Research article Special Issues

Complex dynamics and Bogdanov-Takens bifurcations in a retarded van der Pol-Duffing oscillator with positional delayed feedback


  • In this article, we will investigate a retarded van der Pol-Duffing oscillator with multiple delays. At first, we will find conditions for which Bogdanov-Takens (B-T) bifurcation occurs around the trivial equilibrium of the proposed system. The center manifold theory has been used to extract second order normal form of the B-T bifurcation. After that, we derived third order normal form. We also provide a few bifurcation diagrams, including those for the Hopf, double limit cycle, homoclinic, saddle-node, and Bogdanov-Takens bifurcation. In order to meet the theoretical requirements, extensive numerical simulations have been presented in the conclusion.

    Citation: Mohammad Sajid, Sahabuddin Sarwardi, Ahmed S. Almohaimeed, Sajjad Hossain. Complex dynamics and Bogdanov-Takens bifurcations in a retarded van der Pol-Duffing oscillator with positional delayed feedback[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2874-2889. doi: 10.3934/mbe.2023135

    Related Papers:

    [1] Ardak Kashkynbayev, Yerlan Amanbek, Bibinur Shupeyeva, Yang Kuang . Existence of traveling wave solutions to data-driven glioblastoma multiforme growth models with density-dependent diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7234-7247. doi: 10.3934/mbe.2020371
    [2] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [3] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036
    [4] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
    [5] Tracy L. Stepien, Erica M. Rutter, Yang Kuang . A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157
    [6] Nicolas Ratto, Martine Marion, Vitaly Volpert . Existence of pulses for a reaction-diffusion system of blood coagulation in flow. Mathematical Biosciences and Engineering, 2019, 16(5): 4196-4212. doi: 10.3934/mbe.2019209
    [7] Dong Liang, Jianhong Wu, Fan Zhang . Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences and Engineering, 2005, 2(1): 111-132. doi: 10.3934/mbe.2005.2.111
    [8] Christopher DuBois, Jesse Farnham, Eric Aaron, Ami Radunskaya . A multiple time-scale computational model of a tumor and its micro environment. Mathematical Biosciences and Engineering, 2013, 10(1): 121-150. doi: 10.3934/mbe.2013.10.121
    [9] Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020
    [10] Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis . Spatially heterogeneous invasion of toxic plant mediated by herbivory. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1519-1538. doi: 10.3934/mbe.2013.10.1519
  • In this article, we will investigate a retarded van der Pol-Duffing oscillator with multiple delays. At first, we will find conditions for which Bogdanov-Takens (B-T) bifurcation occurs around the trivial equilibrium of the proposed system. The center manifold theory has been used to extract second order normal form of the B-T bifurcation. After that, we derived third order normal form. We also provide a few bifurcation diagrams, including those for the Hopf, double limit cycle, homoclinic, saddle-node, and Bogdanov-Takens bifurcation. In order to meet the theoretical requirements, extensive numerical simulations have been presented in the conclusion.





