://doi.org/10.1109/CVPR.2016.91
|
[7]
|
J. Redmon, A. Farhadi, YOLOv3: An incremental improvement, preprint, arXiv: 1804.02767.
|
[8]
|
J. C. Y. Wang, A. Bochkovskiy, H. Y. M. Liao, YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, preprint, arXiv: 2207.02696.
|
[9]
|
K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, et al., T-CNN: tubelets with convolutional neural networks for object detection from videos, IEEE Trans. Circuits Syst. Video Technol., (2017), 2896–2907. https://doi.org/10.1109/TCSVT.2017.2736553 doi: 10.1109/TCSVT.2017.2736553
|
[10]
|
T. Yin, X. Zhou, P. Krahenbuhl, Center-based 3d object detection and tracking, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 11784–11793. https://doi.org/10.1109/CVPR46437.2021.01161
|
[11]
|
J. Dai, K. He, J. Sun, Instance-aware semantic segmentation via multi-task network cascades, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 3150–3158. https://doi.org/10.1109/CVPR.2016.343
|
[12]
|
B. Hariharan, P. Arbeláez, R. Girshick, J. Malik, Hypercolumns for object segmentation and fine-grained localization, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 447–456. https://doi.org/10.1109/CVPR.2015.7298642
|
[13]
|
B. Hariharan, P. Arbeláez, R. Girshick, J. Malik, Simultaneous detection and segmentation, in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII 13, (2014), 297–312. https://doi.org/10.1007/978-3-319-10584-0_20
|
[14]
|
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 1–9. https://doi.org/10.1109/CVPR.2015.7298594
|
[15]
|
H. Wang, F. He, Z. Peng, T. Shao, Y. L. Yang, K. Zhou, et al., Understanding the robustness of skeleton-based action recognition under adversarial attack, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 14656–14665. https://doi.org/10.1109/CVPR46437.2021.01442
|
[16]
|
L. Wang, Z. Tong, B. Ji, G. Wu, TDN: Temporal difference networks for efficient action recognition, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 1895–1904. https://doi.org/10.48550/arXiv.2012.10071
|
[17]
|
D. Li, Z. Qiu, Y. Pan, T. Yao, H. Li, T. Mei, Representing videos as discriminative sub-graphs for action recognition, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 3310–3319. https://doi.org/10.48550/arXiv.2201.04027
|
[18]
|
C. F. R. Chen, R. Panda, K. Ramakrishnan, R. Feris, J. Cohn, A. Oliva, et al., Deep analysis of cnn-based spatio-temporal representations for action recognition, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 6165–6175. https://doi.org/10.1109/CVPR46437.2021.00610
|
[19]
|
S. Jha, C. Seo, E. Yang, G. P. Joshi, Real time object detection and trackingsystem for video surveillance system, Multimed. Tools Appl., 80 (2021), 3981–3996. https://doi.org/10.1007/s11042-020-09749-x doi: 10.1007/s11042-020-09749-x
|
[20]
|
M. A. Farooq, A. A. Khan, A. Ahmad, R. H. Raza, Effectiveness of state-of-the-art super resolution algorithms in surveillance environment, in Conference on Multimedia, Interaction, Design and Innovation, 1376 (2021), 79–88. https://doi.org/10.48550/arXiv.2107.04133
|
[21]
|
X. Zheng, X. Li, K. Xu, X. Jiang, T. Sun, Gait identification under surveillance environment based on human skeleton, preprint, arXiv: 2111.11720.
|
[22]
|
F. Wu, Q. Wang, J. Bian, H. Xiong, N. Ding, F. Lu, et al., A survey on video action recognition in sports: datasets, methods and applications, preprint, arXiv: 2206.01038.
|
[23]
|
C. J. Roros, A. C. Kak, maskGRU: Tracking small objects in the presence of large background motions, preprint, arXiv: 2201.00467.
|
[24]
|
Y. B. Can, A. Liniger, D. P. Paudel, L. Van Gool, Structured bird's-eye-view traffic scene understanding from onboard images, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), (2021), 15641–15650. https://doi.org/10.1109/ICCV48922.2021.01537
|
[25]
|
S. Hampali, S. Stekovic, S. D. Sarkar, C. S. Kumar, F. Fraundorfer, V. Lepetit, Monte carlo scene search for 3d scene understanding, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 13804–13813. https://doi.org/10.1109/CVPR46437.2021.01359
|
[26]
|
J. Hou, B. Graham, M. Niessner, S. Xie, Exploring data-efficient 3d scene understanding with contrastive scene contexts, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 15587–15597. https://doi.org/10.1109/CVPR46437.2021.01533
|
[27]
|
Y. Liu, R. Wang, S. Shan, X. Chen, Structure inference net: object detection using scene-level context and instance-level relationships, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 6985–6994. https://doi.org/10.1109/CVPR.2018.00730
|
[28]
|
M. Schön, M. Buchholz, K. Dietmayer, MGNet: monocular geometric scene understanding for autonomous driving, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), (2021), 15784–15795. https://doi.org/10.1109/ICCV48922.2021.01551
|
[29]
|
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90
|
[30]
|
S. H. Gao, M. M. Cheng, K. Zhao, X. Y. Zhang, M. H. Yang, P. Torr, Res2Net: a new multi-scale backbone architecture, in IEEE Trans. Pattern Anal. Mach. Intell., 43 (2021), 652–662. https://doi.org/10.1109/TPAMI.2019.2938758
|
[31]
|
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint, arXiv: 1409.1556.
