[1]
|
D. P. M. Abellana, A systemic analysis of green computing adoption using genetically evolved fuzzy cognitive map: A Philippine scenario, Kybernetes, 50 (2020), 2668–2696. https://doi.org/10.1108/K-05-2020-0263 doi: 10.1108/K-05-2020-0263
|
[2]
|
W. M. Zheng, Q. W. Chai, J. hang, X. S. Xue, Ternary compound ontology matching for cognitive green computing, Math. Biosci. Eng., 18 (2021), 4860–4870. https://doi.org/10.3934/mbe.2021247 doi: 10.3934/mbe.2021247
|
[3]
|
X. Liu, Y. Li, X. Zhang, W. Lu, M. Xiong, Energy-efficient resource optimization in green cognitive internet of things, Mobile Networks Appl., 25 (2020), 107750–107770. https://doi.org/10.1007/s11036-020-01510-w doi: 10.1007/s11036-020-01510-w
|
[4]
|
Y. M. Jiang, M. S. Liu, H. Peng, M. Z. A. Bhuiyan, A reliable deep learning-based algorithm design for IoT load identification in smart grid, Ad Hoc Networks, 123 (2021), 102643–102673. https://doi.org/10.1016/j.adhoc.2021.102643 doi: 10.1016/j.adhoc.2021.102643
|
[5]
|
Y. Liu, L. Zhong, J. Qiu, J. Lu, W. Wang, Unsupervised domain adaptation for non-intrusive load monitoring via adversarial and joint adaptation network, IEEE Trans. Ind. Inf., 18 (2021), 266–277. https://doi.org/10.1109/TII.2021.3065934 doi: 10.1109/TII.2021.3065934
|
[6]
|
H. Peng, J. X. Li, S. Z. Wang, L. H. Wang, Q. R. Gong, R. Y. Yang, et al., Hierarchical taxonomy-aware and attentional graph capsule RCNNs for large-scale multi-label text classification, IEEE Trans. Knowl. Data Eng., 33 (2021), 2505–2519 https://doi.org/10.1109/TKDE.2019.2959991 doi: 10.1109/TKDE.2019.2959991
|
[7]
|
A. F. Moreno Jaramillo, D. M. Laverty, D. J. Morrow, J. Martinez del Rincon, A. M. Foley, Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks, Renewable Energy, 179 (2021), 445–466. https://doi.org/10.1016/j.renene.2021.07.056 doi: 10.1016/j.renene.2021.07.056
|
[8]
|
R. V. A. Monteiro, J. C. R. de Santana, R. F. S. Teixeira, A. S. Bretas, R. Aguiar, C. E. P. Poma, Non-intrusive load monitoring using artificial intelligence classifiers: Performance analysis of machine learning techniques, Electr. Power Syst. Res., 198 (2021), 107347. https://doi.org/10.1016/j.epsr.2021.107347 doi: 10.1016/j.epsr.2021.107347
|
[9]
|
H. X. Wang, J. S. Zhang, C. B. Lu, C. Y. Wu, Privacy preserving in non-intrusive load monitoring: A differential privacy perspective, IEEE Trans. Smart Grid, 12 (2020), 2529–2543. https://doi.org/10.1109/TSG.2020.3038757 doi: 10.1109/TSG.2020.3038757
|
[10]
|
D. Hua, F. Q. Huang, L. J. Wang, W. T. Chen, Simultaneous disaggregation of multiple appliances based on non-intrusive load monitoring, Electr. Power Syst. Res., 193 (2021), 106887. https://doi.org/10.1016/j.epsr.2020.106887 doi: 10.1016/j.epsr.2020.106887
|
[11]
|
M. Dincecco, S. Squartini, M. J. Zhong, Transfer learning for non-intrusive load monitoring, IEEE Trans. Smart Grid, 11 (2020), 1419-1429. https://doi.org/10.1109/TSG.2019.2938068 doi: 10.1109/TSG.2019.2938068
|
[12]
|
G. A. Raiker, R. B. Subba, U. Loganathan, S. Agrawal, A. S. Thakur, J. P. Barton, et al., Energy disaggregation using energy demand model and IoT based control, IEEE Trans. Ind. Appl., 57 (2020), 1746–1754. https://doi.org/10.1109/TIA.2020.3047016 doi: 10.1109/TIA.2020.3047016
|
[13]
|
F. Ciancetta, G. Bucci, E. Fiorucci, S. Mari, A. Fioravanti, A new convolutional neural network-based system for NILM applications, IEEE Trans. Instrum. Meas., 70 (2021), 1501112. https://doi.org/10.1109/TIM.2020.3035193 doi: 10.1109/TIM.2020.3035193
|
[14]
|
A. Faustine, L. Pereira, C. Klemenjak, Adaptive weighted recurrence graphs for appliance recognition in non-intrusive load monitoring, IEEE Trans. Smart Grid, 12 (2020), 398–406. https://doi.org/10.1109/TSG.2020.3010621 doi: 10.1109/TSG.2020.3010621
|
[15]
|