    [1] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A., 170 (1992), 421–428. https://doi.org/10.1016/0375-9601(92)90745-8 doi: 10.1016/0375-9601(92)90745-8
    [2] F. M. Atay, van der Pol's oscillator under delayed feedback, J. Sound Vib., 218 (1998), 333–339. https://doi.org/10.1006/jsvi.1998.1843 doi: 10.1006/jsvi.1998.1843
    [3] J. Jiang, Y. Song, Bogdanov-Takens bifurcation in an oscillator with negative damping and delayed position feedback, Appl. Math. Modell., 37 (2013), 8091–8105. https://doi.org/10.1016/j.apm.2013.03.034 doi: 10.1016/j.apm.2013.03.034
    [4] S. A. Campbell, J. Blair, T. Ohira, J. Milton, Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback, J. Dyn. Differ. Equations, 7 (1995), 213–236. https://doi.org/10.1007/BF02218819 doi: 10.1007/BF02218819
    [5] Y. Song, T. Zhang, M. O. Tad, Stability and multiple bifurcations of a damped harmonic oscillator with delayed feedback near zero eigenvalue singularity, Chaos, 18 (2008), 043113. https://doi.org/10.1063/1.3013195 doi: 10.1063/1.3013195
    [6] Z. Song, J. Xu, Codimension-two bursting analysis in the delayed neural system with external stimulations, Nonlinear Dyn., 67 (2012), 309–328. https://doi.org/10.1007/s11071-011-9979-4 doi: 10.1007/s11071-011-9979-4
    [7] J. Cao, R. Yuan, H. Jiang, J. Song, Hopf bifurcation and multiple periodic solutions in a damped harmonic oscillator with delayed feedback, J. Comput. Appl. Math., 263 (2014), 14–24. https://doi.org/10.1016/j.cam.2013.11.015 doi: 10.1016/j.cam.2013.11.015
    [8] S. A. Campbell, Y. Yuan, Zero singularities of codimension two and three in delay differential equations, Nonlinearity, 21 (2008), 2671–2691. https://dx.doi.org/10.1088/0951-7715/21/11/010 doi: 10.1088/0951-7715/21/11/010
    [9] J. Cao, R. Yuan, Multiple bifurcations in a harmonic oscillator with delayed feedback, Neurocomputing, 122 (2013), 172–180. https://doi.org/10.1016/j.neucom.2013.06.033 doi: 10.1016/j.neucom.2013.06.033
    [10] Z. Q. Qiao, X. B. Liu, D. M. Zhu, Bifurcation in delay differential systems with triple-zero singularity, Chin. Ann. Math. A., 31 (2010), 59–70.
    [11] Z. Song, J. Xu, Stability switches and Bogdanov-Takens bifurcation in an inertial two-neuron coupling system with multiple delays, Sci. China Technol. Sci., 57 (2014), 893–904. https://doi.org/10.1007/s11431-014-5536-y doi: 10.1007/s11431-014-5536-y
    [12] J. Wang, W. Jiang, Bogdanov-Takens singularity in the comprehensive national power model with delays, J. Appl. Anal. Comput., 3 (2013), 81–94. https://doi.org/10.11948/2013007 doi: 10.11948/2013007
    [13] J. Wang, X. Liu, J. Liang, Bogdanov-Takens bifurcation in an oscillator with positive damping and multiple delays, Nonlinear Dyn., 87 (2017), 255–269. https://doi.org/10.1007/s11071-016-3040-6 doi: 10.1007/s11071-016-3040-6
    [14] Y. Song, J. Jiang, Steady-state, Hopf and steady-state-Hopf bifurcations in delay differential equations with applications to a damped harmonic oscillator with delay feedback, Int. J. Bifurcation Chaos, 22 (2012), 1250286. https://doi.org/10.1142/S0218127412502860 doi: 10.1142/S0218127412502860
    [15] S. Sarwardi, S. Hossain, M. Sajid, A. S. Almohaimeed, Analysis of the Bogdanov-Takens bifurcation in a retarded oscillator with negative damping and double delay, AIMS Math., 7 (2022), 19770–19793. https://doi.org/10.3934/math.20221084 doi: 10.3934/math.20221084
    [16] J. K. Hale, Theory of Functional Differential Equations, Springer, New York, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [17] J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. https://doi.org/10.1007/978-1-4612-4342-7
    [18] Y. Xu, M. Huang, Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity, J. Differ. Equations, 244 (2008), 582–598. https://doi.org/10.1016/j.jde.2007.09.003 doi: 10.1016/j.jde.2007.09.003
    [19] T. Faria, L. T. Magalhaes, Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity, J. Differ. Equations, 122 (1995), 201–224. https://doi.org/10.1006/jdeq.1995.1145 doi: 10.1006/jdeq.1995.1145
    [20] W. Jiang, Y. Yuan, Bogdanov-Takens singularity in van der Pol's oscillator with delayed feedback, Physica D, 227 (2007), 149–161. https://doi.org/10.1016/j.physd.2007.01.003 doi: 10.1016/j.physd.2007.01.003
    [21] T. Faria, L. T. Magalhaes, Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation, J. Differ. Equations, 122 (1995), 181–200. https://doi.org/10.1006/jdeq.1995.1144 doi: 10.1006/jdeq.1995.1144
    [22] X. He, C. Li, Y. Shu, Bogdanov-Takens bifurcation in a single inertial neuron model with delay, Neurocomputing, 89 (2012), 193–201. https://doi.org/10.1016/j.neucom.2012.02.019 doi: 10.1016/j.neucom.2012.02.019
    [23] T. Dong, X. Liao, Bogdanov-Takens bifurcation in a tri-neuron BAM neural network model with multiple delays, Nonlinear Dyn., 71 (2013), 583–595. https://doi.org/10.1007/s11071-012-0683-9 doi: 10.1007/s11071-012-0683-9
    [24] M. S. Siewe, C. Tchawoua, P. Woafo, Melnikov chaos in aperiodically driven Rayleigh-Duffing oscillator, Mech. Res. Commun., 37 (2010), 363–368. https://doi.org/10.1016/j.mechrescom.2010.04.001 doi: 10.1016/j.mechrescom.2010.04.001
    [25] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9 doi: 10.1016/0167-2789(85)90011-9
  • This article has been cited by:

