The aim of this study was to assess the impact of diversity and inclusion (D&I) initiatives in workplaces on both financial performance and environmental considerations (referred to as ecoefficiency, ECO). We focused on the energy sector, a significant environmental contributor, and the research spanned from 2016 to 2022, analyzing a broad global sample of 373 firms from 53 countries. ECO was evaluated by integrating environmental scores and conventional financial metrics using data envelopment analysis (DEA).
The findings revealed a significant positive relationship between the collective indicator of diversity, inclusion, people development, and the absence of labor incidents on ECO. Specifically, practices related to workforce diversity, cultural and gender implementation, and investments in employee training and development opportunities were found to be beneficial for ECO. Additionally, we found that these policies impact the environmental component of ECO. However, no significant relationship was observed between practices related to inclusion policies and controversial labors, and ECO.
Furthermore, the results suggested that ECO within the energy sector is influenced by factors such as board size, the integration of environmental, social, and governance (ESG) aspects into executive remuneration, the adoption of a corporate social responsibility (CSR) strategy, alignment with the United Nations (UN) Environmental Sustainable Development Goals (SDGs), and the implementation of quality management systems. Conversely, CEO-chairman duality and the presence of independent board members do not significantly impact ECO in energy companies.
These research findings provide valuable insights and recommendations for industry managers pursuing sustainable business practices, particularly through effective talent management strategies. Additionally, they offer guidance for investors interested in constructing environmentally conscious portfolios.
Citation: Óscar Suárez-Fernández, José Manuel Maside-Sanfiz, Mª Celia López-Penabad, Mohammad Omar Alzghoul. Do diversity & inclusion of human capital affect ecoefficiency? Evidence for the energy sector[J]. Green Finance, 2024, 6(3): 430-456. doi: 10.3934/GF.2024017
[1] | Fang Wang, Weiguo Li, Wendi Bao, Li Liu . Greedy randomized and maximal weighted residual Kaczmarz methods with oblique projection. Electronic Research Archive, 2022, 30(4): 1158-1186. doi: 10.3934/era.2022062 |
[2] | Ranran Li, Hao Liu . On global randomized block Kaczmarz method for image reconstruction. Electronic Research Archive, 2022, 30(4): 1442-1453. doi: 10.3934/era.2022075 |
[3] | Koung Hee Leem, Jun Liu, George Pelekanos . A regularized eigenmatrix method for unstructured sparse recovery. Electronic Research Archive, 2024, 32(7): 4365-4377. doi: 10.3934/era.2024196 |
[4] | Qin Guo, Binlei Cai . Learning capability of the rescaled pure greedy algorithm with non-iid sampling. Electronic Research Archive, 2023, 31(3): 1387-1404. doi: 10.3934/era.2023071 |
[5] | John Daugherty, Nate Kaduk, Elena Morgan, Dinh-Liem Nguyen, Peyton Snidanko, Trung Truong . On fast reconstruction of periodic structures with partial scattering data. Electronic Research Archive, 2024, 32(11): 6481-6502. doi: 10.3934/era.2024303 |
[6] | Zhengyu Liu, Yufei Bao, Changhai Wang, Xiaoxiao Chen, Qing Liu . A fast matrix completion method based on truncated L2,1 norm minimization. Electronic Research Archive, 2024, 32(3): 2099-2119. doi: 10.3934/era.2024095 |
[7] | Jingqian Xu, Ma Zhu, Baojun Qi, Jiangshan Li, Chunfang Yang . AENet: attention efficient network for cross-view image geo-localization. Electronic Research Archive, 2023, 31(7): 4119-4138. doi: 10.3934/era.2023210 |
[8] | Daochang Zhang, Dijana Mosić, Liangyun Chen . On the Drazin inverse of anti-triangular block matrices. Electronic Research Archive, 2022, 30(7): 2428-2445. doi: 10.3934/era.2022124 |
[9] | Huimin Qu, Haiyan Xie, Qianying Wang . Multi-convolutional neural network brain image denoising study based on feature distillation learning and dense residual attention. Electronic Research Archive, 2025, 33(3): 1231-1266. doi: 10.3934/era.2025055 |
[10] | Jiange Liu, Yu Chen, Xin Dai, Li Cao, Qingwu Li . MFCEN: A lightweight multi-scale feature cooperative enhancement network for single-image super-resolution. Electronic Research Archive, 2024, 32(10): 5783-5803. doi: 10.3934/era.2024267 |
The aim of this study was to assess the impact of diversity and inclusion (D&I) initiatives in workplaces on both financial performance and environmental considerations (referred to as ecoefficiency, ECO). We focused on the energy sector, a significant environmental contributor, and the research spanned from 2016 to 2022, analyzing a broad global sample of 373 firms from 53 countries. ECO was evaluated by integrating environmental scores and conventional financial metrics using data envelopment analysis (DEA).
The findings revealed a significant positive relationship between the collective indicator of diversity, inclusion, people development, and the absence of labor incidents on ECO. Specifically, practices related to workforce diversity, cultural and gender implementation, and investments in employee training and development opportunities were found to be beneficial for ECO. Additionally, we found that these policies impact the environmental component of ECO. However, no significant relationship was observed between practices related to inclusion policies and controversial labors, and ECO.
Furthermore, the results suggested that ECO within the energy sector is influenced by factors such as board size, the integration of environmental, social, and governance (ESG) aspects into executive remuneration, the adoption of a corporate social responsibility (CSR) strategy, alignment with the United Nations (UN) Environmental Sustainable Development Goals (SDGs), and the implementation of quality management systems. Conversely, CEO-chairman duality and the presence of independent board members do not significantly impact ECO in energy companies.
These research findings provide valuable insights and recommendations for industry managers pursuing sustainable business practices, particularly through effective talent management strategies. Additionally, they offer guidance for investors interested in constructing environmentally conscious portfolios.
In this paper, we aim to develop a novel weak Galerkin (WG) finite element method for the biharmonic equation that is applicable to non-convex polytopal meshes and eliminates the need for traditional stabilizers. To this aim, we consider the biharmonic equation with Dirichlet and Neumann boundary conditions. The goal is to find an unknown function u satisfying
Δ2u=f,inΩ,u=ξ,on∂Ω,∂u∂n=ν,on∂Ω, | (1.1) |
where Ω⊂Rd is an open bounded domain with a Lipschitz continuous boundary ∂Ω. The domain Ω considered in this paper can be of any dimension d≥2. For the sake of clarity in presentation, we will focus on the case where d=2 throughout this paper. However, the analysis presented here can be readily extended to higher dimensions (d≥3) without significant modifications.
The variational formulation of the model problem (1.1) is as follows: Find an unknown function u∈H2(Ω) satisfying u|∂Ω=ξ and ∂u∂n|∂Ω=ν, and the following equation
2∑i,j=1(∂2iju,∂2ijv)=(f,v),∀v∈H20(Ω), | (1.2) |
where ∂2ij denotes the second order partial derivative with respect to xi and xj, and H20(Ω)={v∈H2(Ω):v|∂Ω=0,∇v|∂Ω=0}.
The WG finite element method offers an innovative framework for the numerical solution of partial differential equations (PDEs). This approach approximates differential operators within a structure inspired by the theory of distributions, particularly for piecewise polynomial functions. Unlike traditional methods, WG reduces the regularity requirements on approximating functions through the use of carefully designed stabilizers. Extensive studies have highlighted the versatility and effectiveness of WG methods across a wide range of model PDEs, as demonstrated by numerous references [1,2,3,4,5,6] for an incomplete list, establishing WG as a powerful tool in scientific computing. The defining feature of WG methods lies in their innovative use of weak derivatives and weak continuities to construct numerical schemes based on the weak forms of the underlying PDEs. This unique structure provides WG methods with exceptional flexibility, enabling them to address a wide variety of PDEs while ensuring both stability and accuracy in their numerical solutions.
This paper presents a simplified formulation of the WG finite element method, capable of handling both convex and non-convex elements in finite element partitions. A key innovation of our method is the elimination of stabilizers through the use of higher-degree polynomials for computing weak second-order partial derivatives. This design preserves the size and global sparsity of the stiffness matrix while substantially reducing the programming complexity associated with traditional stabilizer-dependent methods. The method leverages bubble functions as a critical analytical tool, representing a significant improvement over existing stabilizer-free WG methods [7], which are limited to convex polytopal meshes. Our approach is versatile, accommodating arbitrary dimensions and polynomial degrees in the discretization process. In contrast, prior stabilizer-free WG methods [7] often require specific polynomial degree combinations and are restricted to 2D or 3D settings. Theoretical analysis establishes optimal error estimates for the WG approximations in both the discrete H2 norm and an L2 norm.
This paper is organized as follows. Section 2 provides a brief review of the definition of the weak-second order partial derivative and its discrete counterpart. In Section 3, we introduce an efficient WG scheme that eliminates the need for stabilization terms. Section 4 establishes the existence and uniqueness of the solution. The error equation for the proposed WG scheme is derived in Section 5. Section 6 focuses on obtaining the error estimate for the numerical approximation in the discrete H2 norm, while Section 7 extends the analysis to derive the error estimate in the L2 norm.
Throughout this paper, we adopt standard notations. Let D be any open, bounded domain with a Lipschitz continuous boundary in Rd. The inner product, semi-norm, and norm in the Sobolev space Hs(D) for any integer s≥0 are denoted by (⋅,⋅)s,D, |⋅|s,D and ‖⋅‖s,D respectively. For simplicity, when the domain D is Ω, the subscript D is omitted from these notations. In the case s=0, the notations (⋅,⋅)0,D, |⋅|0,D and ‖⋅‖0,D are further simplified as (⋅,⋅)D, |⋅|D and ‖⋅‖D, respectively.
This section provides a brief review of the definition of weak weak-second partial derivatives and their discrete counterparts, as introduced in [5].
Let T be a polygonal element with boundary ∂T. A weak function on T is represented as v={v0,vb,vg}, where v0∈L2(T), vb∈L2(∂T) and vg∈[L2(∂T)]2. The first component, v0, denotes the value of v within the interior of T, while the second component, vb, represents the value of v on the boundary of T. The third component vg∈R2 with components vgi (i=1,2) approximates the gradient ∇v on the boundary ∂T. In general, vb and vg are treated as independent of the traces of v0 and ∇v0, respectively.
The space of all weak functions on T, denote by W(T), is defined as
W(T)={v={v0,vb,vg}:v0∈L2(T),vb∈L2(∂T),vg∈[L2(∂T)]2}. |
The weak second order partial derivative, ∂2ij,w, is a linear operator mapping W(T) to the dual space of H2(T). For any v∈W(T), ∂2ij,wv is defined as a bounded linear functional on H2(T), given by:
(∂2ij,wv,φ)T=(v0,∂2jiφ)T−⟨vbni,∂jφ⟩∂T+⟨vgi,φnj⟩∂T,∀φ∈H2(T), |
where n, with components ni(i=1,2), represents the unit outward normal vector to ∂T.
