1.
|
Pål Østebø Andersen,
Capillary Pressure Effects on Estimating the Enhanced-Oil-Recovery Potential During Low-Salinity and Smart Waterflooding,
2020,
25,
1086-055X,
481,
10.2118/191974-PA
|
|
2.
|
Abay Molla Kassa, Sarah Eileen Gasda, Kundan Kumar, Florin Adrian Radu,
Impact of time-dependent wettability alteration on the dynamics of capillary pressure,
2020,
142,
03091708,
103631,
10.1016/j.advwatres.2020.103631
|
|
3.
|
S. Evje, A. Hiorth,
A model for interpretation of brine-dependent spontaneous imbibition experiments,
2011,
34,
03091708,
1627,
10.1016/j.advwatres.2011.09.003
|
|
4.
|
P.Ø. Andersen, S. Evje, M.V. Madland, A. Hiorth,
A geochemical model for interpretation of chalk core flooding experiments,
2012,
84,
00092509,
218,
10.1016/j.ces.2012.08.038
|
|
5.
|
Pål Østebø Andersen, Steinar Evje, Hans Kleppe, Svein Magne Skjæveland,
A Model for Wettability Alteration in Fractured Reservoirs,
2015,
20,
1086-055X,
1261,
10.2118/174555-PA
|
|
6.
|
Mojdeh Delshad, Nariman Fathi Najafabadi, Glen A. Anderson, Gary A. Pope, Kamy Sepehrnoori,
Modeling Wettability Alteration by Surfactants in Naturally Fractured Reservoirs,
2009,
12,
1094-6470,
361,
10.2118/100081-PA
|
|
7.
|
Ingebret Fjelde, Siv Marie Asen,
2010,
Wettability Alteration During Water Flooding and Carbon Dioxide Flooding of Reservoir Chalk Rocks,
10.2118/130992-MS
|
|
8.
|
Adedapo Awolayo, Hemanta Sarma, Long Nghiem, Gorucu Emre,
2017,
A Geochemical Model for Investigation of Wettability Alteration during Brine-Dependent Flooding in Carbonate Reservoirs,
10.2118/188219-MS
|
|
9.
|
Bakhbergen Bekbauov, Abdumauvlen Berdyshev, Zharasbek Baishemirov, Domenico Bau,
Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes,
2017,
7,
2391-5439,
416,
10.1515/eng-2017-0049
|
|
10.
|
María Bonto, Ali A. Eftekhari, Hamidreza M. Nick,
Wettability Indicator Parameter Based on the Thermodynamic Modeling of Chalk-Oil-Brine Systems,
2020,
34,
0887-0624,
8018,
10.1021/acs.energyfuels.0c00716
|
|
11.
|
Abay Molla Kassa, Sarah E. Gasda, Kundan Kumar, Florin A. Radu,
Modeling of relative permeabilities including dynamic wettability transition zones,
2021,
203,
09204105,
108556,
10.1016/j.petrol.2021.108556
|
|
12.
|
P. Ø. Andersen, S. Evje, H. Kleppe,
A Model for Spontaneous Imbibition as a Mechanism for Oil Recovery in Fractured Reservoirs,
2014,
101,
0169-3913,
299,
10.1007/s11242-013-0246-7
|
|
13.
|
Pål Østebø Andersen,
2018,
Capillary Pressure Effects on Estimating the EOR Potential during Low Salinity and Smart Water Flooding,
10.2118/191974-MS
|
|
14.
|
L. Yu, S. Evje, H. Kleppe, T. Kårstad, I. Fjelde, S.M. Skjaeveland,
Spontaneous imbibition of seawater into preferentially oil-wet chalk cores — Experiments and simulations,
2009,
66,
09204105,
171,
10.1016/j.petrol.2009.02.008
|
|
15.
|
Mohsen Farhadzadeh, Maria Bonto, Hamidreza M. Nick,
Pore-Scale Modeling of Heterogeneous Carbonate Rock Subjected to Modified Salinity Waterflooding,
2024,
0887-0624,
10.1021/acs.energyfuels.3c04103
|
|
16.
|
Chetsada Tapanya, Nawamin Fongkham, Romal Ramadhan, Suparit Tangparitkul,
Relative Permeability-Dictated Huff-n-Puff Technique in Tight Reservoirs: Suitability and Limitation toward Field Implementation,
2024,
0887-0624,
10.1021/acs.energyfuels.4c01238
|
|