    1. Yang Kuang, Erica M. Rutter, Tracy L. Stepien, A data-motivated density-dependent diffusion model of in vitro glioblastoma growth, 2015, 12, 1551-0018, 1157, 10.3934/mbe.2015.12.1157
    2. Tiberiu Harko, Shi-Dong Liang, Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator, 2016, 98, 0022-0833, 93, 10.1007/s10665-015-9812-z
    3. Ayansola D. Ogundele, Andrew J. Sinclair, Subhash C. Sinha, Closed form parametric solutions of nonlinear Abel-type and Riccati-type spacecraft relative motion, 2021, 178, 00945765, 733, 10.1016/j.actaastro.2020.10.009
    4. Faezeh Iranmanesh, Mohammad Ali Nazari, Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model, 2017, 139, 0148-0731, 10.1115/1.4037038
    5. Waipot Ngamsaad, Suthep Suantai, Mechanically-driven spreading of bacterial populations, 2016, 35, 10075704, 88, 10.1016/j.cnsns.2015.10.026
    6. Rebecca L Klank, Steven S Rosenfeld, David J Odde, A Brownian dynamics tumor progression simulator with application to glioblastoma, 2018, 4, 2057-1739, 015001, 10.1088/2057-1739/aa9e6e
    7. Brian Wesley Williams, Exact traveling wave solutions of fast reaction–diffusion–convectionequations based on the Lambert function W, 2020, 2, 26668181, 100013, 10.1016/j.padiff.2020.100013
    8. Man Kwong Mak, Tiberiu Harko, On the Integrability of the Abel and of the Extended Liénard Equations, 2019, 35, 0168-9673, 722, 10.1007/s10255-019-0847-1
    9. Giovanni Borasi, Alan Nahum, Modelling the radiotherapy effect in the reaction-diffusion equation, 2016, 32, 11201797, 1175, 10.1016/j.ejmp.2016.08.020
    10. Prakash Kumar Das, Supriya Mandal, Madan M. Panja, Piecewise smooth localized solutions of Liénard‐type equations with application to NLSE, 2018, 41, 0170-4214, 7869, 10.1002/mma.5249
    11. Georgios S Stamatakos, Stavroula G Giatili, A Numerical Handling of the Boundary Conditions Imposed by the Skull on an Inhomogeneous Diffusion-Reaction Model of Glioblastoma Invasion Into the Brain: Clinical Validation Aspects, 2017, 16, 1176-9351, 117693511668482, 10.1177/1176935116684824
    12. Jianfeng Huang, Joan Torregrosa, Jordi Villadelprat, On the Number of Limit Cycles in Generalized Abel Equations, 2020, 19, 1536-0040, 2343, 10.1137/20M1340083
    13. T. Harko, M. K. Mak, Exact travelling wave solutions of non-linear reaction-convection-diffusion equations—An Abel equation based approach, 2015, 56, 0022-2488, 111501, 10.1063/1.4935299
    14. Jianfeng Huang, Jie Li, On the number of limit cycles in piecewise smooth generalized Abel equations with two asymmetric zones, 2022, 66, 14681218, 103551, 10.1016/j.nonrwa.2022.103551
    15. Valipuram Manoranjan, Lewa’ Alzaleq, Analysis of a population model with advection and an autocatalytic-type growth, 2023, 16, 1793-5245, 10.1142/S1793524522500784
    16. Qianqian Zhao, Jiang Yu, Cheng Wang, Nontrivial Limit Cycles in a Kind of Piecewise Smooth Generalized Abel Equation, 2022, 32, 0218-1274, 10.1142/S0218127422502169
    17. Mohammad F.M. Naser, Mohammad Abdel Aal, Ghaleb Gumah, Stability analysis of Abel's equation of the first kind, 2023, 8, 2473-6988, 30574, 10.3934/math.20231563
    18. Xiangqin Yu, Hebai Chen, Changjian Liu, The number of limit cycles of Josephson equation, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023208
    19. Elsa Moggia, Predictive potentialities of the Quasi-Random Lattice model for electrolyte solutions, discussion and improvement strategies, 2025, 588, 03783812, 114243, 10.1016/j.fluid.2024.114243
    20. Xiangqin Yu, Jianfeng Huang, Changjian Liu, Maximum number of limit cycles for Abel equation having coefficients with linear trigonometric functions, 2024, 410, 00220396, 301, 10.1016/j.jde.2024.07.030
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1816) PDF downloads(86) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog