
Calcified aortic valve stenosis (CAVS) is caused by calcium buildup and tissue thickening that impede the blood flow from left ventricle (LV) to aorta. In recent years, CAVS has become one of the most common cardiovascular diseases. Therefore, it is necessary to study the mechanics of aortic valve (AV) caused by calcification. In this paper, based on a previous idealized AV model, the hybrid immersed boundary/finite element method (IB/FE) is used to study AV dynamics and hemodynamic performance under normal and calcified conditions. The computational CAVS model is realized by dividing the AV leaflets into a calcified region and a healthy region, and each is described by a specific constitutive equation. Our results show that calcification can significantly affect AV dynamics. For example, the elasticity and mobility of the leaflets decrease due to calcification, leading to a smaller opening area with a high forward jet flow across the valve. The calcified valve also experiences an increase in local stress and strain. The increased loading due to AV stenosis further leads to a significant increase in left ventricular energy loss and transvalvular pressure gradients. The model predicted hemodynamic parameters are in general consistent with the risk classification of AV stenosis in the clinic. Therefore, mathematical models of AV with calcification have the potential to deepen our understanding of AV stenosis-induced ventricular dysfunction and facilitate the development of computational engineering-assisted medical diagnosis in AV related diseases.
Citation: Li Cai, Yu Hao, Pengfei Ma, Guangyu Zhu, Xiaoyu Luo, Hao Gao. Fluid-structure interaction simulation of calcified aortic valve stenosis[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13172-13192. doi: 10.3934/mbe.2022616
[1] | Sun-Ho Choi, Hyowon Seo . Rumor spreading dynamics with an online reservoir and its asymptotic stability. Networks and Heterogeneous Media, 2021, 16(4): 535-552. doi: 10.3934/nhm.2021016 |
[2] | Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi . SIR Rumor spreading model with trust rate distribution. Networks and Heterogeneous Media, 2018, 13(3): 515-530. doi: 10.3934/nhm.2018023 |
[3] | Lili Jia, Changyou Wang, Zongxin Lei . Synchronization of nonautonomous neural networks with Caputo derivative and time delay. Networks and Heterogeneous Media, 2023, 18(1): 341-358. doi: 10.3934/nhm.2023013 |
[4] | Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639 |
[5] | Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann . Evacuation dynamics influenced by spreading hazardous material. Networks and Heterogeneous Media, 2011, 6(3): 443-464. doi: 10.3934/nhm.2011.6.443 |
[6] | Meng Zhao, Jiancheng Liu, Yindi Zhang . Influence of environmental pollution and bacterial hyper-infectivity on dynamics of a waterborne pathogen model with free boundaries. Networks and Heterogeneous Media, 2024, 19(3): 940-969. doi: 10.3934/nhm.2024042 |
[7] | Liping Yu, Hans Kleppe, Terje Kaarstad, Svein M. Skjaeveland, Steinar Evje, Ingebret Fjelde . Modelling of wettability alteration processes in carbonate oil reservoirs. Networks and Heterogeneous Media, 2008, 3(1): 149-183. doi: 10.3934/nhm.2008.3.149 |
[8] | Richard Carney, Monique Chyba, Taylor Klotz . Using hybrid automata to model mitigation of global disease spread via travel restriction. Networks and Heterogeneous Media, 2024, 19(1): 324-354. doi: 10.3934/nhm.2024015 |
[9] | Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance . Preface: "New trends, models and applications in complex and multiplex networks". Networks and Heterogeneous Media, 2015, 10(1): i-iii. doi: 10.3934/nhm.2015.10.1i |
[10] | Benjamin Contri . Fisher-KPP equations and applications to a model in medical sciences. Networks and Heterogeneous Media, 2018, 13(1): 119-153. doi: 10.3934/nhm.2018006 |
Calcified aortic valve stenosis (CAVS) is caused by calcium buildup and tissue thickening that impede the blood flow from left ventricle (LV) to aorta. In recent years, CAVS has become one of the most common cardiovascular diseases. Therefore, it is necessary to study the mechanics of aortic valve (AV) caused by calcification. In this paper, based on a previous idealized AV model, the hybrid immersed boundary/finite element method (IB/FE) is used to study AV dynamics and hemodynamic performance under normal and calcified conditions. The computational CAVS model is realized by dividing the AV leaflets into a calcified region and a healthy region, and each is described by a specific constitutive equation. Our results show that calcification can significantly affect AV dynamics. For example, the elasticity and mobility of the leaflets decrease due to calcification, leading to a smaller opening area with a high forward jet flow across the valve. The calcified valve also experiences an increase in local stress and strain. The increased loading due to AV stenosis further leads to a significant increase in left ventricular energy loss and transvalvular pressure gradients. The model predicted hemodynamic parameters are in general consistent with the risk classification of AV stenosis in the clinic. Therefore, mathematical models of AV with calcification have the potential to deepen our understanding of AV stenosis-induced ventricular dysfunction and facilitate the development of computational engineering-assisted medical diagnosis in AV related diseases.
There are different patterns of rumor spreading depending on the presence or absence of online media [7], for example, the emergence of influential spreaders [2]. Before the development of online media, rumors were transmitted from person to person. With the development of online media such as social network service (SNS), personal broadcasting, blog, and group chatting, rumors can now spread in a variety of ways. In the past, offline media was the starting point and an important means of information delivery. Recently, it has become a social problem that offline media reproduces and delivers rumors from online media. This is a sign that information in online is rapidly being accepted by various social classes. In this paper, we study how the combination of classical interpersonal rumor spreading and online media influences rumor outbreak.
In order to consider the influence of online media, we denote by
dIdt=b−λsIS−λwIW−δiI,dSdt=λsIS+λwIW−σsSS−σrSR−μS−δsS,dWdt=ξS−δwW,dRdt=σsSS+σrSR+μS−δrR. | (1) |
Remark 1. (1) This rumor spreading process is a relatively short time process. Thus, we do not consider vertical transmission. See [8].