|
[32]
|
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, et al., MobileNets: efficient convolutional neural networks for mobile vision applications, preprint, arXiv: 1704.04861.
|
[33]
|
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, MobileNetV2: inverted residuals and linear bottlenecks, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 4510–4520. https://doi.org/10.48550/arXiv.1801.04381
|
[34]
|
K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE Trans. Pattern Anal. Mach. Intell., 37 (2015), 1904–1916. https://doi.org/10.1109/TPAMI.2015.2389824 doi: 10.1109/TPAMI.2015.2389824
|
[35]
|
T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 936–944. https://doi.org/10.1109/CVPR.2017.106
|
[36]
|
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, et al., SSD: single shot multibox detector, in European Conference on Computer Vision, (2016), 21–37. https://doi.org/10.1007/978-3-319-46448-0_2
|
[37]
|
C. Zhu, Y. He, M. Savvides, Feature selective anchor-free module for single-shot object detection, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 840–849.
|
[38]
|
H. Law, J. Deng, CornerNet: Detecting objects as paired keypoints, in European Conference on Computer Vision, (2018), 765–781. https://doi.org/10.1007/978-3-030-01264-9_45
|
[39]
|
Z. Tian, C. Shen, H. Chen, T. He, FCOS: fully convolutional one-stage object detection, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 9626–9635. https://doi.org/10.1109/ICCV.2019.00972
|
[40]
|
X. Zhou, D. Wang, P. Krähenbühl, Objects as points, preprint, arXiv: 1904.07850.
|
[41]
|
C. Eggert, S. Brehm, A. Winschel, D. Zecha, R. Lienhart, A closer look: small object detection in faster R-CNN, in 2017 IEEE International Conference on Multimedia and Expo (ICME), (2017), 421–426. https://doi.org/10.1109/ICME.2017.8019550
|
[42]
|
C. Chen, M. Y. Liu, O. Tuzel, J. Xiao, R-CNN for small object detection, in Asian Conference on Computer Vision, 10115 (2017), 214–230. https://doi.org/10.1007/978-3-319-54193-8_14
|
[43]
|
T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, et al., Microsoft COCO: common objects in context, in European Conference on Computer Vision, (2014), 740–755. https://doi.org/10.48550/arXiv.1405.0312
|
[44]
|
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, F. Li, ImageNet: a large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, (2009), 248–255. https://doi.org/10.1109/CVPR.2009.5206848
|
[45]
|
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman, The pascal visual object classes (voc) challenge, Int. J. Comput. Vis., 88 (2010), 303–338. https://doi.org/10.1007/s11263-009-0275-4 doi: 10.1007/s11263-009-0275-4
|
[46]
|
Z. Zong, G. Song, Y. Liu, DETRs with collaborative hybrid assignments training, preprint, arXiv: 2211.12860.
|
[47]
|
S. Yang, P. Luo, C. C. Loy, X. Tang, WIDER FACE: a face detection benchmark, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 5525–5533. https://doi.org/10.1109/CVPR.2016.596
|
[48]
|
A. B. Chan, Z. S. J. Liang, N. Vasconcelos, Privacy preserving crowd monitoring: counting people without people models or tracking, in 2008 IEEE Conference on Computer Vision and Pattern Recognition, (2008), 1–7. https://doi.org/10.1109/CVPR.2008.4587569
|
[49]
|
L. Wang, J. Shi, G. Song, Object detection combining recognition and segmentation, in Asian Conference on Computer Vision, 4843 (2007), 189.
|
[50]
|
E. Bondi, R. Jain, P. Aggrawal, S. Anand, R. Hannaford, A. Kapoor, et al., BIRDSAI: a dataset for detection and tracking in aerial thermal infrared videos, in 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), (2020), 1736–1745. https://doi.org/10.1109/WACV45572.2020.9093284
|
[51]
|
L. Neumann, M. Karg, S. Zhang, C. Scharfenberger, E. Piegert, S. Mistr, et al., NightOwls: a pedestrians at night dataset, in Asian Conference on Computer Vision, (2019), 691–705. https://doi.org/10.1007/978-3-030-20887-5_43
|
[52]
|
K. Behrendt, L. Novak, R. Botros, A deep learning approach to traffic lights: Detection, tracking, and classification, in 2017 IEEE International Conference on Robotics and Automation (ICRA), (2017), 1370–1377. https://doi.org/10.1109/ICRA.2017.7989163
|
[53]
|
C. Ertler, J. Mislej, T. Ollmann, L. Porzi, G. Neuhold, Y. Kuang, The Mapillary Traffic sign dataset for detection and classification on a global scale, in European Conference on Computer Vision, (2020), 68–84. https://doi.org/10.48550/arXiv.1909.04422
|
[54]
|
J. Zhang, M. Huang, X. Jin, X. Li, A real-time chinese traffic sign detection algorithm based on modified yolov2, Algorithms, 10 (2017), 127. https://doi.org/10.3390/a10040127 doi: 10.3390/a10040127
|
[55]
|
D. Tabernik, D. Skočaj, Deep learning for large-scale traffic-sign detection and recognition, preprint, arXiv: 1904.00649.
|
[56]
|
Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, S. Hu, Traffic-sign detection and classification in the wild, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 2110–2118. https://doi.org/10.1109/CVPR.2016.232
|
[57]
|
Z. Zhao, P. Zheng, S. T. Xu, X. Wu, Object detection with deep learning: a review, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 3212–3232. https://doi.org/10.1109/TNNLS.2018.2876865 doi: 10.1109/TNNLS.2018.2876865
|
[58]
|
K. Li, G. Wan, G. Cheng, L. Meng, J. Han, Object detection in optical remote sensing images: A survey and a new benchmark, ISPRS J. Photogramm. Remote Sens., 159 (2020), 296–307. https://doi.org/10.1016/j.isprsjprs.2019.11.023 doi: 10.1016/j.isprsjprs.2019.11.023
|
[59]
|
K. Oksuz, B. C. Cam, S. Kalkan, E. Akbas, Imbalance problems in object detection: a review, preprint, arXiv: 1909.00169.
|
[60]
|
A. G. Menezes, G. de Moura, C. Alves, A. C. P. L. F. de Carvalho, Continual object detection: a review of definitions, strategies, and challenges, preprint, arXiv: 2205.15445.
|
[61]
|
L. Jiao, R. Zhang, F. Liu, S. Yang, B. Hou, L. Li, et al., New generation deep learning for video object detection: a survey, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 3195–3215. https://doi.org/10.1109/TNNLS.2021.3053249 doi: 10.1109/TNNLS.2021.3053249
|
[62]
|
L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, et al., A survey of deep learning-based object detection, IEEE Access, 7 (2019), 128837–128868. https://doi.org/10.1109/ACCESS.2019.2939201 doi: 10.1109/ACCESS.2019.2939201
|
[63]
|
G. Chen, H. Wang, K. Chen, Z. Li, Z. Song, Y. Liu, et al., A survey of the four pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal, IEEE Trans. Syst. Man Cybern, Syst., 52 (2022), 936–953. https://doi.org/10.1109/TSMC.2020.3005231 doi: 10.1109/TSMC.2020.3005231
|
[64]
|
K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, et al., MMDetection: open mmlab detection toolbox and benchmark, preprint, arXiv: 1906.07155.
|
[65]
|
K. Tong, Y. Wu, F. Zhou, Recent advances in small object detection based on deep learning: A review, Image Vis. Comput., 97 (2020), 103910. https://doi.org/10.1016/j.imavis.2020.103910 doi: 10.1016/j.imavis.2020.103910
|
[66]
|
Y. Liu, P. Sun, N. Wergeles, Y. Shang, A survey and performance evaluation of deep learning methods for small object detection, Expert Syst. Appl., 172 (2021), 114602. https://doi.org/10.1016/j.eswa.2021.114602 doi: 10.1016/j.eswa.2021.114602
|
[67]
|
K. Tong, Y. Wu, Deep learning-based detection from the perspective of small or tiny objects: A survey, Image Vis. Comput., 123 (2022), 104471. https://doi.org/10.1016/j.imavis.2022.104471 doi: 10.1016/j.imavis.2022.104471
|
[68]
|
A. M. Rekavandi, L. Xu, F. Boussaid, A. K. Seghouane, S. Hoefs, M. Bennamoun, A guide to image and video based small object detection using deep learning: case study of maritime surveillance, preprint, arXiv: 2207.12926.
|
[69]
|
G. Cheng, X. Yuan, X. Yao, K. Yan, Q. Zeng, J. Han, Towards large-scale small object detection: survey and benchmarks, preprint, arXiv: 2207.14096.
|
[70]
|
S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmentation, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 8759–8768. https://doi.org/10.1109/CVPR.2018.00913
|
[71]
|
M. Tan, R. Pang, Q. V. Le, EfficientDet: scalable and efficient object detection, preprint, arXiv: 1911.09070.
|
[72]
|
S. Liu, D. Huang, Y. Wang, Learning spatial fusion for single-shot object detection, preprint, arXiv: 1911.09516.
|
[73]
|
G. Ghiasi, T. Y. Lin, R. Pang, Q. V. Le, NAS-FPN: learning scalable feature pyramid architecture for object detection, preprint, arXiv: 1904.07392.
|
[74]
|
T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 2999–3007. https://doi.org/10.1109/ICCV.2017.324
|
[75]
|
Z. Li, F. Zhou, FSSD: feature fusion single shot multibox detector, preprint, arXiv: 1712.00960.
|
[76]
|
L. Cui, R. Ma, P. Lv, X. Jiang, Z. Gao, B. Zhou, et al., MDSSD: multi-scale deconvolutional single shot detector for small objects, preprint, arXiv: 1805.07009.
|
[77]
|
Y. Gong, X. Yu, Y. Ding, X. Peng, J. Zhao, Z. Han, Effective fusion factor in fpn for tiny object detection, preprint, arXiv: 2011.02298.
|
[78]
|
Z. Liu, G. Gao, L. Sun, Z. Fang, HRDNet: High-resolution detection network for small objects, preprint, arXiv: 2006.07607.