For any non-negative integer r≥0, let Pr(T) denote the space of polynomials on T with total degree at most r. A discrete weak second order partial derivative, ∂2ij,w,r,T, is a linear operator mapping W(T) to Pr(T). For any v∈W(T), ∂2ij,w,r,Tv is the unique polynomial in Pr(T) satisfying
(∂2ij,w,r,Tv,φ)T=(v0,∂2jiφ)T−⟨vbni,∂jφ⟩∂T+⟨vgi,φnj⟩∂T,∀φ∈Pr(T). | (2.1) |
For a smooth v0∈H2(T), applying standard integration by parts to the first term on the right-hand side of (2.1) yields:
(∂2ij,w,r,Tv,φ)T=(∂2ijv0,φ)T−⟨(vb−v0)ni,∂jφ⟩∂T+⟨vgi−∂iv0,φnj⟩∂T, | (2.2) |
for any φ∈Pr(T).
Let Th be a finite element partition of the domain Ω⊂R2 into polygons. Assume that Th satisfies the shape regularity condition [8]. Let Eh represent the set of all edges in Th, and denote the set of interior edges by E0h=Eh∖∂Ω. For any element T∈Th, let hT be its diameter, and define the mesh size as h=maxT∈ThhT.
Let k, p and q be integers such that k≥p≥q≥1. For any element T∈Th, the local weak finite element space is defined as:
V(k,p,q,T)={{v0,vb,vg}:v0∈Pk(T),vb∈Pp(e),vg∈[Pq(e)]2,e⊂∂T}. |
By combining the local spaces V(k,p,q,T) across all elements T∈Th and ensuring continuity of vb and vg along the interior edges E0h, we obtain the global weak finite element space:
Vh={{v0,vb,vg}: {v0,vb,vg}|T∈V(k,p,q,T),∀T∈Th}. |
The subspace of Vh consisting of functions with vanishing boundary values on ∂Ω is defined as:
V0h={v∈Vh:vb|∂Ω=0,vg|∂Ω=0}. |
For simplicity, the discrete weak second order partial derivative ∂2ij,wv is used to denote the operator ∂2ij,w,r,Tv defined in (2.1) on each element T∈Th, as:
(∂2ij,wv)|T=∂2ij,w,r,T(v|T),∀T∈Th. |
On each element T∈Th, let Q0 denote the L2 projection onto Pk(T). On each edge e⊂∂T, let Qb and Qn denote the L2 projection operators onto Pp(e) and Pq(e), respectively. For any w∈H2(Ω), the L2 projection into the weak finite element space Vh is denoted by Qhw, defined as:
(Qhw)|T:={Q0(w|T),Qb(w|∂T),Qn(∇w|∂T)},∀T∈Th. |
The simplified WG numerical scheme, free from stabilization terms, for solving the biharmonic equation (1.1) is formulated as follows:
Weak Galerkin Algorithm 3.1. Find uh={u0,ub,ug}∈Vh such that ub=Qbξ, ug⋅n=Qnν and {{\mathbf{u}}}_g\cdot{\boldsymbol{\tau}} = Q_n(\nabla\xi\cdot{\boldsymbol{\tau}}) on \partial\Omega , and satisfy:
\begin{equation} (\partial^2_{w} u_h, \partial^2_{w} v) = (f, v_0), \qquad\forall v = \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h^0, \end{equation} | (3.1) |
where {\boldsymbol{\tau}}\in \mathbb R^2 is the tangential direction along \partial\Omega , and the terms are defined as:
(\partial^2_{w} u_h, \partial^2_{w} v) = \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 (\partial^2_{ij, w} u_h, \partial^2_{ij, w} v)_T, |
(f, v_0) = \sum\limits_{T\in {\mathcal{T}}_h}(f, v_0)_T. |
Recall that {\mathcal{T}}_h is a shape-regular finite element partition of the domain \Omega . Consequently, for any T\in {\mathcal{T}}_h and \phi\in H^1(T) , the following trace inequality holds [8]:
\begin{equation} \|\phi\|^2_{\partial T} \leq C(h_T^{-1}\|\phi\|_T^2+h_T \|\nabla \phi\|_T^2). \end{equation} | (4.1) |
If \phi is a polynomial on the element T\in {\mathcal{T}}_h , a simpler form of the trace inequality applies [8]:
\begin{equation} \|\phi\|^2_{\partial T} \leq Ch_T^{-1}\|\phi\|_T^2. \end{equation} | (4.2) |
For any v = \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h , define the norm:
\begin{equation} ||| v||| = (\partial^2_{w} v, \partial^2_{ w} v) ^{\frac{1}{2}}, \end{equation} | (4.3) |
and introduce the discrete H^2 - semi-norm:
\begin{equation} \|v\|_{2, h} = \Big( \sum\limits_{T\in {\mathcal{T}}_h} \|\sum\limits_{i,j = 1}^2\partial^2_{ij} v_0\|_T^2+h_T^{-3}\|v_0-v_b\|_{\partial T}^2+h_T^{-1}\|\nabla v_0-{{\mathbf{v}}}_g\|_{\partial T}^2\Big)^{\frac{1}{2}}. \end{equation} | (4.4) |
Lemma 4.1. For v = \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h , there exists a constant C such that for i, j = 1, 2 ,
\|\partial^2_{ij} v_0\|_T\leq C\|\partial^2_{ij, w} v\|_T. |
Proof. Let T\in {\mathcal{T}}_h be a polytopal element with N edges denoted as e_1, \cdots , e_N . Importantly, T can be non-convex. On each edge e_i , construct a linear function l_i(x) satisfying l_i(x) = 0 on e_i as:
l_i(x) = \frac{1}{h_T}\overrightarrow{AX}\cdot {{\mathbf{n}}}_i, |
where A is a fixed point on e_i , X is any point on e_i , {{\mathbf{n}}}_i is the normal vector to e_i , and h_T is the diameter of T .
Define the bubble function for T as:
\Phi_B = l^2_1(x)l^2_2(x)\cdots l^2_N(x) \in P_{2N}(T). |
It is straightforward to verify that \Phi_B = 0 on \partial T . The function \Phi_B can be scaled such that \Phi_B(M) = 1 where M is the barycenter of T . Additionally, there exists a subdomain \hat{T}\subset T such that \Phi_B\geq \rho_0 for some constant \rho_0 > 0 .
For v = \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h , let r = 2N+k-2 and choose \varphi = \Phi_B \partial^2_{ij} v_0\in P_r(T) in (2.2). This yields:
\begin{equation} \begin{split} &\; (\partial^2_{ij, w}v, \Phi_B \partial^2_{ij} v_0)_T\\ = &\; (\partial^2_{ij}v_0, \Phi_B \partial^2_{ij} v_0)_T- \langle (v_b-v_0) n_i, \partial_j (\Phi_B \partial^2_{ij} v_0 )\rangle_{\partial T} \\&+\langle v_{gi}-\partial_i v_0, \Phi_B \partial^2_{ij} v_0 n_j\rangle_{\partial T}\\ = &\; (\partial^2_{ij}v_0, \Phi_B \partial^2_{ij} v_0)_T, \end{split} \end{equation} | (4.5) |
where we applied \Phi_B = 0 on \partial T .
Using the domain inverse inequality [8], there exists a constant C such that
\begin{equation} (\partial^2_{ij} v_0, \Phi_B \partial^2_{ij} v_0)_T \geq C (\partial^2_{ij} v_0, \partial^2_{ij} v_0)_T. \end{equation} | (4.6) |
By applying the Cauchy-Schwarz inequality to (4.5) and (4.6), we obtain
\begin{equation*} \begin{split} & (\partial^2_{ij} v_0, \partial^2_{ij} v_0)_T\leq C (\partial^2_{ij, w} v, \Phi_B \partial^2_{ij} v_0)_T \\ &\leq C \|\partial^2_{ij, w} v\|_T \|\Phi_B \partial^2_{ij} v_0\|_T \leq C \|\partial^2_{ij, w} v\|_T \|\partial^2_{ij} v_0\|_T, \end{split} \end{equation*} |
which implies:
\|\partial^2_{ij}v_0\|_T\leq C\|\partial^2_{ij, w} v\|_T. |
This completes the proof.
Remark 4.1. If the polytopal element T is convex, the bubble function in Lemma 4.1 can be simplified to:
\Phi_B = l_1(x)l_2(x)\cdots l_N(x). |
This simplified bubble function satisfies 1) \Phi_B = 0 on \partial T , 2) there exists a subdomain \hat{T}\subset T such that \Phi_B\geq \rho_0 for some constant \rho_0 > 0 . The proof of Lemma 4.1 follows the same approach, using this simplified bubble function. In this case, we set r = N+k-2 .
By constructing an edge-based bubble function,
\varphi_{e_k} = \Pi_{i = 1, \cdots, N, i\neq k}l_i^2(x), |
it can be easily verified that 1) \varphi_{e_k} = 0 on each edge e_i for i \neq k , and 2) there exists a subdomain \widehat{e_k}\subset e_k such that \varphi_{e_k} \geq \rho_1 for some constant \rho_1 > 0 . Let \varphi = (v_b-v_0)l_k \varphi_{e_k} . It is straightforward to verify the following properties: 1) \varphi = 0 on each edge e_i for i = 1, \cdots, N , 2) \nabla \varphi = 0 on each edge e_i for i \neq k , and 3) \nabla \varphi = (v_0-v_b)(\nabla l_k) \varphi_{e_k} = \mathcal{O}(\frac{ (v_0-v_b)\varphi_{e_k}}{h_T}\textbf{C}) on e_k , where \textbf{C} is a constant vector.
Lemma 4.2. [9] For \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h , let \varphi = (v_b-v_0)l_k \varphi_{e_k} . The following inequality holds:
\begin{equation} \|\varphi\|_T ^2 \leq Ch_T \int_{e_k}(v_b-v_0)^2ds. \end{equation} | (4.7) |
Lemma 4.3. For \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h , let \varphi = (v_{gi} -\partial_i v_0) \varphi_{e_k} . The following inequality holds:
\begin{equation} \|\varphi\|_T ^2 \leq Ch_T \int_{e_k}(v_{gi} -\partial_i v_0 )^2ds. \end{equation} | (4.8) |
Proof. Define the extension of {{\mathbf{v}}}_g , originally defined on the edge e_k , to the entire polytopal element T as:
{{\mathbf{v}}}_g(X) = {{\mathbf{v}}}_g(Proj_{e_k} (X)), |
where X = (x_1, x_2) is any point in T , Proj_{e_k} (X) denotes the orthogonal projection of X onto the plane H\subset\mathbb R^2 containing e_k . If Proj_{e_k} (X) is not on e_k , {{\mathbf{v}}}_g(Proj_{e_k} (X)) is defined as the extension of {{\mathbf{v}}}_g from e_k to H . The extension preserves the polynomial nature of {{\mathbf{v}}}_g as demonstrated in [9].
Let v_{trace} denote the trace of v_0 on e_k . Define its extension to T as:
v_{trace} (X) = v_{trace}(Proj_{e_k} (X)). |
This extension is also polynomial, as demonstrated in [9].
Let \varphi = (v_{gi} -\partial_i v_0) \varphi_{e_k} . Then,
\begin{equation*} \begin{split} \|\varphi\|^2_T = \int_T \varphi^2dT = &\; \int_T ((v_{gi} -\partial_i v_0 )(X) \varphi_{e_k})^2dT\\ \leq &\; Ch_T \int_{e_k} ((v_{gi} -\partial_i v_0 )(Proj_{e_k} (X)) \varphi_{e_k})^2dT\\ \\\leq &\; Ch_T \int_{e_k} (v_{gi} -\partial_i v_0 ) ^2ds, \end{split} \end{equation*} |
where we used the facts that 1) \varphi_{e_k} = 0 on each edge e_i for i \neq k , 2) there exists a subdomain \widehat{e_k}\subset e_k such that \varphi_{e_k} \geq \rho_1 for some constant \rho_1 > 0 , and applied the properties of the projection.
This completes the proof of the lemma.
Lemma 4.4. There exist two positive constants, C_1 and C_2 , such that for any v = \{v_0, v_b, {{\mathbf{v}}}_g\} \in V_h , the following equivalence holds:
\begin{equation} C_1\|v\|_{2, h}\leq ||| v||| \leq C_2\|v\|_{2, h}. \end{equation} | (4.9) |
Proof. Consider the edge-based bubble function defined as
\varphi_{e_k} = \Pi_{i = 1, \cdots, N, i\neq k}l_i^2(x). |
First, extend v_b from the edge e_k to the element T . Similarly, let v_{trace} denote the trace of v_0 on the edge e_k and extend v_{trace} to the element T . For simplicity, we continue to use v_b and v_0 to represent their respective extensions. Details of these extensions can be found in Lemma 4.3. Substituting \varphi = (v_b-v_0)l_k\varphi_{e_k} into (2.2), we obtain
\begin{equation} \begin{split} (\partial^2_{ij, w}v, \varphi)_T = &\; (\partial^2_{ij}v_0, \varphi)_T- \langle (v_b-v_0) n_i, \partial_j \varphi \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, \varphi n_j\rangle_{\partial T}\\ = &\; (\partial^2_{ij}v_0, \varphi)_T + Ch_T^{-1}\int_{e_k} |v_b- v_0|^2 \varphi_{e_k} ds, \end{split} \end{equation} | (4.10) |
where we used 1) \varphi = 0 on each edge e_i for i = 1 , \cdots , N , 2) \nabla \varphi = 0 on each edge e_i for i \neq k , and 3) \nabla \varphi = (v_0-v_b)(\nabla l_k) \varphi_{e_k} = \mathcal{O}(\frac{ (v_0-v_b)\varphi_{e_k}}{h_T}\textbf{C}) on e_k , where \textbf{C} is a constant vector.
Recall that 1) \varphi_{e_k} = 0 on each edge e_i for i \neq k , and 2) there exists a subdomain \widehat{e_k}\subset e_k such that \varphi_{e_k} \geq \rho_1 for some constant \rho_1 > 0 . Using Cauchy-Schwarz inequality, the domain inverse inequality [8], (4.10) and Lemma 4.2, we deduce:
\begin{equation*} \begin{split} \int_{e_k}|v_b- v_0|^2 ds\leq &\; C\int_{e_k} |v_b- v_0|^2 \varphi_{e_k} ds \\ \leq&\; C h_T(\|\partial^2_{ij, w} v\|_T+\|\partial^2_{ij} v_0\|_T){ \| \varphi\|_T}\\ \leq &\; C { h_T^{\frac{3}{2}}} (\|\partial^2_{ij, w} v\|_T+\|\partial^2_{ij} v_0\|_T){ (\int_{e_k}|v_b- v_0|^2ds)^{\frac{1}{2}}}, \end{split} \end{equation*} |
which, from Lemma 4.1, leads to:
\begin{equation} h_T^{-3}\int_{e_k}|v_b- v_0|^2 ds \leq C (\|\partial^2_{ij, w} v\|^2_T+\|\partial^2_{ij} v_0\|^2_T)\leq C\|\partial^2_{ij, w} v\|^2_T. \end{equation} | (4.11) |
Next, extend {{\mathbf{v}}}_g from the edge e_k to the element T , denoting the extension by the same symbol for simplicity. Details of this extension are in Lemma 4.3. Substituting \varphi = (v_{gi}-\partial_i v_0)\varphi_{e_k} into (2.2), we obtain:
\begin{equation} \begin{split} &\; (\partial^2_{ij, w}v, \varphi)_T\\ = &\; (\partial^2_{ij}v_0, \varphi)_T- \langle (v_b-v_0) n_i, \partial_j \varphi \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, \varphi n_j\rangle_{\partial T}\\ = & \; (\partial^2_{ij}v_0, \varphi)_T - \langle (v_b-v_0) n_i, \partial_j \varphi \rangle_{\partial T}+\int_{e_k} |v_{gi}-\partial_i v_0|^2 \varphi_{e_k}ds, \end{split} \end{equation} | (4.12) |
where we used \varphi_{e_k} = 0 on edge e_i for i \neq k , and the fact that there exists a sub-domain \widehat{e_k}\subset e_k such that \varphi_{e_k} \geq \rho_1 for some constant \rho_1 > 0 . This, together with Cauchy-Schwarz inequality, the domain inverse inequality [8], the inverse inequality, the trace inequality (4.2), (4.11) and Lemma 4.3, gives
\begin{equation*} \begin{split} & \; \int_{e_k}|v_{gi}-\partial_i v_0|^2 ds\\\leq &\; C \int_{e_k}|v_{gi}-\partial_i v_0|^2 \varphi_{e_k}ds\\ \leq &\; C (\|\partial^2_{ij, w} v\|_T+\|\partial^2_{ij} v_0\|_T)\| \varphi\|_T+ C\|v_0-v_b\|_{\partial T}\|\partial_j \phi\|_{\partial T}\\ \leq & \; C h_T^{\frac{1}{2}} (\|\partial^2_{ij, w} v\|_T+\|\partial^2_{ij} v_0\|_T)(\int_{e_k}|v_{gi}-\partial_i v_0|^2ds)^{\frac{1}{2}} + C h_T^{\frac{3}{2}} \|\partial^2_{ij, w} v\|_T h_T^{-1}(\int_{e_k}|v_{gi}-\partial_i v_0|^2ds)^{\frac{1}{2}}. \end{split} \end{equation*} |
Applying Lemma 4.1, gives
\begin{equation} h_T^{-1}\int_{e_k}|v_{gi}-\partial_i v_0|^2 ds \leq C (\|\partial^2_{ij, w} v\|^2_T+\|\partial^2_{ij} v_0\|^2_T)\leq C\|\partial^2_{ij, w} v\|^2_T. \end{equation} | (4.13) |
Using Lemma 4.1, Eqs (4.11), (4.13), (4.3) and (4.4), we deduce:
C_1\|v\|_{2, h}\leq ||| v|||. |
Finally, using the Cauchy-Schwarz inequality, inverse inequalities, and the trace inequality (4.2) in (2.2), we derive:
\begin{equation*} \begin{split} \Big| (\partial^2_{ij, w}v, \varphi)_T\Big| \leq &\; \|\partial^2_{ij}v_0\|_T \| \varphi\|_T+ \|(v_b-v_0) n_i\|_{\partial T} \| \partial_j\varphi\|_{\partial T}+\|v_{gi}-\partial_i v_0\|_{\partial T} \|\varphi n_j\|_{\partial T} \\ \leq &\; \|\partial^2_{ij}v_0\|_T \| \varphi\|_T+ h_T^{-\frac{3}{2}}\|v_b-v_0\|_{\partial T} \| \varphi\|_{ T}+h_T^{-\frac{1}{2}}\|v_{gi}-\partial_i v_0\|_{\partial T} \|\varphi \|_{T}, \end{split} \end{equation*} |
which gives:
\| \partial^2_{ij, w}v\|_T^2\leq C( \|\partial^2_{ij}v_0\|^2_T + h_T^{-3}\|v_b-v_0\|^2_{\partial T}+h_T^{-1}\|v_{gi}-\partial_i v_0\|^2_{\partial T}), |
and further gives
||| v||| \leq C_2\|v\|_{2, h}. |
This completes the proof.
Theorem 4.5. The WG scheme 3.1 admits a unique solution.
Proof. Assume that u_h^{(1)}\in V_h and u_h^{(2)}\in V_h are two distinct solutions of the WG scheme 3.1. Define \eta_h = u_h^{(1)}-u_h^{(2)}\in V_h^0 . Then, \eta_h satisfies
( \partial^2_{ij, w} \eta_h, \partial^2_{ij, w} v) = 0, \qquad \forall v\in V_h^0. |
Choosing v = \eta_h yields ||| \eta_h||| = 0 . From the equivalence of norms in (4.9), it follows that \|\eta_h\|_{2, h} = 0 , which yields \partial^2_{ij} \eta_0 = 0 for i, j = 1, 2 on each T , \eta_0 = \eta_b and \nabla \eta_0 = {\boldsymbol{\eta}}_g on each \partial T . Consequently, \eta_0 is a linear function on each element T and \nabla \eta_0 = C on each T .
Since \nabla \eta_0 = {\boldsymbol{\eta}}_g on each \partial T , it follows that \nabla \eta_0 is continuous across the entire domain \Omega . Thus, \nabla \eta_0 = C throughout \Omega . Furthermore, the condition {\boldsymbol{\eta}}_g = 0 on \partial\Omega implies \nabla \eta_0 = 0 in \Omega and {\boldsymbol{\eta}}_g = 0 on each \partial T . Therefore, \eta_0 is a constant on each element T .
Since \eta_0 = \eta_b on \partial T , the continuity of \eta_0 over \Omega implies \eta_0 is globally constant. From \eta_b = 0 on \partial\Omega , we conclude \eta_0 = 0 throughout \Omega . Consequently, \eta_b = \eta_0 = 0 on each \partial T , which implies \eta_h\equiv 0 in \Omega . Thus, u_h^{(1)}\equiv u_h^{(2)} , proving the uniqueness of the solution.
Let Q_r denote the L^2 projection operator onto the finite element space of piecewise polynomials of degree at most r .
Lemma 5.1. The following property holds:
\begin{equation} \partial^2_{ij, w}u = Q_r(\partial^2_{ij} u), \qquad \forall u\in H^2(T). \end{equation} | (5.1) |
Proof. For any u\in H^2(T) , using (2.2), we have
\begin{equation*} \begin{split} &\; (\partial^2_{ij, w}u, \varphi)_T\\ = &\; (\partial^2_{ij}u, \varphi)_T- \langle (u|_{\partial T}-u|_T) n_i, \partial_j \varphi \rangle_{\partial T}+\langle (\nabla u|_{\partial T})_{i} -\partial_i (u|_{T}), \varphi n_j\rangle_{\partial T}\\ = &\; (\partial^2_{ij}u, \varphi)_T = (Q_r(\partial^2_{ij}u), \varphi)_T, \end{split} \end{equation*} |
for all \varphi\in P_r(T) . This completes the proof.
Let u be the exact solution of the biharmonic equation (1.1), and u_h \in V_{h} its numerical approximation obtained from the WG scheme 3.1. The error function, denoted by e_h , is defined as
\begin{equation} e_h = u-u_h. \end{equation} | (5.2) |
Lemma 5.2. The error function e_h defined in (5.2) satisfies the following error equation:
\begin{equation} (\partial_{w}^2 e_h, \partial_{w}^2 v) = \ell (u, v), \qquad \forall v\in V_h^0, \end{equation} | (5.3) |
where
\ell (u, v) = \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (v_b-v_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, (Q_r-I) \partial_{ij}^2 u n_j\rangle_{\partial T}. |
Proof. Using (5.1), standard integration by parts, and substituting \varphi = Q_r \partial_{ij}^2 u into (2.2), we obtain
\begin{equation} \begin{split} &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 u, \partial_{ij, w}^2 v)_T\\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(Q_r \partial_{ij}^2 u, \partial_{ij, w}^2 v)_T\\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial^2_{ij}v_0, Q_r \partial_{ij}^2 u)_T- \langle (v_b-v_0) n_i, \partial_j (Q_r \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, Q_r \partial_{ij}^2 u n_j\rangle_{\partial T}\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial^2_{ij}v_0, \partial_{ij}^2 u)_T- \langle (v_b-v_0) n_i, \partial_j (Q_r \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, Q_r \partial_{ij}^2 u n_j\rangle_{\partial T}\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 ((\partial^2_{ij})^2u, v_0)_T+\langle \partial_{ij}^2 u, \partial_i v_0\cdot n_j\rangle_{\partial T}-\langle \partial_j(\partial_{ij}^2u)\cdot n_i, v_0\rangle_{\partial T}\\ &- \langle (v_b-v_0) n_i, \partial_j (Q_r \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, Q_r \partial_{ij}^2 u n_j\rangle_{\partial T}\\ = &\; (f, v_0)+\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (v_b-v_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, (Q_r-I) \partial_{ij}^2 u n_j\rangle_{\partial T}, \end{split} \end{equation} | (5.4) |
where we used (1.1), \partial_{ij}^2 v_0\in P_{k-2}(T) and r = 2N+k-2\geq k-2 , \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial_{ij}^2 u, v_{gi}\cdot n_j\rangle_{\partial T} = \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial_{ij}^2 u, v_{gi}\cdot n_j\rangle_{\partial \Omega} = 0 since v_{gi} = 0 on \partial \Omega , and \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial_j(\partial_{ij}^2u)\cdot n_i, v_b\rangle_{\partial T} = \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial_j(\partial_{ij}^2u)\cdot n_i, v_b\rangle_{\partial \Omega} = 0 since v_{b} = 0 on \partial \Omega .
Subtracting (3.1) from (5.4) yields
\begin{equation*} \begin{split} &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 e_h, \partial_{ij, w}^2 v)_T\\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (v_b-v_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, (Q_r-I) \partial_{ij}^2 u n_j\rangle_{\partial T}. \end{split} \end{equation*} |
This concludes the proof.
Lemma 6.1. [5] Let {\mathcal{T}}_h be a finite element partition of the domain \Omega satisfying the shape regularity assumption specified in [8]. For any 0\leq s \leq 2 and 1\leq m \leq k , the following estimates hold:
\begin{eqnarray} \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 h_T^{2s}\|\partial_{ij}^2 u- Q_r \partial_{ij}^2 u\|^2_{s,T}&\leq& C h^{2(m-1)}\|u\|^2_{m+1}, \end{eqnarray} | (6.1) |
\begin{eqnarray} \sum\limits_{T\in {\mathcal{T}}_h}h_T^{2s}\|u- Q _0u\|^2_{s,T}&\leq& C h^{2(m+1)}\|u\|^2_{m+1}. \end{eqnarray} | (6.2) |
Lemma 6.2. If u\in H^{k+1}(\Omega) , then there exists a constant C such that
\begin{equation} ||| u-Q_hu ||| \leq Ch^{k-1}\|u\|_{k+1}. \end{equation} | (6.3) |
Proof. Utilizing (2.2), the trace inequalities (4.1) and (4.2), the inverse inequality, and the estimate (6.2) for m = k and s = 0, 1, 2 , we analyze the following summation for any \varphi\in P_r(T) :
\begin{equation*} \begin{split} &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(\partial^2_{ij, w}(u-Q_hu), \varphi)_T\\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2 (\partial^2_{ij}(u-Q_0u), \varphi)_T- \langle (Q_0u-Q_bu) n_i, \partial_j \varphi \rangle_{\partial T}\\&+\langle (\partial_i u- Q_n (\partial_i u))-\partial_i (u-Q_0u), \varphi n_j\rangle_{\partial T}\\ \leq &\; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2\|\partial^2_{ij}(u-Q_0u)\|^2_T\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h} \|\varphi\|_T^2\Big)^{\frac{1}{2}}\\& + \Big(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i = 1}^2\|(Q_0u-Q_bu) n_i\|_{\partial T} ^2\Big)^{\frac{1}{2}}\Big(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{ j = 1}^2\|\partial_j \varphi\|_{\partial T}^2\Big)^{\frac{1}{2}}\\ &+ \Big(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i = 1}^2\| \partial_i (Q_0u)- Q_n (\partial_i u) \|_{\partial T} ^2\Big)^{\frac{1}{2}}\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{ j = 1}^2 \| \varphi n_j\|_{\partial T}^2\Big)^{\frac{1}{2}}\\ \leq &\; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2\|\partial^2_{ij}(u-Q_0u)\|^2_T\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h} \|\varphi\|_T^2\Big)^{\frac{1}{2}}\\& + \Big(\sum\limits_{T\in {\mathcal{T}}_h} h_T^{-1}\| Q_0u- u \|_{ T}+h_T \| Q_0u- u \|_{1, T} ^2\Big)^{\frac{1}{2}}\Big(\sum\limits_{T\in {\mathcal{T}}_h} h_T^{-3}\| \varphi\|_{ T}^2\Big)^{\frac{1}{2}}\\ &+ \Big(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i = 1}^2h_T^{-1}\| \partial_i (Q_0u)- \partial_i u \|_{ T} ^2+h_T \| \partial_i (Q_0u)- \partial_i u \|_{1, T} ^2\Big)^{\frac{1}{2}}\Big(\sum\limits_{T\in {\mathcal{T}}_h} h_T^{-1} \| \varphi \|_{T}^2\Big)^{\frac{1}{2}}\\ \leq&\; Ch^{k-1}\|u\|_{k+1}\Big(\sum\limits_{T\in {\mathcal{T}}_h} \|\varphi\|_T^2\Big)^{\frac{1}{2}}. \end{split} \end{equation*} |
Letting \varphi = \partial^2_{ij, w}(u-Q_hu) gives
\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial^2_{ij, w}(u-Q_hu), \partial^2_{ij, w}(u-Q_hu))_T\leq Ch^{k-1}\|u\|_{k+1}||| u-Q_hu |||. |
This completes the proof.
Theorem 6.3. Suppose the exact solution u of the biharmonic equation (1.1) satisfies u\in H^{k+1}(\Omega) . Then, the error estimate satisfies:
\begin{equation} ||| u-u_h||| \leq Ch^{k-1}\|u\|_{k+1}. \end{equation} | (6.4) |
Proof. Note that r\geq 1 . For the first term on the right-hand side of the error equation (5.3), using Cauchy-Schwarz inequality, the trace inequality (4.1), the estimate (6.1) with m = k and s = 1, 2 , and (4.9), we have
\begin{equation} \begin{split} &\; \Big|\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (v_b-v_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 u) \rangle_{\partial T}\Big|\\ \leq &\; C(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2h_T^{-3}\|(v_b-v_0) n_i\|^2_{\partial T} )^{\frac{1}{2}} \cdot(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i,j = 1}^2h_T^3\|\partial_j ((Q_r-I) \partial_{ij}^2 u) \|^2_{\partial T})^{\frac{1}{2}}\\\leq &\; C \| v\|_{2,h} (\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i,j = 1}^2h_T^2\|\partial_j ((Q_r-I) \partial_{ij}^2 u) \|^2_{T}+h_T^4\|\partial_j ((Q_r-I) \partial_{ij}^2 u) \|^2_{1, T})^{\frac{1}{2}}\\ \leq &\; Ch^{k-1} \|u\|_{k+1} ||| v|||. \end{split} \end{equation} | (6.5) |
For the second term on the right-hand side of the error equation (5.3), using the Cauchy-Schwarz inequality, the trace inequality (4.1), the estimate (6.1) with m = k and s = 0, 1 , and (4.9), we have
\begin{equation} \begin{split} &\; \Big|\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 \langle v_{gi}-\partial_i v_0, (Q_r-I) \partial_{ij}^2 u n_j\rangle_{\partial T}\Big|\\ \leq &\; C(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2h_T^{-1}\| v_{gi}-\partial_i v_0\|^2_{\partial T} )^{\frac{1}{2}} (\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i,j = 1}^2h_T\|(Q_r-I) \partial_{ij}^2 u n_j\|^2_{\partial T})^{\frac{1}{2}}\\ \leq &\; C \| v\|_{2,h} (\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i,j = 1}^2\|(Q_r-I) \partial_{ij}^2 u n_j\|^2_{ T}+h_T^2\|(Q_r-I) \partial_{ij}^2 u n_j\|^2_{1, T})^{\frac{1}{2}}\\ \leq &\; C \| v\|_{2,h} h^{k-1}\|u\|_{k+1}\\ \leq &\; Ch^{k-1}\|u\|_{k+1} ||| v|||. \end{split} \end{equation} | (6.6) |
Substituting (6.5) and (6.6) into (5.3) gives
\begin{equation} (\partial^2_{ij, w} e_h, \partial^2_{ij, w} v)\leq Ch^{k-1} \|u\|_{k+1} ||| v|||. \end{equation} | (6.7) |
Using Cauchy-Schwarz inequality, letting v = Q_hu-u_h in (6.7), the error estimate (6.3) gives
\begin{equation*} \begin{split} & \; ||| u-u_h|||^2\\ = &\; \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial^2_{ij, w} (u-u_h), \partial^2_{ij, w} (u-Q_hu))_T+(\partial^2_{ij, w} (u-u_h), \partial^2_{ij, w} (Q_hu-u_h))_T\\ \leq &\; ||| u-u_h ||| ||| u-Q_hu |||+ Ch^{k-1} \|u\|_{k+1} ||| Q_hu-u_h||| \\ \leq &\; ||| u-u_h ||| ||| u-Q_hu ||| + Ch^{k-1} \|u\|_{k+1} (||| Q_hu-u|||+||| u-u_h|||) \\ \leq &\; ||| u-u_h ||| ||| u-Q_hu ||| + Ch^{k-1}\|u\|_{k+1} h^{k-1} \|u\|_{k+1} +Ch^{k-1} \|u\|_{k+1} ||| u-u_h|||, \end{split} \end{equation*} |
which further gives
\begin{equation*} \begin{split} ||| u-u_h||| \leq ||| u-Q_hu |||+Ch^{k-1} \|u\|_{k+1} \leq Ch^{k-1} \|u\|_{k+1}. \end{split} \end{equation*} |
This completes the proof.