(2) If we take
Since the Daley-Kendall model [3], various studies on rumor spreading have been conducted. We briefly state the history of rumor spreading models associated with online media. See [12] for a general rumor spread, and [14] for threshold phenomena for general epidemic models. Since information transmission via online media developed in the late 1990s, intensive researches on rumors and online media began mainly in the early 2000s. In [1], the authors focused on the spread of computer-based rumors and analyzed the spread of rumors via computer-based communication in terms of information transmission. The authors in [7] noted the difference between online-based media and offline media. The study in [17] considered the spread of rumors through online networks by using the SIR model. The fast speed and unprofessional communication of online media is considered in [13]. See also [9]. In [11], a statistical rumor diffusion model is considered for online networks and it contained positive and negative bipolar reinforcement factors. [4,6,18] studied a rumor propagation model similar to the European fox rabies SIR model for the situation of changing online community number. In [10], the authors studied the rumor propagation phenomena for a model with two layers: online and offline. See also [19] for the SEIR type online rumor model.
This paper is organized as follows. In Section 2, we present the nonnegativity property of the solution to (1) and the stability of the rumor-free equilibrium. The basic reproduction number
In this section, we consider the conservation of nonnegativity of the densities
Lemma 2.1. Let
S(0)2+W(0)2>0, |
then the solution is nonnegative for all
Proof. We take any positive
|I(t)|,|S(t)|,|W(t)|,|R(t)|<C(T). |
By the first equation in (1) and the boundedness, if
I(t)=I(0)e−∫t0(λsS(s)+λwW(s)+δi)ds+b∫t0e−∫tu(λsS(s)+λwW(s)+δi)dsdu>0. |
We first prove that
S(t−s)<0. |
Let
S(t)=S(0)e∫t0(λsI(s)−σsS(s)−σrR(s)−μ−δs)ds+∫t0λwI(u)W(u)e∫tu(λsI(s)−σsS(s)−σrR(s)−μ−δs)dsdu. | (2) |
This and the positivity of
W(t)=W(0)e−δwt+∫t0ξS(u)e−δw(t−u)du. | (3) |
Thus,
However, on
(I(t),S(t),W(t),R(t))=(I(t0)e−δi(t−t0)+b(1−e−δi(t−t0))δi,0,0,R(t0)e−δr(t−t0)) |
is a solution to (1). By uniqueness of the solution, there is no
Similarly, we can also easily obtain that there is no
Moreover, if
In this part, we calculate the basic reproduction number using a next-generation matrix. To consider the asymptotic behavior of the dynamics in (1), we determine the equilibrium point such that
˙I=˙S=˙W=˙R=0. | (4) |
If we assume that there is no rumor
E0=(Irf,Srf,Wrf,Rrf)=(bδi,0,0,0). |
The basic reproduction number
For the infected compartments, the next generation matrices at the rumor-free state
F=1δi(bλsbλw00)andV=(μ+δs0−ξδw), |
and hence
V−1=1(μ+δs)δw(δw0ξμ+δs). |
Here,
FV−1=(bλs(μ+δs)δi+bλwξ(μ+δs)δiδwbλwδiδw00). |
Therefore, we obtain the following formula for the basic reproduction number:
R0=ρ(FV−1)=bδi(λsμ+δs+λwξ(μ+δs)δw). |
Here,
For the linear stability, we consider the Jacobian matrix as follows.
J=(−λsS−λwW−δi−λsI−λwI0λsS+λwWλsI−2σsS−σrR−μ−δsλwI−σrS0ξ−δw002σsS+σrR+μ0σrS−δr). |
Since the rumor-free equilibrium is
E0=(bδi,0,0,0), |
the Jacobian matrix at the rumor-free equilibrium is given by
JE0=(−δi−λsbδi−λwbδi00λsbδi−μ−δsλwbδi00ξ−δw00μ0−δr). |
Therefore, the corresponding characteristic equation is
p(x)=(x+δr)(x+δi)×(x2−(bλsδi−μ−δs−δw)x−bδwλsδi+μδw+δsδw−bλwξδi). |
Assume that
bδiλsμ+δs<bδi(λsμ+δs+λwξ(μ+δs)δw)<1. |
Thus,
c1:=−(bλsδi−μ−δs−δw)>δw>0. |
Note that
c2:=−bδwλsδi+(μ+δs)δw−bλwξδi=δw(μ+δs)(−bλsδi(μ+δs)−bλwξδiδw(μ+δs)+1)=δw(μ+δs)(1−R0)>0. |
Clearly,
p0(x)=x2−(bλsδi−μ−δs−δw)x−bδwλsδi+(μ+δs)δw−bλwξδi=x2+c1x+c2. |
Since
Clearly, if
Theorem 2.2. The rumor-free equilibrium
The rumor-free equilibrium
Theorem 2.3. If
{(I,S,R,W):S>0orW>0}∩{(I,S,W,R):I,S,W,R≥0}. |
Proof. Let
V0(I,S,W)=[I−Irf−IrflogIIrf]+S+IrfλsδwW, |
where
I−Irf−IrflogIIrf>0,forI≠Irf, |
and
I−Irf−IrflogIIrf=0,forI=Irf, |
we note that
dV0dt=(b−λsIS−λwIW−δiI)−bδi(bI−λsS−λsW−δi)+λsIS+λwIW−σsSS−σrSR−(μ+δs)S+bλsδiδw(ξS−δwW)=b−δiI−σsSS−σrSR−(μ+δs)S+bλsδiδw(ξS−δwW)−bδi(bI−λsS−λsW−δi)=−b(bδiI+δiIb−2)−σsSS−σrSR−(μ+δs)S+bλsδiδw(ξS−δwW)+bδi(λsS+λsW)=−b(bδiI+δiIb−2)−σsSS−σrSR−(μ+δs)S(1−bλs(μ+δs)δi−bλsξ(μ+δs)δiδw). |
Therefore, we have
dV0dt=−b(bδiI+δiIb−2)−σsSS−σrSR−(μ+δs)S(1−R0). | (5) |
Note that by Lemma 2.1 in Section 2,
dV0dt<0. |
Therefore,
Therefore, the rumor-free equilibrium
In this section, we present the existence and stability of endemic steady states for the rumor spreading model with an online reservoir. Endemic state refers to a nonzero steady state of
To obtain the endemic equilibrium
E∗=(I∗,S∗,W∗,R∗), |
we consider the following steady state equation:
dIdt=dSdt=dWdt=dRdt=0. |
Then the endemic equilibrium
0=b−λsI∗S∗−λwI∗W∗−δiI∗,0=λsI∗S∗+λwI∗W∗−σsS∗S∗−σrS∗R∗−μS∗−δsS∗,0=ξS∗−δwW∗,0=σsS∗S∗+σrS∗R∗+μS∗−δrR∗. |
We set
U∗=δwξW∗,˜I∗=δiI∗,˜S∗=δsS∗,˜R∗=δrR∗, |
and
˜μ=μδs,˜λs=λsδw+λwξδiδsδw,˜σs=σsδ2s,˜σr=σrδsδr. |
Then
0=b−˜λs˜I∗˜S∗−˜I∗,0=˜λs˜I∗˜S∗−˜σs˜S∗˜S∗−˜σr˜S∗˜R∗−˜μ˜S∗−˜S∗,0=˜σs˜S∗˜S∗+˜σr˜S∗˜R∗+˜μ˜S∗−˜R∗. | (6) |
Note that the basic reproduction number satisfies
R0=b˜λs˜μ+1. |
To find endemic equilibrium
˜S∗>0. |
The sum of all equations in (6) implies that
˜R∗=(b−˜I∗−˜S∗). | (7) |
From the second equation in (6),
(˜λs˜S∗+˜σr˜S∗)˜I∗=˜σs˜S∗˜S∗−˜σr˜S∗˜S∗+(˜μ+1)˜S∗+˜σrb˜S∗. | (8) |
By (7)-(8),
˜I∗=˜σs−˜σr˜λs+˜σr˜S∗+˜μ+1+˜σrb˜λs+˜σr:=β˜S∗+γ. |
Substituting
b−˜λs(β˜S∗+γ)˜S∗−(β˜S∗+γ)=0. |
Therefore, we have
β˜λs˜S2∗+(˜λsγ+β)˜S∗+γ−b=0. | (9) |
If we obtain positive
˜I∗=b˜λs˜S∗+1 |
and
˜R∗=˜σs˜S∗˜S∗+˜μ˜S∗1−˜σr˜S∗. |
Thus, if all components are nonnegative,
S∗<1˜σr. | (10) |
Theorem 3.1. If
Proof. Assume that
● Case 1
˜S∗=b−γ˜λsγ=bb˜σr+˜μ+1R0−1R0<1˜σr. |
Condition (10) holds, which implies that a positive endemic state
● Case 2
˜S2∗+(b˜σr+˜μ+1˜σs−˜σr+1˜λs)˜S∗+b˜σs−˜σr1−R0R0=0. |
Since
b˜σs−˜σr1−R0R0<0. |
Therefore, there is a unique positive real root of the equation. To check the condition in (10), let
f(x)=x2+(b˜σr+˜μ+1˜σs−˜σr+1˜λs)x+b˜σs−˜σr1−R0R0. | (11) |
By elementary calculation,
f(1/˜σr)=(˜λs+˜σr)(˜μ˜σr+˜σs)˜λs˜σ2r(˜σs−˜σr). | (12) |
Thus,
● Case 3
D=(b˜σr+˜μ+1˜σs−˜σr+1˜λs)2−4b˜σs−˜σr1−R0R0. |
Since we assume that
Let
g(x)=(x−˜σr+˜λs(1+˜μ+b˜σr))2−4˜λs(−1−˜μ+b˜λs)(˜σr−x). |
Then the discriminant is represented as for
D=g(˜σs)(˜λs+˜σr)2. |
Note that
x=−b˜σr˜λs+˜σr−2b˜λ2s+˜μ˜λs+˜λs. |
Since we assume that
−b˜σr˜λs+˜σr−2b˜λ2s+˜μ˜λs+˜λs<−(˜μ+1)˜σr+˜σr−2b˜λ2s+˜μ˜λs+˜λs=−˜μ˜σr+˜λs(−2b˜λs+˜μ+1)<0. |
Therefore, the minimum value of
g(˜σs)≥g(0)=(˜λs(b˜σr+˜μ+1)−˜σr)2+4˜σr˜λs(−b˜λs+˜μ+1)=:h(˜σr). |
We consider
h(˜σr)≥4b˜μ˜λ3s(b˜λs−˜μ−1)(b˜λs−1)2>0. |
Therefore,
b˜σs−˜σr1−R0R0>0. |
Thus,
By (12) and
f(1/˜σr)=(˜λs+˜σr)(˜μ˜σr+˜σs)˜λs˜σ2r(˜σs−˜σr)<0. |
Therefore,
For any case, we conclude that if
For the remaining part, we assume that
● Case 1
˜S∗=b−γ˜λsγ=bb˜σr+˜μ+1R0−1R0≤0. |
Thus there is no positive endemic state
● Case 2
D=g(˜σs)(˜λs+˜σr)2 |
and
Since we assume that
b˜σs−˜σr1−R0R0≥0, |
this implies that if
Note that
x=−bσrλs+μλs+λs+(σs−σr)2λs(σs−σr)<0. |
Thus,
● Case 3
˜S2∗+(b˜σr+˜μ+1˜σs−˜σr+1˜λs)˜S∗+b˜σs−˜σr1−R0R0=0. |
Since
b˜σs−˜σr1−R0R0≥0. |
Therefore, there is at most one positive real root of the equation. However,