|
[79]
|
Z. Liu, G. Gao, L. Sun, L. Fang, IPG-Net: image pyramid guidance network for small object detection, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), (2020), 4422–4430. https://doi.org/10.1109/CVPRW50498.2020.00521
|
[80]
|
P. Y. Chen, J. W. Hsieh, C. Y. Wang, H. Y. M. Liao, Recursive hybrid fusion pyramid network for real-time small object detection on embedded devices, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), (2020), 1612–1621. https://doi.org/10.1109/CVPRW50498.2020.00209
|
[81]
|
C. Yang, Z. Huang, N. Wang, QueryDet: cascaded sparse query for accelerating high-resolution small object detection, preprint, arXiv: 2103.09136.
|
[82]
|
C. Deng, M. Wang, L. Liu, Y. Liu, Y. Jiang, Extended feature pyramid network for small object detection, IEEE Trans. Multimedia, 24 (2022), 1968–1979. https://doi.org/10.1109/TMM.2021.3074273 doi: 10.1109/TMM.2021.3074273
|
[83]
|
J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, S. Yan, Perceptual generative adversarial networks for small object detection, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 1951–1959. https://doi.org/10.1109/CVPR.2017.211
|
[84]
|
Y. Bai, Y. Zhang, M. Ding, B. Ghanem, SOD-MTGAN: small object detection via multi-task generative adversarial network, in European Conference on Computer Vision, 11217 (2018), 210–226. https://doi.org/10.1007/978-3-030-01261-8_13
|
[85]
|
J. Noh, W. Bae, W. Lee, J. Seo, G. Kim, Better to follow, follow to be better: towards precise supervision of feature super-resolution for small object detection, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 9724–9733. https://doi.org/10.1109/ICCV.2019.00982
|
[86]
|
F. Zhang, L. Jiao, L. Li, F. Liu, X. Liu, MultiResolution attention extractor for small object detection, preprint, arXiv: 2006.05941.
|
[87]
|
J. Rabbi, N. Ray, M. Schubert, S. Chowdhury, D. Chao, Small-object detection in remote sensing images with end-to-end edge-enhanced gan and object detector network, preprint, arXiv: 2003.09085.
|
[88]
|
K. Jiang, Z. Wang, P. Yi, G. Wang, T. Lu, J. Jiang, Edge-enhanced GAN for remote sensing image super-resolution, IEEE Trans. Geosci. Remote Sens., 57 (2019), 5799–5812. https://doi.org/10.1109/TGRS.2019.2902431 doi: 10.1109/TGRS.2019.2902431
|
[89]
|
X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, et al., ESRGAN: enhanced super-resolution generative adversarial networks, in Proceedings of the European conference on computer vision (ECCV), (2018). https://doi.org/10.1007/978-3-030-11021-5_5
|
[90]
|
A. Jolicoeur-Martineau, The relativistic discriminator: a key element missing from standard gan, preprint, arXiv: 1807.00734.
|
[91]
|
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., Generative adversarial nets, Adv. Neural Inf. Process Syst., 27 (2014). https://doi.org/10.48550/arXiv.1406.2661 doi: 10.48550/arXiv.1406.2661
|
[92]
|
J. Cao, Y. Pang, S. Zhao, X. Li, High-level semantic networks for multi-scale object detection, IEEE Trans. Circuits Syst. Video Technol., 30 (2020), 3372–3386. https://doi.org/10.1109/TCSVT.2019.2950526 doi: 10.1109/TCSVT.2019.2950526
|
[93]
|
K. Zhang, Z. Zhang, Z. Li, Y. Qiao, Joint face detection and alignment using multitask cascaded convolutional networks, IEEE Signal Process. Lett., 23 (2016), 1499–1503. https://doi.org/10.1109/LSP.2016.2603342 doi: 10.1109/LSP.2016.2603342
|
[94]
|
Z. Hao, Y. Liu, H. Qin, J. Yan, X. Li, X. Hu, Scale-aware face detection, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 1913–1922. https://doi.org/10.1109/CVPR.2017.207
|
[95]
|
B. Singh, L. S. Davis, An analysis of scale invariance in object detection - snip, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 3578–3587. https://doi.org/10.1109/CVPR.2018.00377
|
[96]
|
B. Singh, M. Najibi, L. S. Davis, SNIPER: efficient multi-scale training, Adv. Neural Inf. Process Syst., 31 (2018). https://doi.org/10.48550/arXiv.1805.09300 doi: 10.48550/arXiv.1805.09300
|
[97]
|
Y. Kim, B. N. Kang, D. Kim, SAN: learning relationship between convolutional features for multi-scale object detection, in European Conference on Computer Vision, 11209 (2018), 328–343. https://doi.org/10.1007/978-3-030-01228-1_20
|
[98]
|
Y. Li, Y. Chen, N. Wang, Z. Zhang, Scale-aware trident networks for object detection, preprint, arXiv: 1901.01892.
|
[99]
|
J. Peng, M. Sun, Z. X. Zhang, T. Tan, J. Yan, POD: practical object detection with scale-sensitive network, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 9606–9615. https://doi.org/10.1109/ICCV.2019.00970
|
[100]
|
A. Oliva, A. Torralba, The role of context in object recognition, Trends Cogn. Sci., 11 (2007), 520–527. https://doi.org/10.1016/j.tics.2007.09.009 doi: 10.1016/j.tics.2007.09.009
|
[101]
|
S. Bell, C. L. Zitnick, K. Bala, R. Girshick, Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 2874–2883. https://doi.org/10.1109/CVPR.2016.314
|
[102]
|
C. Y. Fu, W. Liu, A. Ranga, A. Tyagi, A. C. Berg, DSSD: deconvolutional single shot detector, preprint, arXiv: 1701.06659.