To derive the error estimate in the L^2 norm, we use the standard duality argument. The error is expressed as e_h = u-u_h = \{e_0, e_b, {{\mathbf{e}}}_g\} , and we define \zeta_h = Q_hu - u_h = \{\zeta_0, \zeta_b, {{\boldsymbol{\zeta}}}_g\}\in V_h^0 . Consider the dual problem associated with the biharmonic equation (1.1), which seeks a function w \in H_0^2(\Omega) satisfying:
\begin{equation} \begin{split} \Delta^2 w& = \zeta_0, \qquad \text{in}\ \Omega,\\ w& = 0, \qquad \text{on}\ \partial\Omega,\\ \frac{\partial w}{\partial {{\mathbf{n}}}}& = 0, \qquad \text{on}\ \partial\Omega. \end{split} \end{equation} | (7.1) |
We assume the following regularity condition for the dual problem:
\begin{equation} \|w\|_4\leq C\|\zeta_0\|. \end{equation} | (7.2) |
Theorem 7.1. Let u\in H^{k+1}(\Omega) be the exact solution of the biharmonic equation (1.1), and let u_h\in V_h denote the numerical solution obtained using the weak Galerkin scheme 3.1. Assume that the H^4 -regularity condition (7.2) holds. Then, there exists a constant C such that
\begin{equation*} \|e_0\|\leq Ch^{k+1}\|u\|_{k+1}. \end{equation*} |
Proof. Testing the dual problem (7.1) with \zeta_0 and applying integration by parts, we derive:
\begin{equation} \begin{split} \|\zeta_0\|^2 = &\; (\Delta^2 w, \zeta_0)\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(\partial^2_{ij} w, \partial^2_{ij}\zeta_0)_T-\langle \partial^2_{ij} w, \partial_i\zeta_0 \cdot n_j \rangle_{\partial T}+\langle \partial_j(\partial^2_{ij} w)\cdot n_i, \zeta_0 \rangle_{\partial T}\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(\partial^2_{ij} w, \partial^2_{ij}\zeta_0)_T-\langle \partial^2_{ij} w, (\partial_i\zeta_0-\zeta_{gi}) \cdot n_j \rangle_{\partial T}+\langle \partial_j(\partial^2_{ij} w)\cdot n_i, \zeta_0-\zeta_b \rangle_{\partial T}, \end{split} \end{equation} | (7.3) |
where we used \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial^2_{ij} w, \zeta_{gi} \cdot n_j \rangle_{\partial T} = \sum_{i, j = 1}^2\langle \partial^2_{ij} w, \zeta_{gi} \cdot n_j \rangle_{\partial \Omega} = 0 due to {{\boldsymbol{\zeta}}}_g = 0 on \partial\Omega , and \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial_j(\partial^2_{ij} w)\cdot n_i, \zeta_b \rangle_{\partial T} = \sum_{i, j = 1}^2\langle \partial_j(\partial^2_{ij} w)\cdot n_i, \zeta_b \rangle_{\partial \Omega} = 0 due to \zeta_b = 0 on \partial\Omega .
Letting u = w and v = \zeta_h in (5.4) gives
\begin{equation*} \begin{split} & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 w, \partial_{ij, w}^2 \zeta_h)_T \\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij}^2 w, \partial_{ij}^2 \zeta_0)_T - \langle (\zeta_b-\zeta_0) n_i, \partial_j (Q_r \partial_{ij}^2 w) \rangle_{\partial T}+\langle \zeta_{gi}-\partial_i \zeta_0, Q_r \partial_{ij}^2 w n_j\rangle_{\partial T}, \end{split} \end{equation*} |
which is equivalent to
\begin{equation*} \begin{split} & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij}^2 w, \partial_{ij}^2 \zeta_0)_T \\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 w, \partial_{ij, w}^2 \zeta_h)_T +\langle (\zeta_b-\zeta_0) n_i, \partial_j (Q_r \partial_{ij}^2 w) \rangle_{\partial T}-\langle \zeta_{gi}-\partial_i \zeta_0, Q_r \partial_{ij}^2 w n_j\rangle_{\partial T}. \end{split} \end{equation*} |
Substituting the above equation into (7.3) and using (5.3) gives
\begin{equation} \begin{split} \|\zeta_0\|^2 = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 w, \partial_{ij, w}^2 \zeta_h)_T +\langle (\zeta_b-\zeta_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 w) \rangle_{\partial T}\\&-\langle \zeta_{gi} -\partial_i \zeta_0, (Q_r-I) \partial_{ij}^2 w n_j\rangle_{\partial T}\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 w, \partial_{ij, w}^2 e_h)_T+(\partial_{ij, w}^2 w, \partial_{ij, w}^2 (Q_hu-u))_T-\ell(w, \zeta_h)\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 Q_hw, \partial_{ij, w}^2 e_h)_T+(\partial_{ij, w}^2 (w-Q_hw), \partial_{ij, w}^2 e_h)_T\\&+(\partial_{ij, w}^2 w, \partial_{ij, w}^2 (Q_hu-u))_T-\ell(w, \zeta_h)\\ = &\; \ell(u, Q_hw) + \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 (w-Q_hw), \partial_{ij, w}^2 e_h)_T\\&+(\partial_{ij, w}^2w, \partial_{ij, w}^2(Q_hu-u))_T-\ell(w, \zeta_h)\\ = &\; J_1+J_2+J_3+J_4. \end{split} \end{equation} | (7.4) |
We will estimate the four terms J_i \; (i = 1 , \cdots , 4) on the last line of (7.4) individually.
For J_1 , using the Cauchy-Schwarz inequality, the trace inequality (4.1), the inverse inequality, the estimate (6.1) with m = k and s = 0, 1, 2 , the estimate (6.2) with m = 3 and s = 0, 1, 2 , gives
\begin{equation} \begin{split} &J_1 = \ell(u, Q_hw)\\ \leq &\; \Big|\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (Q_bw-Q_0w) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 u) \rangle_{\partial T}\\&+\langle Q_n(\partial_i w) -\partial_i Q_0w, (Q_r-I) \partial_{ij}^2 u n_j\rangle_{\partial T}\Big|\\ \leq&\; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2\|(Q_bw-Q_0w) n_i\|_{\partial T}^2\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2\|\partial_j ((Q_r-I) \partial_{ij}^2 u)\|_{\partial T}^2\Big)^{\frac{1}{2}} \\ &+\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2\|Q_n(\partial_i w) -\partial_i Q_0w\|_{\partial T}^2\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2\|(Q_r-I) \partial_{ij}^2 u n_j\|_{\partial T}^2\Big)^{\frac{1}{2}} \\ \leq&\; \Big(\sum\limits_{T\in {\mathcal{T}}_h} h_T^{-1}\| w-Q_0w \|_{ T}^2+h_T \|w-Q_0w \|_{1, T}^2\Big)^{\frac{1}{2}} \\&\cdot\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2h_T^{-1}\|\partial_j ((Q_r-I) \partial_{ij}^2 u)\|_{T}^2+h_T\|\partial_j ((Q_r-I) \partial_{ij}^2 u)\|_{1, T}^2\Big)^{\frac{1}{2}} \\ &+\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2h_T^{-1}\| \partial_i w -\partial_i Q_0w\|_{T}^2+h_T \| \partial_i w -\partial_i Q_0w\|_{1, T}^2\Big)^{\frac{1}{2}} \\&\cdot \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2h_T^{-1}\|(Q_r-I) \partial_{ij}^2 u n_j\|_{T}^2+h_T\|(Q_r-I) \partial_{ij}^2 u n_j\|_{1, T}^2\Big)^{\frac{1}{2}} \\ \leq &\; Ch^{k+1}\|u\|_{k+1}\|w\|_4. \end{split} \end{equation} | (7.5) |
For J_2 , using Cauchy-Schwarz inequality, (6.3) with k = 3 and (6.4) gives
\begin{equation} \begin{split} J_2\leq ||| w-Q_hw||| ||| e_h|||\leq Ch^{k-1}\|u\|_{k+1}h^2\|w\|_4\leq Ch^{k+1}\|u\|_{k+1}\|w\|_4. \end{split} \end{equation} | (7.6) |
For J_3 , denote by Q^1 a L^2 projection onto P_1(T) . Using (2.1) gives
\begin{equation} \begin{split} &\; (\partial^2_{ij, w}(Q_hu-u), Q^1\partial^2_{ij, w} w)_T\\ = &\; (Q_0u-u, \partial^2_{ji} ( Q^1\partial^2_{ij, w} w))_T-\langle Q_bu-u, \partial_j (Q^1\partial^2_{ij, w} w)\rangle_{\partial T}+ \langle Q_n(\partial_i u)-\partial_i u, Q^1\partial^2_{ij, w} w n_j\rangle_{\partial T}\\ = &\; 0, \end{split} \end{equation} | (7.7) |
where we used \partial^2_{ji} (Q^1\partial^2_{ij, w} w) = 0 , \partial_j (Q^1\partial^2_{ij, w} w) = C and the property of the projection operators Q_b and Q_n and p\geq q\geq 1 .
Using (7.7), Cauchy-Schwarz inequality, (5.1) and (6.3), gives
\begin{equation} \begin{split} J_3\leq &\; |\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(\partial^2_{ij, w} w, \partial^2_{ij, w} (Q_hu-u))_T| \\ = &\; |\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(\partial^2_{ij, w} w-Q^1\partial^2_{ij, w} w, \partial^2_{ij, w} (Q_hu-u))_T|\\ = &\; |\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(Q_r\partial^2_{ij} w-Q^1 Q_r\partial^2_{ij} w, \partial^2_{ij, w} (Q_hu-u))_T|\\ \leq & \; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2\|Q_r\partial^2_{ij} w-Q^1 Q^r\partial^2_{ij} w\|_T^2\Big)^{\frac{1}{2}} ||| Q_hu-u |||\\ \leq & \; Ch^{k+1}\|u\|_{k+1} \|w\|_4. \end{split} \end{equation} | (7.8) |
For J_4 , using Cauchy-Schwarz inequality, the trace inequality (4.1), Lemma 4.4, the estimate (6.1) with m = 3 and s = 0, 1 , (6.3), (6.4) gives
\begin{equation} \begin{split} J_4 = &\; \ell(w, \zeta_h)\\ \leq &\; \Big|\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (\zeta_b-\zeta_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 w) \rangle_{\partial T}\\&+\langle \zeta_{gi}-\partial_i \zeta_0, (Q_r-I) \partial_{ij}^2 w n_j\rangle_{\partial T}\Big| \\ \leq&\; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2\|(\zeta_b-\zeta_0) n_i\|_{\partial T}^2\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2\|\partial_j ((Q_r-I) \partial_{ij}^2 w) \|_{\partial T}^2\Big)^{\frac{1}{2}} \\ &+\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2\|\zeta_{gi}-\partial_i \zeta_0\|_{\partial T}^2\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2\|(Q_r-I) \partial_{ij}^2 w n_j\|_{\partial T}^2\Big)^{\frac{1}{2}} \\ \leq&\; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2h_T^2 \|\partial_j ((Q_r-I) \partial_{ij}^2 w)\|_{T}^2+h_T^4 \| \partial_j ((Q_r-I) \partial_{ij}^2 w)\|_{1, T}^2\Big)^{\frac{1}{2}} \\&\cdot\Big(\sum\limits_{T\in {\mathcal{T}}_h}h_T^{-3}\|\zeta_0-\zeta_b\|_{\partial T}^2\Big)^{\frac{1}{2}} \\ &+ \Big(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i,j = 1}^2 \|(Q_r-I) \partial_{ij}^2 w n_j\|_{T}^2+h_T^2 \|(Q_r-I) \partial_{ij}^2 w n_j\|_{1, T}^2\Big)^{\frac{1}{2}} \\ &\cdot\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2 h_T^{-1}\|\zeta_{gi}-\partial_i \zeta_0\|_{\partial T}^2\Big)^{\frac{1}{2}} \\\leq &\; Ch^2\|w\|_{4}|||\zeta_h||| \\ \leq &\; Ch^2\|w\|_{4}(||| u-u_h|||+||| u-Q_hu|||) \\ \leq &\; Ch^{k+1}\|w\|_4\|u\|_{k+1}. \end{split} \end{equation} | (7.9) |
Substituting (7.5), (7.6), (7.8) and (7.9) into (7.4), and using (7.2), gives
\|\zeta_0\|^2\leq Ch^{k+1}\|w\|_4\|u\|_{k+1}\leq Ch^{k+1} \|u\|_{k+1} \|\zeta_0\|. |
This gives
\|\zeta_0\|\leq Ch^{k+1} \|u\|_{k+1}, |
which, using the triangle inequality and (6.2) with m = k and s = 0 , gives
\|e_0\|\leq \|\zeta_0\|+\|u-Q_0u\|\leq Ch^{k+1}\|u\|_{k+1}. |
This completes the proof of the theorem.
The author declares she has not used Artificial Intelligence (AI) tools in the creation of this article.
The research of Chunmei Wang was partially supported by National Science Foundation Grant DMS-2136380.
The author declares there is no conflict of interest.
[1] | Adeneye YB, Ahmed M (2015) Corporate social responsibility and company performance. J Bus Stud Q 7: 151–166. |
[2] |
Ahmadi A, Nakaa N, Bouri A (2018) Chief Executive Officer attributes, board structures, gender diversity and firm performance among French CAC 40 listed firms. Res Int Bus Financ 44: 218–226. https://doi.org/10.1016/j.ribaf.2017.07.083 doi: 10.1016/j.ribaf.2017.07.083
![]() |
[3] |
Ajgaonkar S, Neelam NG, Wiemann J (2021) Drivers of workforce agility: a dynamic capability perspective. Int J Organ Anal 30: 951–982. https://doi.org/10.1108/ijoa-11-2020-2507 doi: 10.1108/ijoa-11-2020-2507
![]() |
[4] |
Amorelli MF, García‐Sánchez IM (2023) Leadership in heels: Women on boards and sustainability in times of COVID‐19. Corp Soc Responsib Environ Manag 30: 1987–2010. https://doi.org/10.1002/csr.2469 doi: 10.1002/csr.2469
![]() |
[5] |
Aouadi A, Marsat S (2018) Do ESG Controversies Matter for Firm Value? Evidence from International Data. J Bus Eth 151: 1027–1047. https://doi.org/10.1007/s10551-016-3213-8 doi: 10.1007/s10551-016-3213-8
![]() |
[6] | Aziri B (2011) Job satisfaction, a literature review. Man Res Pract 3: 77–68. |
[7] |
Bax K (2023) Do diverse and inclusive workplaces benefit investors? An Empirical Analysis on Europe and the United States. Fin Res Lett 52: 103509. https://doi.org/10.1016/j.frl.2022.103509 doi: 10.1016/j.frl.2022.103509
![]() |
[8] |
Beck C, Frost G, Jones S (2018) CSR disclosure and financial performance revisited: A cross-country analysis. Aust J Mana 43: 517–537. https://doi.org/10.1177/0312896218771438 doi: 10.1177/0312896218771438
![]() |
[9] |
Ben-Amar W, Chang M, McIlkenny P (2017) Board gender diversity and corporate response to sustainability initiatives: evidence from the Carbon Disclosure Project. J Bus Ethics 142: 369–383. https://doi.org/10.1007/s10551-015-2759-1 doi: 10.1007/s10551-015-2759-1
![]() |
[10] |
Bengisu M, Balta S (2011) Employment of the workforce with disabilities in the hospitality industry. J Sustain Tour 19: 35–57. https://doi.org/10.1080/09669582.2010.499172 doi: 10.1080/09669582.2010.499172
![]() |
[11] | Brooks C (2019) Introductory econometrics for finance. Cambridge university press. |
[12] |
Burkhardt K, Nguyen P, Poincelot E (2020) Agents of change: Women in top management and corporate environmental performance. Corp Soc Responsib Environ Manag 27: 1591–1604. https://doi.org/10.1002/csr.1907 doi: 10.1002/csr.1907
![]() |
[13] | Camilleri MA (2017) Corporate sustainability and responsibility: creating value for business, society and the environment. Asian J Sustain Soc Responsib 2: 59–74. https://doi10.1186/s41180-017-0016-5 |
[14] |
Choi JN, Sung SY, Zhang Z (2017) Workforce diversity in manufacturing companies and organizational performance: the role of status-relatedness and internal processes. Int J Hum Resour Manag 28: 2738–2761. https://doi.org/10.1080/09585192.2016.1138315 doi: 10.1080/09585192.2016.1138315
![]() |
[15] | Colella AJ, Bruyère SM (2011) Disability and employment: New directions for industrial and organizational psychology. In S. Zedeck (Ed.), APA handbook of industrial/organizational psychology. Washington, DC: American Psychological Association, 473–503. https://doi.org/10.1037/12169-015 |
[16] |
D'apolito E, Iannuzzi AP, Labini SS, et al. (2019) Sustainable compensation and performance: an empirical analysis of European banks. J Financ Manag Mark I 7: 1940004. https://doi.org/10.1142/S2282717X19400048 doi: 10.1142/S2282717X19400048
![]() |
[17] |
Dahanayake P, Rajendran D, Selvarajah C, et al. (2018) Justice and fairness in the workplace: A trajectory for managing diversity. Equal Divers Incl 37: 470–490. https://doi.org/10.1108/EDI-11-2016-0105 doi: 10.1108/EDI-11-2016-0105
![]() |
[18] |
Davidson DJ, Freudenburg WR (1996) Gender and environmental risk concerns. Environ Behav 28: 302–339. https://doi.org/10.1177/0013916596283003 doi: 10.1177/0013916596283003
![]() |
[19] |
de Klerk K, Singh F (2023) Does Gender and Cultural Diversity Matter for Sustainability in Healthcare? Evidence from Global Organizations. Sustainability 15: 11695. https://doi.org/10.3390/su151511695 doi: 10.3390/su151511695
![]() |
[20] |
De Villiers C, Naiker V, Van Staden CJ (2011) The effect of board characteristics on firm environmental performance. J Manage 37: 1636–1663. https://doi.org/10.1177/0149206311411506 doi: 10.1177/0149206311411506
![]() |
[21] | European Commission (2020) Study on energy prices, costs and their impact on industry and households: Final report. Directorate-General for Energy, European Union. https://doi.org/10.2833/49063 |
[22] |
Farrell KA, Hersch PL (2005) Additions to corporate boards: The effect of gender. J Corp Fin 11: 85–106. https://doi.org/10.1016/j.jcorpfin.2003.12.001 doi: 10.1016/j.jcorpfin.2003.12.001
![]() |
[23] | Freeman RE (1984) Strategic Management: A Stakeholder Approach (Pittman, Marshfield, MA). |
[24] |
García-Amate A, Ramírez-Orellana A, Rojo-Ramírez AA, et al. (2023) Do ESG controversies moderate the relationship between CSR and corporate financial performance in oil and gas firms? Humanit Soc Sci Commun 10: 1–14. https://doi.org/10.1057/s41599-023-02256-y doi: 10.1057/s41599-023-02256-y
![]() |
[25] |
Gherghina ŞC, Vintilă G, Dobrescu D (2015) An empirical research on the relationship between corporate social responsibility ratings and US listed companies' value. J Econ Stud 2015: 1–12. https://doi.org/10.5171/2015.260450 doi: 10.5171/2015.260450
![]() |
[26] |
Giannetti M, Zhao M (2019) Board ancestral diversity and firm-performance volatility. J Financ Quant Anal 54: 1117–1155. https://doi.org/10.1017/S0022109018001035 doi: 10.1017/S0022109018001035
![]() |
[27] |
Golany B, Roll Y (1989) An Application Procedure for DEA. Omega 17: 237–250. https://doi.org/10.1016/0305-0483(89)90029-7 doi: 10.1016/0305-0483(89)90029-7