f(1/˜σr)=(˜λs+˜σr)(˜μ˜σr+˜σs)˜λs˜σ2r(˜σs−˜σr)<0. |
Thus, (10) does not hold. This implies that there is no positive endemic equilibrium
Therefore, we conclude that if
In this part, we consider asymptotic stability for the endemic state
Theorem 3.2. If
{(I,S,R,W):S>0orW>0}∩{(I,S,W,R):I,S,W,R≥0}. |
Proof. Let
V∗(I,S,W,R)=[I−I∗−I∗logII∗]+[S−S∗−S∗logSS∗]+λwδwI∗[W−W∗−W∗logWW∗]+R∗σrμ+R∗σr[R−R∗−R∗logRR∗]=:J1+J2+J3+J4. |
In the same manner as Theorem 2.3, note that
We claim that if
dV∗dt<0. |
Since
(b−λsI∗S∗−λwI∗W∗−δiI∗)=0. |
Therefore,
dJ1dt=(b−λsIS−λwIW−δiI)(1−I∗I)+(b−λsI∗S∗−λwI∗W∗−δiI∗)(1−II∗)=b(2−I∗I−II∗)−λs(I∗−I)(S∗−S)−λw(I∗−I)(W∗−W). |
Similarly,
(λsI∗S∗+λwI∗W∗−σsS∗S∗−σrS∗R∗−μS∗)=0. |
This implies that
dJ2dt=(λsIS+λwIW−σsSS−σrSR−(μ+δs)S)(1−S∗S)+(λsI∗S∗+λwI∗W∗−σsS∗S∗−σrS∗R∗−(μ+δs)S∗)(1−SS∗)=λs(I∗−I)(S∗−S)−σs(S∗−S)(S∗−S)−σr(R∗−R)(S∗−S)+λwIW(1−S∗S)+λwI∗W∗(1−SS∗). |
Note that
dJ3dt=λwδwI∗(ξS−δwW)(1−W∗W). |
We add the derivatives of
d(J1+J2+J3)dt−b(2−I∗I−II∗)+σs(S∗−S)(S∗−S)+σr(R∗−R)(S∗−S)=−λw(I∗−I)(W∗−W)+λwIW(1−S∗S)+λwI∗W∗(1−SS∗)+λwδwI∗(ξS−δwW)(1−W∗W)=λwI∗W+λwIW∗−λwIS∗SW−λwI∗SS∗W∗+λwδwI∗(ξS−δwW)(1−W∗W). |
Using
d(J1+J2+J3)dt−b(2−I∗I−II∗)+σs(S∗−S)(S∗−S)+σr(R∗−R)(S∗−S)=λw(IW∗−IS∗SW−ξδwI∗W∗WS+I∗W∗). | (13) |
Using
IW∗−IS∗SW−ξδwI∗W∗WS+I∗W∗=(IW∗+I∗I∗IW∗−2I∗W∗)−(ξδwI∗SW∗W+IS∗SW+I∗I∗IW∗−3I∗W∗)=I∗W∗(II∗+I∗I−2)−ξδwI∗W∗(SW+δ2wξ2IWI∗S+δwξI∗I−3δwξ). | (14) |
Combining (13) and (14) with
d(J1+J2+J3)dt=(λwξδwI∗S∗−b)(II∗+I∗I−2)−λwξ2δ2wI∗S∗(SW+δ2wξ2IWI∗S+δwξI∗I−3δwξ)−σs(SS+S∗S∗−2SS∗)−σr(SR+S∗R∗−S∗R−R∗S). |
Since
σsS∗S∗+σrS∗R∗+μS∗−δrR∗=0, |
we have
μ+R∗σrR∗σrdJ4dt=dRdt(1−R∗R)=(σsSS+σrSR+μS−δrR)(1−R∗R)+(σsS∗S∗+σrS∗R∗+μS∗−δrR∗)(1−RR∗)=σs(SS+S∗S∗−R∗RSS−RR∗S∗S∗)+σr(SR+S∗R∗−R∗RRS−RR∗R∗S∗)+μ(S+S∗−R∗RS−RR∗S∗). |
Then we have
dV∗dt=(λwξδwI∗S∗−b)(II∗+I∗I−2)−λwξ2δ2wI∗S∗(SW+δ2wξ2IWI∗S+δwξI∗I−3δwξ)−σs(SS+S∗S∗−2SS∗)−σr(SR+S∗R∗−S∗R−R∗S)+R∗σrμ+R∗σrσs(SS+S∗S∗−R∗RSS−RR∗S∗S∗)+R∗σrμ+R∗σrσr(SR+S∗R∗−R∗RRS−RR∗R∗S∗) |
+R∗σrμ+R∗σrμ(S+S∗−R∗RS−RR∗S∗). |
Note that
−σs(SS+S∗S∗−2SS∗)+R∗σrμ+R∗σrσs(SS+S∗S∗−R∗RSS−RR∗S∗S∗)=−μμ+R∗σrσs(SS+S∗S∗−2SS∗)−R∗σrμ+R∗σrσsS∗S(R∗RSS∗+RR∗S∗S−2) |
and
−σr(SR+S∗R∗−S∗R−R∗S)+R∗σrμ+R∗σrσr(SR+S∗R∗−R∗RRS−RR∗R∗S∗)+R∗σrμ+R∗σrμ(S+S∗−R∗RS−RR∗S∗)=−R∗σrμ+R∗σrμS(RR∗+R∗R−2). |
In conclusion, we have
dV∗dt=(λwξδwI∗S∗−b)(II∗+I∗I−2)−λwξ2δ2wI∗S∗(SW+δ2wξ2IWI∗S+δwξI∗I−3δwξ)−μμ+R∗σrσs(SS+S∗S∗−2SS∗)−R∗σrμ+R∗σrσsS∗S(R∗RSS∗+RR∗S∗S−2)−R∗σrμ+R∗σrμS(RR∗+R∗R−2). |
From the first equation in (1), it follows that
b=λsI∗S∗+λwI∗W∗+δiI∗=λsI∗S∗+λwξδwI∗S∗+δiI∗. |
This implies that
λwξδwI∗S∗−b=−λsI∗S∗−δiI∗<0. |
By the relationship between arithmetic and geometric means, if
(I(t),S(t),W(t),R(t))≠(I∗,S∗,W∗,R∗)andS(t)>0, |
then
dV∗dt<0. |
If we assume that
{(I,S,R,W):S>0orW>0}∩{(I,S,W,R):I,S,W,R≥0}. |
In this section, we carry out some numerical simulations to verify the theoretical results. We use the fourth-order Runge-Kutta method with time step size
As shown before, the basic reproduction number is
R0=ρ(FV−1)=bδi(λsμ+δs+λwξ(μ+δs)δw). |
We assume that the influx
Now, we investigate the influence of an online reservoir. We change
Even though the contact rates
We next compare the SIR and SIWR models. Without online an reservoir, the basic reproduction number of the SIR model is given by
RSIR0=bλs(μ+δs)δi. |
If we fix the parameters such as
In this paper, we consider a rumor spreading model with an online reservoir. By using a next-generation matrix, we calculated the basic reproduction number
S.-H. Choi and H. Seo are partially supported by National Research Foundation (NRF) of Korea (no. 2017R1E1A1A03070692). H. Seo is partially supported by NRF of Korea (no. 2020R1I1A1A01069585).