|
[103]
|
W. Xiang, D. Q. Zhang, H. Yu, V. Athitsos, Context-aware single-shot detector, in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), (2018), 1784–1793. https://doi.org/10.1109/WACV.2018.00198
|
[104]
|
X. Chen, A. Gupta, Spatial memory for context reasoning in object detection, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 4106–4116. https://doi.org/10.1109/ICCV.2017.440
|
[105]
|
K. Fu, J. Li, L. Ma, K. Mu, Y. Tian, Intrinsic relationship reasoning for small object detection, preprint, arXiv: 2009.00833.
|
[106]
|
J. S. Lim, M. Astrid, H. J. Yoon, S. I. Lee, Small object detection using context and attention, in 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), (2021), 181–186. https://doi.org/10.1109/ICAIIC51459.2021.9415217
|
[107]
|
A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, YOLOv4: optimal speed and accuracy of object detection, preprint, arXiv: 2004.10934.
|
[108]
|
H. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz, Mixup: beyond empirical risk minimization, preprint, arXiv: 1710.09412.
|
[109]
|
S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, Y. Yoo, CutMix: regularization strategy to train strong classifiers with localizable features, in Proceedings of the IEEE International Conference on Computer Vision, (2019), 6023–6032. https://doi.org/10.1109/ICCV.2019.00612
|
[110]
|
M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, K. Cho, Augmentation for small object detection, preprint, arXiv: 1902.07296.
|
[111]
|
C. Chen, Y. Zhang, Q. Lv, S. Wei, X. Wang, X. Sun, et al., RRNet: a hybrid detector for object detection in drone-captured images, in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), (2019), 100–108. https://doi.org/10.1109/ICCVW.2019.00018
|
[112]
|
F. O. Unel, B. O. Ozkalayci, C. Cigla, The power of tiling for small object detection, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), (2019), 582–591. https://doi.org/10.1109/CVPRW.2019.00084
|
[113]
|
Y. Chen, P. Zhang, Z. Li, Y. Li, X. Zhang, L. Qi, et al., Dynamic scale training for object detection, preprint, arXiv: 2004.12432.
|
[114]
|
B. Zoph, E. D. Cubuk, G. Ghiasi, T. Y. Lin, J. Shlens, Q. V. Le, Learning data augmentation strategies for object detection, in European Conference on Computer Vision, (2020), 566–583. https://doi.org/10.1007/978-3-030-58583-9_34
|
[115]
|
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q. V. Le, AutoAugment: learning augmentation policies from data, preprint, arXiv: 1805.09501.
|
[116]
|
Y. Chen, Y. Li, T. Kong, L. Qi, R. Chu, L. Li, et al., Scale-aware automatic augmentation for object detection, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2021), 9563–9572. https://doi.org/10.1109/CVPR46437.2021.00944
|
[117]
|
N. Samet, S. Hicsonmez, E. Akbas, Reducing label noise in anchor-free object detection, preprint, arXiv: 2008.01167.
|
[118]
|
K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, Q. Tian, CenterNet++ for object detection, preprint, arXiv: 2204.08394.
|
[119]
|
J. Wang, C. Xu, W. Yang, L. Yu, A normalized gaussian wasserstein distance for tiny object detection, preprint, arXiv: 2110.13389.
|
[120]
|
C. Xu, J. Wang, W. Yang, H. Yu, L. Yu, G. Xia, RFLA: Gaussian receptive field based label assignment for tiny object detection, in Proceedings of the European conference on computer vision (ECCV), (2022). https://doi.org/10.1007/978-3-031-20077-9_31
|
[121]
|
C. Lee, S. Park, H. Song, J. Ryu, S. Kim, H. Kim, et al., Interactive multi-class tiny-object detection, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2022), 14136–14145. https://doi.org/10.1109/CVPR52688.2022.01374
|
[122]
|
F. C. Akyon, S. Altinuc, A. Temi̇zel, Slicing aided hyper inference and fine-tuning for small object detection, preprint, arXiv: 2202.06934.
|
[123]
|
P. Hu, D. Ramanan, Finding tiny faces, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 1522–1530. https://doi.org/10.1109/CVPR.2017.166
|
[124]
|
S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S. Z. Li, S.3FD: single shot scale-invariant face detector, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 192–201. https://doi.org/10.1109/ICCV.2017.30
|
[125]
|
Y. Bai, Y. Zhang, M. Ding, B. Ghanem, Finding tiny faces in the wild with generative adversarial network, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 21–30. https://doi.org/10.1109/CVPR.2018.00010
|
[126]
|
P. Samangouei, M. Najibi, L. Davis, R. Chellappa, Face-magnet: magnifying feature maps to detect small faces, preprint, arXiv: 1803.05258.
|
[127]
|
C. Zhu, R. Tao, K. Luu, M. Savvides, Seeing small faces from robust anchor's perspective, preprint, arXiv: 1802.09058.
|
[128]
|
Y. Zhu, H. Cai, S. Zhang, C. Wang, Y. Xiong, TinaFace: strong but simple baseline for face detection, preprint, arXiv: 2011.13183.
|
[129]
|
J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, et al., Deformable convolutional networks, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 764–773. https://doi.org/10.1109/ICCV.2017.89
|
[130]
|
Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, D. Ren, Distance-IoU loss: faster and better learning for bounding box regression, in Proceedings of the AAAI conference on artificial intelligence, 34 (2019), 12993–13000. https://doi.org/10.1609/aaai.v34i07.6999
|
[131]
|
A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detectors with online hard example mining, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2016), 761–769. https://doi.org/10.1109/CVPR.2016.89
|
[132]
|
Z. Zhang, W. Shen, S. Qiao, Y. Wang, B. Wang, A. Yuille, Robust face detection via learning small faces on hard images, in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, (2020), 1361–1370. https://doi.org/10.48550/arXiv.1811.11662
|
[133]
|
T. Song, L. Sun, D. Xie, H. Sun, S. Pu, Small-scale pedestrian detection based on somatic topology localization and temporal feature aggregation, preprint, arXiv: 1807.01438.
|
[134]
|
S. Das, P. S. Mukherjee, U. Bhattacharya, Seek and you will find: a new optimized framework for efficient detection of pedestrian, preprint, arXiv: 1912.10241.
|
[135]
|
W. Liu, S. Liao, W. Ren, W. Hu, Y. Yu, High-level semantic feature detection: a new perspective for pedestrian detection, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 5182–5191. https://doi.org/10.1109/CVPR.2019.00533
|
[136]
|
X. Yu, Y. Gong, N. Jiang, Q. Ye, Z. Han, Scale match for tiny person detection, in 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), (2020), 1246–1254. https://doi.org/10.1109/WACV45572.2020.9093394
|
[137]
|
D. Božić-Štulić, Ž. Marušić, S. Gotovac, Deep learning approach in aerial imagery for supporting land search and rescue missions, Int. J. Comput Vis., 127 (2019), 1256–1278. https://doi.org/10.1007/s11263-019-01177-1 doi: 10.1007/s11263-019-01177-1
|
[138]
|
G. Adaimi, S. Kreiss, A. Alahi, Perceiving traffic from aerial images, preprint, arXiv: 2009.07611.
|
[139]
|
C. Gheorghe, N. Filip, Road traffic analysis using unmanned aerial vehicle and image processing algorithms, in 2022 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), (2022), 1–5. https://doi.org/10.1109/AQTR55203.2022.9802058
|
[140]
|
J. Han, J. Ding, J. Li, G. S. Xia, Align deep features for oriented object detection, IEEE Trans. Geosci. Remote Sens., 60 (2022), 5602511. https://doi.org/10.1109/TGRS.2021.3062048 doi: 10.1109/TGRS.2021.3062048
|
[141]
|
X. Yang, J. Yang, J. Yan, Y. Zhang, T. Zhang, Z. Guo, et al., SCRDet: towards more robust detection for small, cluttered and rotated objects, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 8231–8240. https://doi.org/10.1109/ICCV.2019.00832
|
[142]
|
X. Xie, G. Cheng, J. Wang, X. Yao, J. Han, Oriented r-cnn for object detection, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), (2021), 3500–3509. https://doi.org/10.1109/ICCV48922.2021.00350
|
[143]
|
R. Qin, Q. Liu, G. Gao, D. Huang, Y. Wang, MRDet: a multi-head network for accurate oriented object detection in aerial images, preprint, arXiv: 2012.13135.
|
[144]
|
X. Zhang, E. Izquierdo, K. Chandramouli, Dense and small object detection in uav vision based on cascade network, in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), (2019), 118–126. https://doi.org/10.1109/ICCVW.2019.00020
|
[145]
|
J. Yi, P. Wu, B. Liu, Q. Huang, H. Qu, D. Metaxas, Oriented object detection in aerial images with box boundary-aware vectors, in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, (2021), 2150–2159. https://doi.org/10.1109/WACV48630.2021.00220
|
[146]
|
O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation, in Medical Image Computing and Computer-Assisted Intervention, (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
|
[147]
|
J. Han, J. Ding, N. Xue, G. S. Xia, ReDet: a rotation-equivariant detector for aerial object detection, preprint, arXiv: 2103.07733.
|
[148]
|
J. Ding, N. Xue, Y. Long, G. S. Xia, Q. Lu, Learning ROI transformer for oriented object detection in aerial images, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 2849–2858. https://doi.org/10.1109/CVPR.2019.00296
|
[149]
|
M. Zand, A. Etemad, M. Greenspan, Oriented bounding boxes for small and freely rotated objects, IEEE Trans. Geosci. Remote Sensing, 60 (2022), 1–15. https://doi.org/10.1109/TGRS.2021.3076050 doi: 10.1109/TGRS.2021.3076050
|
[150]
|
Z. Yang, S. Liu, H. Hu, L. Wang, S. Lin, RepPoints: point set representation for object detection, in Proceedings of the IEEE/CVF International Conference on Computer Vision, (2019), 9657–9666. https://doi.org/10.1109/ICCV.2019.00975
|
[151]
|
W. Li, Y. Chen, K. Hu, J. Zhu, Oriented reppoints for aerial object detection, preprint, arXiv: 2105.11111.
|
[152]
|
C. Xu, J. Wang, W. Yang, L. Yu, Dot distance for tiny object detection in aerial images, in IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), (2021), 1192–1201, https://doi.org/10.1109/CVPRW53098.2021.00130
|
[153]
|
X. Fang, F. Hu, M. Yang, T. Zhu, R. Bi, Z. Zhang, Z. Gao, Small object detection in remote sensing images based on super-resolution, Pattern Recognit. Lett., 153 (2022), 107–112. https://doi.org/10.1016/j.patrec.2021.11.027.5 doi: 10.1016/j.patrec.2021.11.027.5
|
[154]
|
Y. Li, Q. Huang, X. Pei, Y. Chen, L. Jiao, R. Shang, Cross-layer attention network for small object detection in remote sensing imagery, IEEE J. Sel. Top Appl. Earth Obs. Remote Sens., 14 (2021), 2148–2161. https://doi.org/10.1109/JSTARS.2020.3046482 doi: 10.1109/JSTARS.2020.3046482
|
[155]
|
O. C. Koyun, R. K. Keser, İ. B. Akkaya, B. U. Töreyin, Focus-and-detect:a small object detection framework for aerial images, Signal Process. Image Commun., 104 (2022), 116675. https://doi.org/10.1016/j.image.2022.116675 doi: 10.1016/j.image.2022.116675
|
[156]
|
B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, et al., Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 1931–1939. https://doi.org/10.1109/CVPR.2015.7298803
|
[157]
|
Y. Yuan, W. Yang, W. Ren, J. Liu, W. J. Scheirer, Z. Wang, UG2+: a collective benchmark effort for evaluating and advancing image understanding in poor visibility environments, preprint, arXiv: 1904.04474.
|
[158]
|
H. Nada, V. A. Sindagi, H. Zhang, V. M. Patel, Pushing the limits of unconstrained face detection: a challenge ataset and baseline results, in 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), (2018), 1–10. https://doi.org/10.1109/BTAS.2018.8698561
|
[159]
|
M. K. Yucel, Y. C. Bilge, O. Oguz, N. Ikizler-Cinbis, P. Duygulu, R. G. Cinbis, Wildest faces: face detection and recognition in violent settings, preprint, arXiv: 1805.07566.
|
[160]
|
S. Zhang, Y. Xie, J. Wan, H. Xia, S. Z. Li, G. Guo, WiderPerson: A diverse dataset for dense pedestrian detection in the wild, IEEE Trans. Multimedia, 22 (2020), 380–393. https://doi.org/10.1109/TMM.2019.2929005 doi: 10.1109/TMM.2019.2929005
|
[161]
|
M. Braun, S. Krebs, F. Flohr, D. M. Gavrila, The eurocity persons dataset: a novel benchmark for object detection, preprint, arXiv: 1805.07193.
|
[162]
|
S. Zhang, R. Benenson, B. Schiele, CityPersons: a diverse dataset for pedestrian detection, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 4457–4465. https://doi.org/10.1109/CVPR.2017.474
|
[163]
|
P. Dollar, C. Wojek, B. Schiele, P. Perona, Pedestrian detection: a benchmark, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, (2009), 304–311. https://doi.org/10.1109/CVPR.2009.5206631
|
[164]
|
P. Zhu, L. Wen, D. Du, X. Bian, H. Fan, Q. Hu, et al., Detection and tracking meet drones challenge, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2022), 7380–7399. https://doi.org/10.1109/TPAMI.2021.3119563 doi: 10.1109/TPAMI.2021.3119563
|
[165]
|
D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, et al., The unmanned aerial vehicle benchmark: object detection and tracking, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), 370–386. https://doi.org/10.1007/s11263-019-01266-1
|
[166]
|
G. S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, et al., DOTA: a large-scale dataset for object detection in aerial images, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 3974–3983. https://doi.org/10.1109/CVPR.2018.00418
|
[167]
|
G. Cheng, J. Han, P. Zhou, L. Guo, Multi-class geospatial object detection and geographic image classification based on collection of part detectors, ISPRS J. Photogramm. Remote Sens., 98 (2014), 119–132. https://doi.org/10.1016/j.isprsjprs.2014.10.002 doi: 10.1016/j.isprsjprs.2014.10.002
|
[168]
|
H. Zhu, X. Chen, W. Dai, K. Fu, Q. Ye, J. Jiao, Orientation robust object detection in aerial images using deep convolutional neural network, in 2015 IEEE International Conference on Image Processing (ICIP), (2015), 3735–3739. https://doi.org/10.1109/ICIP.2015.7351502
|
[169]
|
L. Tuggener, I. Elezi, J. Schmidhuber, M. Pelillo, T. Stadelmann, DeepScores-a dataset for segmentation, detection and classification of tiny objects, in 2018 24th International Conference on Pattern Recognition (ICPR), (2018), 3704–3709. https://doi.org/10.1109/ICPR.2018.8545307
|
[170]
|
A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? The KITTI vision benchmark suite, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, (2012), 3354–3361. https://doi.org/10.1109/CVPR.2012.6248074
|
[171]
|
S. Song, S. P. Lichtenberg, J. Xiao, SUN RGB-D: a rgb-d scene understanding benchmark suite, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 567–576. https://doi.org/10.1109/CVPR.2015.7298655
|
[172]
|
S. Zhang, L. Wen, X. Bian, Z. Lei, S. Z. Li, Single-shot refinement neural network for object detection, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 4203–4212. https://doi.org/10.1109/CVPR.2018.00442
|
[173]
|
J. Cao, H. Cholakkal, R. M. Anwer, F. S. Khan, Y. Pang, L. Shao, D2Det: towards high quality object detection and instance segmentation, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 11482–11491.
|
[174]
|
Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, J. Feng, Dual path networks, Adv. Neural Inf. Process Syst., 30 (2017). https://doi.org/10.48550/arXiv.1707.01629 doi: 10.48550/arXiv.1707.01629
|
[175]
|
Y. Zhu, C. Zhao, J. Wang, X. Zhao, Y. Wu, H. Lu, CoupleNet: coupling global structure with local parts for object detection, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 4146–4154. https://doi.org/10.1109/ICCV.2017.444
|
[176]
|
H. Hu, J. Gu, Z. Zhang, J. Dai, Y. Wei, Relation networks for object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 3588–3597. https://doi.org/10.1109/CVPR.2018.00378
|
[177]
|
L. Tychsen-Smith, L. Petersson, Improving object localization with fitness nms and bounded iou loss, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 6877–6885. https://doi.org/10.1109/CVPR.2018.00719
|
[178]
|
S. Xu, X. Wang, W. Lv, Q. Chang, C. Cui, K. Deng, et al., PP-YOLOE: an evolved version of YOLO, preprint, arXiv: 2203.16250.
|
[179]
|
J. Leng, Y. Ren, W. Jiang, X. Sun, Y. Wang, Realize your surroundings: exploiting context information for small object detection, Neurocomputing, 433 (2021). https://doi.org/10.1016/j.neucom.2020.12.093 doi: 10.1016/j.neucom.2020.12.093
|
[180]
|
C. L. Zitnick, P. Dollár, Edge Boxes: locating object proposals from edges, in European Conference on Computer Vision, (2014), 391–405. https://doi.org/10.1007/978-3-319-10602-1_26
|
[181]
|
A. Howard, M. Sandler, G. Chu, L. C. Chen, B. Chen, M. Tan, et al., Searching for MobileNetV3, in Proceedings of the IEEE/CVF International Conference on Computer Vision, (2019), 1314–1324. https://doi.org/10.1109/ICCV.2019.00140
|
[182]
|
X. Tang, D. K. Du, Z. He, J. Liu, PyramidBox: a context-assisted single shot face detector, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), 797–813. https://doi.org/10.1007/978-3-030-01240-3_49
|
[183]
|
J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, S. Zafeiriou, RetinaFace: single-stage dense face localisation in the wild, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019), 5203–5212. https://doi.org/10.1109/CVPR42600.2020.00525
|
[184]
|
Z. Liu, J. Du, F. Tian, J. Wen, MR-CNN: a multi-scale region-based convolutional neural network for small traffic sign recognition, IEEE Access, 7 (2019), 57120–57128. https://doi.org/10.1109/ACCESS.2019.2913882 doi: 10.1109/ACCESS.2019.2913882
|
[185]
|
X. Lu, B. Li, Y. Yue, Q. Li, J. Yan, Grid R-CNN, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 7355–7364, https://doi.org/10.1109/CVPR.2019.00754.(2018).
|
[186]
|
J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, et al., DSFD: dual shot face detector, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019), 5060–5069. https://doi.org/10.1109/CVPR.2019.00520
|
[187]
|
X. Zhang, F. Wan, C. Liu, R. Ji, Q. Ye, FreeAnchor: learning to match anchors for visual object detection, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2022), 3096–3109. https://doi.org/10.48550/arXiv.1909.02466 doi: 10.48550/arXiv.1909.02466
|
[188]
|
J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, D. Lin, Libra R-CNN: towards balanced learning for object detection, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019), 821–830. https://doi.org/10.1109/CVPR.2019.00091
|
[189]
|
G. Zhang, S. Lu, W. Zhang, CAD-Net: a context-aware detection network for objects in remote sensing imagery, IEEE Trans. Geosci. Remote Sens., 57 (2019), 10015–10024. https://doi.org/10.1109/TGRS.2019.2930982 doi: 10.1109/TGRS.2019.2930982
|
[190]
|
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-end object detection with transformers, in European Conference on Computer Vision, 12346 (2020), 213–229. https://doi.org/10.1007/978-3-030-58452-8_13
|
[191]
|
S. Li, F. Liu, L. Jiao, X. Liu, P. Chen, Learning salient feature for salient object detection without labels, IEEE Trans. Cybern., 53 (2022), 1012–1025. https://doi.org/10.1109/TCYB.2022.3209978 doi: 10.1109/TCYB.2022.3209978
|
[192]
|
F. Liu, X. Qian, L. Jiao, X. Zhang, L. Li, Y. Cui, Contrastive learning-based dual dynamic gcn for sar image scene classification, IEEE Trans. Neural Networks Learn Syst., (2022), 1–15. https://doi.org/10.1109/TNNLS.2022.3174873 doi: 10.1109/TNNLS.2022.3174873
|
[193]
|
Y. Du, F. Liu, L. Jiao, Z. Hao, S. Li, X. Liu, et al., Augmentative contrastive learning for one-shot object detection, Neurocomputing, 513 (2022), 13–24. https://doi.org/10.1016/j.neucom.2022.09.125 doi: 10.1016/j.neucom.2022.09.125
|