![]() |
[28] |
González-Ramos MI, Donate MJ, Guadamillas F (2018) An empirical study on the link between corporate social responsibility and innovation in environmentally sensitive industries. Eur J Int Manag 12: 402–422. https://doi.org/10.1504/EJIM.2018.092842 doi: 10.1504/EJIM.2018.092842
![]() |
[29] |
Gotsis G, Kortezi Z (2013) Ethical paradigms as potential foundations of diversity management initiatives in business organizations. J Organ Change Manag 26: 948–976. https://doi.org/10.1108/JOCM-11-2012-0183 doi: 10.1108/JOCM-11-2012-0183
![]() |
[30] |
Guo H, Wang C, Su Z, et al. (2020) Technology push or market pull? Strategic orientation in business model design and digital start-up performance. J Prod Innov Manage 37: 352–372. https://doi.org/10.1111/jpim.12526 doi: 10.1111/jpim.12526
![]() |
[31] |
Guthrie JP (2001) High-Involvement Work Practices, Turnover, and Productivity: Evidence from New Zealand. Acad Manage J 44: 180–190. https://doi.org/10.5465/3069345 doi: 10.5465/3069345
![]() |
[32] | Habib A, Khalid A (2019) High-Performance Work Practices and Environmental Social Responsibility of Firm: Mediatory role of Individually Perceived Stress. Int J Psychol 1: 1–21. |
[33] |
Haque F (2017) The effects of board characteristics and sustainable compensation policy on carbon performance of UK firms. Brit Account Rev 49: 347–364. https://doi.org/10.1016/j.bar.2017.01.001 doi: 10.1016/j.bar.2017.01.001
![]() |
[34] |
Harjoto MA, Laksmana I, Yang YW (2019) Board nationality and educational background diversity and corporate social performance. Corp Gov 19: 217–239. https://doi.org/10.1108/CG-04-2018-0138 doi: 10.1108/CG-04-2018-0138
![]() |
[35] |
Harrison JS, Wicks A C (2013) Stakeholder theory, value and firm performance. Bus Ethics Q 23: 97–124. https://doi.org/10.5840/beq20132314 doi: 10.5840/beq20132314
![]() |
[36] |
Horwitz SK (2005) The compositional impact of team diversity on performance: Theoretical considerations. Hum Resour Dev Rev 4: 219–245. https://doi.org/10.1177/1534484305275847 doi: 10.1177/1534484305275847
![]() |
[37] |
Hossain M, Atif M, Ahmed A, et al. (2020) Do LGBT workplace diversity policies create value for firms? J Bus Ethics 167: 775–791. https://doi.org/10.1002/hrm.21831 doi: 10.1002/hrm.21831
![]() |
[38] |
Hussain N, Rigoni U, Orij RP (2018) Corporate governance and sustainability performance: analysis of triple bottom line performance. J Bus Ethics 149: 411–432. https://doi.org/10.1007/s10551-016-3099-5 doi: 10.1007/s10551-016-3099-5
![]() |
[39] |
Iazzolino G, Bruni ME, Veltri S, et al. (2023) The impact of ESG factors on financial efficiency: An empirical analysis for the selection of sustainable firm portfolios. Corp Soc Responsib Environ Manag 30: 1917–1927. https://doi.org/10.1002/csr.2463 doi: 10.1002/csr.2463
![]() |
[40] | IEA (2018) Topics: Climate change. Available from: https://www.iea.org/topics/climatechange. |
[41] | Issa A, Zaid MAA, Hanaysha JR, et al. (2022) An examination of board diversity and corporate social responsibility disclosure: Evidence from banking sector in the Arabian Gulf countries. Int J Account Inf Manag 30: 22–46. https://doi.org/10.1108/IJAIM-07-2021-0137 |
[42] |
Jiraporn P, Potosky D, Lee SM (2019) Corporate governance and lesbian, gay, bisexual, and transgender‐supportive human resource policies from corporate social responsibility, resource‐based, and agency perspectives. Hum Resour Manage-US 58: 317–336. https://doi.org/10.1002/hrm.21954 doi: 10.1002/hrm.21954
![]() |
[43] |
Jo H, Harjoto MA (2011) Corporate Governance and Firm Value: The Impact of Corporate Social Responsibility. J Bus Ethics 103: 351–383. https://doi.org/10.1007/s10551-011-0869-y doi: 10.1007/s10551-011-0869-y
![]() |
[44] | Kang J, Kim YH (2013) The impact of media on corporate social responsibility. Available at SSRN 2287002. https://ssrn.com/abstract = 2287002 |
[45] |
Kareem MA, Hussein IJ (2019) The impact of human resource development on employee performance and organizational effectiveness. Manag Dyn Knowl Econ 7: 307–322. https://doi.org/10.25019/mdke/7.3.02 doi: 10.25019/mdke/7.3.02
![]() |
[46] |
Katou AA (2011) A mediation model linking business strategies, human resource management, psychological contract, and organisational performance. Int J Hum Resour Dev Manag 11: 51–67. https://doi.org/10.1504/IJHRDM.2011.041115 doi: 10.1504/IJHRDM.2011.041115
![]() |
[47] |
Kemp LJ, Madsen SR, Davis J (2015) Women in business leadership: A comparative study of countries in the Gulf Arab states. Int J Cross Cult Manag 15: 215–233. https://doi.org/10.1177/1470595815594819 doi: 10.1177/1470595815594819
![]() |
[48] |
Khatri I (2023) Board gender diversity and sustainability performance: Nordic evidence. Corp Soc Resp Env Manag 30: 1495–1507. https://doi.org/10.1002/csr.2432 doi: 10.1002/csr.2432
![]() |
[49] |
Kim DH, Wu YC, Lin SC (2022) Carbon dioxide emissions, financial development and political institutions. Econ Chang Restruct 55: 837–874. https://doi.org/10.1007/s10644-021-09331-x doi: 10.1007/s10644-021-09331-x
![]() |
[50] |
Kim KH, Kim M, Qian C (2018) Effects of corporate social responsibility on corporate financial performance: A competitive-action perspective. J Manag 44: 1097–1118. https://doi.org/10.1177/0149206315602530 doi: 10.1177/0149206315602530
![]() |
[51] |
Kraiger K, McLinden D, Casper WJ (2004) Collaborative planning for training impact. Hum Resour Manag J 43: 337–351. https://doi.org/10.1002/hrm.20028 doi: 10.1002/hrm.20028
![]() |
[52] |
Krüger P (2015) Corporate goodness and shareholder wealth. J Financ Econ 115: 304–329. https://doi.org/10.1016/j.jfineco.2014.09.008 doi: 10.1016/j.jfineco.2014.09.008
![]() |
[53] |
Kumar A, Gupta J, Das N (2022) Revisiting the influence of corporate sustainability practices on corporate financial performance: An evidence from the global energy sector. Bus Strategy Environ 31: 3231–3253. https://doi.org/10.1002/bse.3073 doi: 10.1002/bse.3073
![]() |
[54] |
Kumar P, Maiti J, Gunasekaran A (2018) Impact of quality management systems on firm performance. Int J Qual Reliab Manage 35: 1034–1059. https://doi.org/10.1108/IJQRM-02-2017-0030 doi: 10.1108/IJQRM-02-2017-0030
![]() |
[55] |
Lahouel BB, Zaied YB, Managi S, et al. (2022) Re-thinking about U: The relevance of regime-switching model in the relationship between environmental corporate social responsibility and financial performance. J Bus Res 140: 498–519. https://doi.org/10.1016/j.jbusres.2021.11.019 doi: 10.1016/j.jbusres.2021.11.019
![]() |
[56] |
Lee P, Seo YW (2017) Directions for social enterprise from an efficiency perspective. Sustainability 9: 1914. https://doi.org/10.3390/su9101914 doi: 10.3390/su9101914
![]() |
[57] |
Li F, Nagar V (2013) Diversity and performance. Manag Sci 59: 529–544. https://doi.org/10.1287/mnsc.1120.1548 doi: 10.1287/mnsc.1120.1548
![]() |
[58] |
Li J, Haider ZA, Jin X, et al. (2019) Corporate controversy, social responsibility and market performance: International evidence. J Int Financ Mark Inst Money 60: 1–18. https://doi.org/10.1016/j.intfin.2018.11.013 doi: 10.1016/j.intfin.2018.11.013
![]() |
[59] |
Liu C (2018) Are women greener? Corporate gender diversity and environmental violations. J Corp Fin 52: 118–142. https://doi.org/10.1016/j.jcorpfin.2018.08.004 doi: 10.1016/j.jcorpfin.2018.08.004
![]() |
[60] |
López-Penabad MC, Iglesias-Casal A, Neto JFS, et al. (2022) Does corporate social performance improve bank efficiency? Evidence from European banks. Rev Manag Sci 17: 1399–1437. https://doi.org/10.1007/s11846-022-00579-9 doi: 10.1007/s11846-022-00579-9
![]() |
[61] | LSEG Data, Analytics (2022) Environmental, social and governance scores from LSEG. Available from: https://www.lseg.com/content/dam/data-analytics/en_us/documents/methodology/lseg-esg-scores-methodology.pdf. |
[62] |
Lu WM, Kweh QL, Ting IWK, et al. (2023) How does stakeholder engagement through environmental, social, and governance affect eco-efficiency and profitability efficiency? Zooming into Apple Inc. 's counterparts. Bus Strategy Environ 32: 587–601. https://doi.org/10.1002/bse.3162 doi: 10.1002/bse.3162
![]() |
[63] |
Maside‐Sanfiz JM, Suárez-Fernández Ó, López‐Penabad MC, et al. (2023) Does corporate social performance improve environmentally adjusted efficiency? Evidence from the energy sector. Corp Soc Responsib Environ Manag. https://doi.org/10.1002/csr.2650 doi: 10.1002/csr.2650
![]() |
[64] |
McGuinness PB, Vieito JP, Wang M (2017) The role of board gender and foreign ownership in the CSR performance of Chinese listed firms. J Corp Finance 42: 75–99. https://doi.org/10.1016/j.jcorpfin.2016.11.001 doi: 10.1016/j.jcorpfin.2016.11.001
![]() |
[65] | McKinsey, Company Organisation (2015) Women in the workplace. Available from: https://www.mckinsey.com/business-functions/organisation/our-insights/women-in-the-workplace. |
[66] | Meyer CS, Mukerjee S, Sestero A (2001) Work‐family benefits: which ones maximize profits? J Manag Issues, 28‐44. https://www.jstor.org/stable/40604332 |
[67] |
Moussa AS, Elmarzouky M (2023) Does Capital Expenditure Matter for ESG Disclosure? A UK Perspective. J Risk Financial Manag 16: 429. https://doi.org/10.3390/jrfm16100429 doi: 10.3390/jrfm16100429
![]() |
[68] |
Naciti V, Noto G, Vermiglio C, et al. (2022) Gender representation and financial performance: an empirical analysis of public hospitals. Int J Public Sect Manag 35: 603–621. https://doi.org/10.1108/IJPSM-01-2022-00 doi: 10.1108/IJPSM-01-2022-00
![]() |
[69] | Nadler Z (2012) Designing Training Programs. Hoboken, NJ: Taylor and Francis. https://doi.org/10.4324/9780080503974 |
[70] |
Nirino N, Santoro G, Miglietta N, et al. (2021) Corporate controversies and company's financial performance: Exploring the moderating role of ESG practices. Technol Forecast Soc 162: 120341. DOI10.1016/j.techfore.2020.120341 doi: 10.1016/j.techfore.2020.120341
![]() |
[71] |
Nyeadi JD, Kamasa K, Kpinpuo S (2021) Female in top management and firm performance nexus: Empirical evidence from Ghana. Cogent Eco Financ 9: 1921323. https://doi.org/10.1080/23322039.2021.1921323 doi: 10.1080/23322039.2021.1921323
![]() |
[72] |
Özbilgin M, Tatli A (2011) Mapping out the field of equality and diversity: Rise of individualism and voluntarism. Hum Relat 64: 1229–1253. https://doi.org/10.1177/0018726711413620 doi: 10.1177/0018726711413620
![]() |
[73] |
Pichler S, Blazovich JL, Cook KA, et al. (2018) Do LGBT‐supportive corporate policies enhance firm performance? Hum Resour Manag J 57: 263–278. https://doi.org/10.1002/hrm.21831 doi: 10.1002/hrm.21831
![]() |
[74] |
Prieto LC, Phipps ST, Osiri JK (2009) Linking workplace diversity to organizational performance: A conceptual framework. J Divers Manag 4: 13–22. https://doi.org/10.19030/jdm.v4i4.4966 doi: 10.19030/jdm.v4i4.4966
![]() |
[75] |
Provasi R, Harasheh M (2020) Gender diversity and corporate performance: Emphasis on sustainability performance. Corp Soc Responsib Environ Manag 28: 127–137. https://doi.org/10.1002/csr.2037 doi: 10.1002/csr.2037
![]() |
[76] |
Ramecesse AD (2021) Corporate Social Responsibility and Firm Performance in SMEs: Empirical Evidence from Cameroon. Bus Econ Res 11: 88–105. https://doi.org/10.5296/ber.v11i3.18986 doi: 10.5296/ber.v11i3.18986
![]() |
[77] |
Ramírez-Orellana A, Martínez-Victoria M, García-Amate A, et al. (2023) Is the corporate financial strategy in the oil and gas sector affected by ESG dimensions? Resour Pol 81: 103303. https://doi.org/10.1016/j.resourpol.2023.103303 doi: 10.1016/j.resourpol.2023.103303
![]() |
[78] |
Ren C, Ting IWK, Lu WM, et al. (2022) Nonlinear effects of ESG on energy-adjusted firm efficiency: Evidence from the stakeholder engagement of apple incorporated. Corp Soc Responsib Environ Manag 29: 1231–1246. https://doi.org/10.1002/csr.2266 doi: 10.1002/csr.2266
![]() |
[79] |
Rodríguez-Fernández M, Sánchez-Teba EM, López-Toro AA, et al. (2019) Influence of ESGC indicators on financial performance of listed travel and leisure companies. Sustainability 11: 5529. https://doi.org/10.3390/su11195529 doi: 10.3390/su11195529
![]() |
[80] | Rohwerder B (2017) Impact of diversity and inclusion within organizations. Inst Dev Stud, 13073. |
[81] |
Rosati F, Faria LGD (2019) Business contribution to the Sustainable Development Agenda: Organizational factors related to early adoption of SDG reporting. Corp Soc Responsib Environ Manag 26: 588–597. https://doi.org/10.1002/csr.1705 doi: 10.1002/csr.1705
![]() |
[82] |
Ruggiero P, Cupertino S (2018) CSR strategic approach, financial resources and corporate social performance: The mediating effect of innovation. Sustainability 10: 3611. https://doi.org/10.3390/su10103611 doi: 10.3390/su10103611
![]() |
[83] | Salas E, Cannon-Bowers J (2000) Teams in organizations: Lessons from history. Work teams: Past, present and future: 323–331. |
[84] |
Sanchez-Robles B, Herrador-Alcaide TC, Hernández-Solís M (2022) Efficiency of European oil companies: an empirical analysis. Energy Effic 15: 1–28. https://doi.org/10.1007/s12053-022-10069-2 doi: 10.1007/s12053-022-10069-2
![]() |
[85] | Sears B, Mallory C (2011) Documented evidence of employment discrimination & its effects on LGBT people. Available from: https://escholarship.org/uc/item/03m1g5sg. |
[86] | Sgrò F (2021) Intellectual capital and organizational performance. SIDREA Series in Accounting and Business Administration. New York: Springer International Publishing. |
[87] |
Shahbaz M, Karaman AS, Kilic M, et al. (2020) Board attributes, CSR engagement, and corporate performance: What is the nexus in the energy sector? Energ Policy 143: 111582. https://doi.org/10.1016/j.enpol.2020.111582 doi: 10.1016/j.enpol.2020.111582
![]() |
[88] |
Shaukat A, Qiu Y, Trojanowsk G (2016) Board attributes, corporate social responsibility strategy, and corporate environmental and social performance. J Bus Ethics 135: 569–585. https://doi.org/10.1007/s10551-014-2460-9 doi: 10.1007/s10551-014-2460-9
![]() |
[89] |
Stefanoni S, Voltes-Dorta A (2021) Technical efficiency of car manufacturers under environmental and sustainability pressures: A data envelopment analysis approach. J Clean Prod 311: 127589. https://doi.org/10.1016/j.jclepro.2021.127589 doi: 10.1016/j.jclepro.2021.127589
![]() |
[90] |
Suciu MC, Noja GG, Cristea M (2020) Diversity, social inclusion and human capital development as fundamentals of financial performance and risk mitigation. Amfiteatru Econ 22: 742–757. http://dx.doi.org/10.24818/EA/2020/55/742 doi: 10.24818/EA/2020/55/742
![]() |
[91] |
Sueyoshi T, Yuan Y, Goto M (2017) A literature study for DEA applied to energy and environment. Energy Econ 62: 104–124. https://doi.org/10.1016/j.eneco.2016.11.006 doi: 10.1016/j.eneco.2016.11.006
![]() |
[92] |
Syed MW, Li JZ, Junaid M, et al. (2020) Relationship between human resource management practices, relationship commitment and sustainable performance. Green Financ 2: 227–242. https://doi.org/10.3934/GF.2020013 doi: 10.3934/GF.2020013
![]() |
[93] |
Taglialatela J, Pirazzi Maffiola K, Barontini R, et al. (2023) Board of Directors' characteristics and environmental SDGs adoption: an international study. Corp Soc Responsib Environ Manag 30: 2490–2506. https://doi.org/10.1002/csr.2499 doi: 10.1002/csr.2499
![]() |
[94] | United Nations (2012) SD21 Summary for Policy Makers. In Back to Our Common Future: Sustainable Development in the 21st century (SD21) project. United Nations, New York. |
[95] | Urwin P, Parry E, Dodds I, et al. (2013) The Business Case for Equality and Diversity: a survey of the academic literature (BIS OCCASIONAL PAPER NO. 4). Department for Business Innovation & Skills & Government Equalities Office. Available from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/49638/the_business_case_for_equality_and_diversity.pdf. |
[96] |
Waddock SA, Graves SB (1997) Quality of management and quality of stakeholder relations: Are they synonymous? Bus Soc 36: 250–279. https://doi.org/10.1177/000765039703600303 doi: 10.1177/000765039703600303
![]() |
[97] |
Walls JL, Hoffman AJ (2013) Exceptional boards: Environmental experience and positive deviance from institutional norms. J Organ Behav 34: 253–271. https://doi.org/10.1002/job.1813 doi: 10.1002/job.1813
![]() |
[98] |
Wang Y, Clift B (2009) Is there a "business case" for board diversity? Pac Account Rev 21: 88–103. https://doi.org/10.1108/01140580911002044 doi: 10.1108/01140580911002044
![]() |
[99] |
Webb E (2004) An examination of socially responsible firms' board structure. J Manag Gov 8: 255–277. https://doi.org/10.1007/s10997-004-1107-0 doi: 10.1007/s10997-004-1107-0
![]() |
[100] |
Wernerfelt B (1984) A resource‐based view of the firm. Strategic Manage J 5: 171–180. https://doi.org/10.1002/smj.4250050207 doi: 10.1002/smj.4250050207
![]() |
[101] |
Williams RJ (2003) Women on corporate boards of directors and their influence on corporate philanthropy. J Bus Ethics 42: 1–10. https://doi.org/10.1023/A:1021626024014 doi: 10.1023/A:1021626024014
![]() |
[102] |
Wright PC, Geroy GD (2001) Changing the mindset: the training myth and the need for world-class performance. Int J Hum Resour Man 12: 586–600. https://doi.org/10.1080/09585190122342 doi: 10.1080/09585190122342
![]() |
[103] |
Zaid MA, Wang M, Adib M, et al. (2020) Boardroom nationality and gender diversity: Implications for corporate sustainability performance. J Clean Prod 251: 119652. https://doi.org/10.1016/j.jclepro.2019.119652 doi: 10.1016/j.jclepro.2019.119652
![]() |
[104] |
Zampone G, Nicolò G, Sannino G, et al. (2024) Gender diversity and SDG disclosure: the mediating role of the sustainability committee. J Appl Account Res 25: 171–193. https://doi.org/10.1108/JAAR-06-2022-0151 doi: 10.1108/JAAR-06-2022-0151
![]() |
![]() |
![]() |