[1] |
G. W. Eveborn, H. Schirmer, G. Heggelund, P. Lunde, K. Rasmussen, The evolving epidemiology of valvular aortic stenosis, the tromsø study, Heart, 99 (2013), 396–400. http://dx.doi.org/10.1136/heartjnl-2012-302265 doi: 10.1136/heartjnl-2012-302265
![]() |
[2] |
W. Pan, D. Zhou, L. Cheng, X. Shu, J. Ge, Candidates for transcatheter aortic valve implantation may be fewer in China, Int. J. Cardiol., 168 (2013), e133–e134. https://doi.org/10.1016/j.ijcard.2013.08.028 doi: 10.1016/j.ijcard.2013.08.028
![]() |
[3] | W. D. Edwards, The changing spectrum of valvular heart disease pathology, in Harrison's Advances in Cardiology, (2002), 317–323. |
[4] |
B. F. Stewart, D. Siscovick, B. K. Lind, J. M. Gardin, J. S. Gottdiener, V. E. Smith, et al., Clinical factors associated with calcific aortic valve disease, J. Am. Coll. Cardiol., 29 (1997), 630–634. https://doi.org/10.1016/S0735-1097(96)00563-3 doi: 10.1016/S0735-1097(96)00563-3
![]() |
[5] |
A. G. Kidane, G. Burriesci, P. Cornejo, A. Dooley, S. Sarkar, P. Bonhoeffer, et al., Current developments and future prospects for heart valve replacement therapy, J. Biomed. Mater. Res. Part B, 88B (2009), 290–303. https://doi.org/10.1002/jbm.b.31151 doi: 10.1002/jbm.b.31151
![]() |
[6] |
S. J. Head, M. Çelik, A. P. Kappetein, Mechanical versus bioprosthetic aortic valve replacement, Eur. Heart J., 38 (2017), 2183–2191. https://doi.org/10.1093/eurheartj/ehx141 doi: 10.1093/eurheartj/ehx141
![]() |
[7] |
F. J. Schoen, R. J. Levy, Calcification of tissue heart valve substitutes: progress toward understanding and prevention, Ann. Thorac. Surg., 79 (2005), 1072–1080. https://doi.org/10.1016/j.athoracsur.2004.06.033 doi: 10.1016/j.athoracsur.2004.06.033
![]() |
[8] |
M. Ruel, A. Kulik, B. K. Lam, F. D. Rubens, P. J. Hendry, R. G. Masters, et al., Long-term outcomes of valve replacement with modern prostheses in young adults, Eur. J. Cardio-Thorac. Surg., 27 (2005), 425–433. https://doi.org/10.1016/j.ejcts.2004.12.002 doi: 10.1016/j.ejcts.2004.12.002
![]() |
[9] |
J. G. Mönckeberg, Der normale histologische bau und die sklerose der aortenklappen, Virchows Arch. path Anat., 176 (1904), 472–514. https://doi.org/10.1007/BF02041318 doi: 10.1007/BF02041318
![]() |
[10] |
G. Novo, G. Fazio, C. Visconti, P. Carità, E. Maira, K. Fattouch, et al., Atherosclerosis, degenerative aortic stenosis and statins, Curr. Drug Targets, 12 (2011), 115–121. https://doi.org/10.2174/138945011793591545 doi: 10.2174/138945011793591545
![]() |
[11] |
O. Mutlu, H. E. Salman, H. C. Yalcin, A. B. Olcay, Fluid flow characteristics of healthy and calcified aortic valves using three-dimensional lagrangian coherent structures analysis, Fluids, 6 (2021), 203. https://doi.org/10.3390/fluids6060203 doi: 10.3390/fluids6060203
![]() |
[12] |
A. R. Kivi, N. Sedaghatizadeh, B. S. Cazzolato, A. C. Zander, R. R. Thomson, A. J. Nelson, et al., Fluid structure interaction modelling of aortic valve stenosis: effects of valve calcification on coronary artery flow and aortic root hemodynamics, Comput. Methods Programs Biomed., 196 (2020), 105647. https://doi.org/10.1016/j.cmpb.2020.105647 doi: 10.1016/j.cmpb.2020.105647
![]() |
[13] |
G. Luraghi, F. Migliavacca, C. Chiastra, A. Rossi, B. Reimers, G. G. Stefanini, et al., Does clinical data quality affect fluid-structure interaction simulations of patient-specific stenotic aortic valve models? J. Biomech., 94 (2019), 202–210. https://doi.org/10.1016/j.jbiomech.2019.07.047 doi: 10.1016/j.jbiomech.2019.07.047
![]() |
[14] |
R. Halevi, A. Hamdan, G. Marom, M. Mega, E. Raanani, R. Haj-Ali, Progressive aortic valve calcification: three-dimensional visualization and biomechanical analysis, J. Biomech., 48 (2015), 489–497. https://doi.org/10.1016/j.jbiomech.2014.12.004 doi: 10.1016/j.jbiomech.2014.12.004
![]() |
[15] |
R. Halevi, A. Hamdan, G. Marom, K. Lavon, S. Ben-Zekry, E. Raanani, et al., Fluid–structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans, Med. Biol. Eng. Comput., 54 (2016), 1683–1694. https://doi.org/10.1007/s11517-016-1458-0 doi: 10.1007/s11517-016-1458-0
![]() |
[16] |
H. Maleki, S. Shahriari, L. G. Durand, M. R. Labrosse, L. Kadem, A metric for the stiffness of calcified aortic valves using a combined computational and experimental approach, Med. Biol. Eng. Comput., 52 (2014), 1–8. https://doi.org/10.1007/s11517-013-1113-y doi: 10.1007/s11517-013-1113-y
![]() |
[17] |
A. Arzani, M. R. K. Mofrad, A strain-based finite element model for calcification progression in aortic valves, J. Biomech., 65 (2017), 216–220. https://doi.org/10.1016/j.jbiomech.2017.10.014 doi: 10.1016/j.jbiomech.2017.10.014
![]() |
[18] |
V. Meschini, F. Viola, R. Verzicco, Modeling mitral valve stenosis: a parametric study on the stenosis severity level, J. Biomech., 84 (2019), 218–226. https://doi.org/10.1016/j.jbiomech.2019.01.002 doi: 10.1016/j.jbiomech.2019.01.002
![]() |
[19] | F. Viola, V. Meschini, R. Verzicco, Effects of stenotic aortic valve on the left heart hemodynamics: a fluid-structure-electrophysiology approach, preprient, arXiv: 2103.14680. |
[20] |
F. Viscardi, C. Vergara, L. Antiga, S. Merelli, A. Veneziani, G. Puppini, et al., Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve, Artif. Organs, 34 (2010), 1114–1120. https://doi.org/10.1111/j.1525-1594.2009.00989.x doi: 10.1111/j.1525-1594.2009.00989.x
![]() |
[21] |
F. Sturla, M. Ronzoni, M. Vitali, A. Dimasi, R. Vismara, G. Preston-Maher, et al., Impact of different aortic valve calcification patterns on the outcome of transcatheter aortic valve implantation: a finite element study, J. Biomech., 49 (2016), 2520–2530. https://doi.org/10.1016/j.jbiomech.2016.03.036 doi: 10.1016/j.jbiomech.2016.03.036
![]() |
[22] |
J. Donea, S. Giuliani, J. P. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 33 (1982), 689–723. https://doi.org/10.1016/0045-7825(82)90128-1 doi: 10.1016/0045-7825(82)90128-1
![]() |
[23] |
G. G. Chew, I. C. Howard, E. A. Patterson, Simulation of damage in a porcine prosthetic heart valve, J. Med. Eng. Technol., 23 (1999), 178–189. https://doi.org/10.1080/030919099294131 doi: 10.1080/030919099294131
![]() |
[24] |
J. De Hart, G. W. M. Peters, P. J. G. Schreurs, F. P. T. Baaijens, A three-dimensional computational analysis of fluid–structure interaction in the aortic valve, J. Biomech., 36 (2003), 103–112. https://doi.org/10.1016/S0021-9290(02)00244-0 doi: 10.1016/S0021-9290(02)00244-0
![]() |
[25] |
C. S. Peskin, The immersed boundary method, Acta Numer., 11 (2002), 479–517. https://doi.org/10.1017/S0962492902000077 doi: 10.1017/S0962492902000077
![]() |
[26] |
B. E. Griffith, Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, Int. J. Numer. Methods Biomed. Eng., 28 (2012), 317–345. https://doi.org/10.1002/cnm.1445 doi: 10.1002/cnm.1445
![]() |
[27] |
X. Ma, H. Gao, B. E. Griffith, C. Berry, X. Luo, Image-based fluid–structure interaction model of the human mitral valve, Comput. Fluids, 71 (2013), 417–425. https://doi.org/10.1016/j.compfluid.2012.10.025 doi: 10.1016/j.compfluid.2012.10.025
![]() |
[28] |
H. Gao, X. Ma, N. Qi, C. Berry, B. E. Griffith, X. Luo, A finite strain nonlinear human mitral valve model with fluid-structure interaction, Int. J. Numer. Methods Biomed. Eng., 30 (2014), 1597–1613. https://doi.org/10.1002/cnm.2691 doi: 10.1002/cnm.2691
![]() |
[29] |
H. Gao, N. Qi, L. Feng, X. Ma, M. Danton, C. Berry, et al., Modelling mitral valvular dynamics–current trend and future directions, Int. J. Numer. Methods Biomed. Eng., 33 (2017), e2858. https://doi.org/10.1002/cnm.2858 doi: 10.1002/cnm.2858
![]() |
[30] |
B. E. Griffith, X. Luo, Hybrid finite difference/finite element immersed boundary method, Int. J. Numer. Methods Biomed. Eng., 33 (2017), e2888. https://doi.org/10.1002/cnm.2888 doi: 10.1002/cnm.2888
![]() |
[31] |
H. Gao, L. Feng, N. Qi, C. Berry, B. E. Griffith, X. Luo, A coupled mitral valve—left ventricle model with fluid–structure interaction, Med. Eng. Phys., 47 (2017), 128–136. https://doi.org/10.1016/j.medengphy.2017.06.042 doi: 10.1016/j.medengphy.2017.06.042
![]() |
[32] |
A. Hasan, E. M. Kolahdouz, A. Enquobahrie, T. G. Caranasos, J. P. Vavalle, B. E. Griffith, Image-based immersed boundary model of the aortic root, Med. Eng. Phys., 47 (2017), 72–84. https://doi.org/10.1016/j.medengphy.2017.05.007 doi: 10.1016/j.medengphy.2017.05.007
![]() |
[33] |
L. Cai, Y. Wang, H. Gao, X. Ma, G. Zhu, R. Zhang, et al., Some effects of different constitutive laws on fsi simulation for the mitral valve, Sci. Rep., 9 (2019), 12753. https://doi.org/10.1038/s41598-019-49161-6 doi: 10.1038/s41598-019-49161-6
![]() |
[34] |
L. Cai, R. Zhang, Y. Li, G. Zhu, X. Ma, Y. Wang, et al., The comparison of different constitutive laws and fiber architectures for the aortic valve on fluid–structure interaction simulation, Front. Physiol., 12 (2021), 725. https://doi.org/10.3389/fphys.2021.682893 doi: 10.3389/fphys.2021.682893
![]() |
[35] |
L. Feng, H. Gao, B. Griffith, S. Niederer, X. Luo, Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve, Int. J. Numer. Methods Biomed. Eng., 35 (2019), e3254. https://doi.org/10.1002/cnm.3254 doi: 10.1002/cnm.3254
![]() |
[36] |
L. Feng, H. Gao, N. Qi, M. Danton, N. A. Hill, X. Luo, Fluid–structure interaction in a fully coupled three-dimensional mitral–atrium–pulmonary model, Biomech. Model. Mechanobiol., 20 (2021), 1267–1295. https://doi.org/10.1007/s10237-021-01444-6 doi: 10.1007/s10237-021-01444-6
![]() |
[37] |
J. H. Lee, L. N. Scotten, R. Hunt, T. G. Caranasos, J. P. Vavalle, B. E. Griffith, Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: results from a combined experimental and computational modeling study, JTCVS Open, 6 (2021), 60–81. https://doi.org/10.1016/j.xjon.2020.09.002 doi: 10.1016/j.xjon.2020.09.002
![]() |
[38] |
M. J. Thubrikar, J. Aouad, S. P. Nolan, Patterns of calcific deposits in operatively excised stenotic or purely regurgitant aortic valves and their relation to mechanical stress, Am. J. Cardiol., 58 (1986), 304–308. https://doi.org/10.1016/0002-9149(86)90067-6 doi: 10.1016/0002-9149(86)90067-6
![]() |
[39] | G. Zhu, M. Nakao, Q. Yuan, J. H. Yeo, In-vitro assessment of expanded-polytetrafluoroethylene stentless tri-leaflet valve prosthesis for aortic valve replacement, in Biodevices, (2017), 186–189. |
[40] |
C. M. Otto, Calcific aortic stenosis—time to look more closely at the valve, N. Engl. J. Med., 359 (2008), 1395–1398. https://doi.org/10.1056/NEJMe0807001 doi: 10.1056/NEJMe0807001
![]() |
[41] | C. Russ, R. Hopf, S. Hirsch, S. Sündermann, V. Falk, G. Székely, et al., Simulation of transcatheter aortic valve implantation under consideration of leaflet calcification, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2013), 711–714. https://doi.org/10.1109/EMBC.2013.6609599 |
[42] |
Q. Wang, S. Kodali, C. Primiano, W. Sun, Simulations of transcatheter aortic valve implantation: implications for aortic root rupture, Biomech. Model. Mechanobiol., 14 (2015), 29–38. https://doi.org/10.1007/s10237-014-0583-7 doi: 10.1007/s10237-014-0583-7
![]() |
[43] |
E. P. Van Der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, A pencil distributed finite difference code for strongly turbulent wall-bounded flows, Comput. Fluids, 116 (2015), 10–16. https://doi.org/10.1016/j.compfluid.2015.04.007 doi: 10.1016/j.compfluid.2015.04.007
![]() |
[44] | A. Farina, L. Fusi, A. Mikeli, G. Saccomandi, E. F. Toro, Non-Newtonian Fluid Mechanics and Complex Flows, 2018. |
[45] |
P. D. Morris, A. Narracott, H. von Tengg-Kobligk, D. A. S. Soto, S. Hsiao, A. Lungu, et al., Computational fluid dynamics modelling in cardiovascular medicine, Heart, 102 (2016), 18–28. http://dx.doi.org/10.1136/heartjnl-2015-308044 doi: 10.1136/heartjnl-2015-308044
![]() |
[46] |
H. Gao, D. Carrick, C. Berry, B. E. Griffith, X. Luo, Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method, IMA J. Appl. Math., 79 (2014), 978–1010. https://doi.org/10.1093/imamat/hxu029 doi: 10.1093/imamat/hxu029
![]() |
[47] |
S. Land, V. Gurev, S. Arens, C. M. Augustin, L. Baron, R. Blake, et al., Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour, Proc. R. Soc. A, 471 (2015), 20150641. https://doi.org/10.1098/rspa.2015.0641 doi: 10.1098/rspa.2015.0641
![]() |
[48] |
S. Katayama, N. Umetani, T. Hisada, S. Sugiura, Bicuspid aortic valves undergo excessive strain during opening: a simulation study, J. Thorac. Cardiovasc. Surg., 145 (2013), 1570–1576. https://doi.org/10.1016/j.jtcvs.2012.05.032 doi: 10.1016/j.jtcvs.2012.05.032
![]() |
[49] |
N. Stergiopulos, B. E. Westerhof, N. Westerhof, Total arterial inertance as the fourth element of the windkessel model, Am. J. Physiol.-Heart Circ. Physiol., 276 (1999), H81–H88. https://doi.org/10.1152/ajpheart.1999.276.1.H81 doi: 10.1152/ajpheart.1999.276.1.H81
![]() |
[50] |
G. Zhu, M. B. Ismail, M. Nakao, Q. Yuan, J. H. Yeo, Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement, PLoS One, 14 (2019), e0210780. https://doi.org/10.1371/journal.pone.0210780 doi: 10.1371/journal.pone.0210780
![]() |
[51] |
A. P. Yoganathan, Z. He, S. C. Jones, Fluid mechanics of heart valves, Annu. Rev. Biomed. Eng., 6 (2004), 331–362. https://doi.org/10.1146/annurev.bioeng.6.040803.140111 doi: 10.1146/annurev.bioeng.6.040803.140111
![]() |
[52] |
P. N. Jermihov, L. Jia, M. S. Sacks, R. C. Gorman, J. H. Gorman, K. B. Chandran, Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves, Cardiovasc. Eng. Technol., 2 (2011), 48–56. https://doi.org/10.1007/s13239-011-0035-9 doi: 10.1007/s13239-011-0035-9
![]() |
[53] |
A. M. Mohammed, M. Ariane, A. Alexiadis, Using discrete multiphysics modelling to assess the effect of calcification on hemodynamic and mechanical deformation of aortic valve, ChemEngineering, 4 (2020), 48. https://doi.org/10.3390/chemengineering4030048 doi: 10.3390/chemengineering4030048
![]() |
[54] | M. J. Thubrikar, The Aortic Valve, 1990. |
[55] |
R. O. Bonow, B. A. Carabello, K. Chatterjee, A. C. De Leon, D. P. Faxon, M. D. Freed, et al., ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the american college of cardiology/american heart association task force on practice guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): developed in collaboration with the society of cardiovascular anesthesiologists endorsed by the society for cardiovascular angiography and interventions and the society of thoracic surgeons, Circulation, 114 (2006), e84–e231. https://doi.org/10.1161/CIRCULATIONAHA.106.176857 doi: 10.1161/CIRCULATIONAHA.106.176857
![]() |
[56] |
R. A. Nishimura, C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, R. A. Guyton, et al., 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary, a report of the american college of cardiology/american heart association task force on practice guidelines, Circulation, 129 (2014), 2440–2492. https://doi.org/10.1161/CIR.0000000000000029 doi: 10.1161/CIR.0000000000000029
![]() |
[57] |
R. A Nishimura, C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, L. A. Fleisher, et al., 2017 AHA/ACC focused update of the 2014 aha/acc guideline for the management of patients with valvular heart disease: a report of the american college of cardiology/american heart association task force on clinical practice guidelines, J. Am. Coll. Cardiol., 70 (2017), 252–289. https://doi.org/10.1016/j.jacc.2017.03.011 doi: 10.1016/j.jacc.2017.03.011
![]() |
[58] |
H. Baumgartner, J. Hung, J. Bermejo, J. B. Chambers, A. Evangelista, B. P. Griffin, et al., Echocardiographic assessment of valve stenosis: Eae/ase recommendations for clinical practice, Eur. J. Echocardiography, 10 (2009), 1–25. https://doi.org/10.1093/ejechocard/jen303 doi: 10.1093/ejechocard/jen303
![]() |
[59] |
W. W. Chen, H. Gao, X. Y. Luo, N. A. Hill, Study of cardiovascular function using a coupled left ventricle and systemic circulation model, J. Biomech., 49 (2016), 2445–2454. https://doi.org/10.1016/j.jbiomech.2016.03.009 doi: 10.1016/j.jbiomech.2016.03.009
![]() |
[60] |
D. Garcia, P. Pibarot, L. Kadem, L. G. Durand, Respective impacts of aortic stenosis and systemic hypertension on left ventricular hypertrophy, J. Biomech., 40 (2007), 972–980. https://doi.org/10.1016/j.jbiomech.2006.03.020 doi: 10.1016/j.jbiomech.2006.03.020
![]() |
[61] |
E. J. Weinberg, F. J. Schoen, M. R. K. Mofrad, A computational model of aging and calcification in the aortic heart valve, PLoS One, 4 (2009), e5960. https://doi.org/10.1371/journal.pone.0005960 doi: 10.1371/journal.pone.0005960
![]() |
[62] |
Y. Geng, H. Liu, X. Wang, J. Zhang, Y. Gong, D. Zheng, et al., Effect of microcirculatory dysfunction on coronary hemodynamics: a pilot study based on computational fluid dynamics simulation, Comput. Biol. Med., 146 (2022), 105583. https://doi.org/10.1016/j.compbiomed.2022.105583 doi: 10.1016/j.compbiomed.2022.105583
![]() |
[63] |
H. Liu, L. Lan, J. Abrigo, H. L. Ip, Y. Soo, D. Zheng, et al., Comparison of newtonian and non-newtonian fluid models in blood flow simulation in patients with intracranial arterial stenosis, Front. Physiol., 12 (2021), 718540. https://doi.org/10.3389/fphys.2021.718540 doi: 10.3389/fphys.2021.718540
![]() |
[64] |
F. De Vita, M. D. De Tullio, R. Verzicco, Numerical simulation of the non-newtonian blood flow through a mechanical aortic valve, Theor. Comput. Fluid Dyn., 30 (2016), 129–138. https://doi.org/10.1007/s00162-015-0369-2 doi: 10.1007/s00162-015-0369-2
![]() |
[65] |
I. Pericevic, C. Lally, D. Toner, D. J. Kelly, The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents, Med. Eng. Phys., 31 (2009), 428–433. https://doi.org/10.1016/j.medengphy.2008.11.005 doi: 10.1016/j.medengphy.2008.11.005
![]() |
1. | J. Franceschi, L. Pareschi, M. Zanella, From agent-based models to the macroscopic description of fake-news spread: the role of competence in data-driven applications, 2022, 3, 2662-2963, 10.1007/s42985-022-00194-z | |
2. | Youjun Lu, Sen Wu, Jiayin Wei, Yanjun Liang, Li Deng, 2024, Dynamic Analysis and Optimal Control of SIWCR Rumor Propagation Model with Rumor Countering and Whistleblowing Mechanism, 979-8-3503-5359-4, 911, 10.1109/EEI63073.2024.10696185 | |
3. | Xiaohuan Wang, Xinyao Wang, Wanli Yang, Finite‐time extinction of a fractional rumor model, 2024, 0170-4214, 10.1002/mma.10414 | |
4. | Sen Wu, Youjun Lu, Congli Chen, Shichen Liu, 2024, Dynamic analysis of SICDR rumor propagation model with time delay and psychological factors, 979-8-3503-7510-7, 746, 10.1109/CISAT62382.2024.10695275 |