Y. Himeur, A. Alsalemi, F. Bensaali, A. Amira, An intelligent nonintrusive load monitoring scheme based on 2D phase encoding of power signals, Int. J. Intell. Syst., 36 (2020), 72–93. https://doi.org/10.1002/int.22292 doi: 10.1002/int.22292
|
[16]
|
Y. Yang, J. Zhong, W. Li, T. A. Gulliver, S. Li, Semisupervised multilabel deep learning based nonintrusive load monitoring in smart grids, IEEE Trans. Ind. Inf., 16 (2020), 6892–6902. https://doi.org/10.1109/TII.2019.2955470 doi: 10.1109/TII.2019.2955470
|
[17]
|
M. Kaselimi, N. Doulamis, A. Voulodimos, E. Protopapadakis, A. Doulamis, Context aware energy disaggregation using adaptive bidirectional LSTM models, IEEE Trans. Smart Grid, 11 (2020), 3054–3067. https://doi.org/10.1109/TSG.2020.2974347 doi: 10.1109/TSG.2020.2974347
|
[18]
|
H. Chen, Y. H. Wang, C. H. Fan, A convolutional autoencoder-based approach with batch normalization for energy disaggregation, J. Supercomput., 11 (2021), 2961–2978. https://doi.org/10.1007/s11227-020-03375-y doi: 10.1007/s11227-020-03375-y
|
[19]
|
P. Hao, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, et al., Large-scale hierarchical text classification with recursively regularized deep graph-CNN, in Web Conference 2018: Proceedings of the 2018 World Wide Web Conference, Macao, Lyon, France, (2018), 1063–1072. https://doi.org/10.1145/3178876.3186005
|
[20]
|
H. Peng, J. Li, Q. Gong, Y. Ning, S. Wang, L. He, Motif-matching based subgraph-level attentional convolutional network for graph classification, in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2021), 5387–5394. https://doi.org/10.1609/aaai.v34i04.5987
|
[21]
|
A. Moradzadeh, O. Sadeghian, K. Pourhossein, B. Mohammadiivatloo, A. Anvarimoghaddam, Improving residential load disaggregation for sustainable development of energy via principal component analysis, Sustainability, 12 (2020), 1–14. https://doi.org/10.3390/su12083158 doi: 10.3390/su12083158
|
[22]
|
P. Hao, J. Li, Y. Song, Y. Liu, Incrementally learning the hierarchical softmax function for neural language models, in Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, 31 (2017), 3267–3273. https://doi.org/10.1609/aaai.v31i1.10994
|
[23]
|
A. U. Rehman, T. T. Lie, B. Vallès, S. R. Tito, Event-detection algorithms for low sampling nonintrusive load monitoring systems based on low complexity statistical features, IEEE Trans. Instrum. Meas., 69 (2019), 751–759. https://doi.org/10.1109/TIM.2019.2904351 doi: 10.1109/TIM.2019.2904351
|
[24]
|
M. S. Tsai, Y. H. Lin, Modern development of an adaptive non-intrusive appliance load monitoring system in electricity energy conservation, Appl. Energy, 96 (2012), 55–73. https://doi.org/10.1016/j.apenergy.2011.11.027 doi: 10.1016/j.apenergy.2011.11.027
|
[25]
|
Z. J. Zhou, Y. M. Xiang, H. Xu, Y. S. Wang, D. Shi, Z. W. Wang, Self-organizing probability neural network-based intelligent non-intrusive load monitoring with applications to low-cost residential measuring devices, Trans. Inst. Meas. Control, 96 (2020), 635–645. https://doi.org/10.1177/0142331220950865 doi: 10.1177/0142331220950865
|
[26]
|
C. Chen, P. Gao, J. Jiang, H. Wang, P. Li, S. Wan, A deep learning based non-intrusive household load identification for smart grid in China, Comput. Commun., 177 (2021), 175–184. https://doi.org/10.1016/j.comcom.2021.06.023 doi: 10.1016/j.comcom.2021.06.023
|
[27]
|
D. L. Su, Q. Shi, H. Xu, W. Wang, Nonintrusive load monitoring based on complementary features of spurious emissions, Electronics, 8 (2019), 1002. https://doi.org/10.3390/electronics8091002 doi: 10.3390/electronics8091002
|
[28]
|
F. Ciancetta, G. Bucci, E. Fiorucci, S. Mari, A. Fioravanti, A new convolutional neural network-based system for NILM applications, IEEE Trans. Instrum. Meas., 70 (2020), 1501112. https://doi.org/10.1109/TIM.2020.3035193 doi: 10.1109/TIM.2020.3035193
|
[29]
|
D. Ding, J. Li, K. Zhang, H. Wang, K. Wang, T. Cao, Non-intrusive load monitoring method with inception structured CNN, Appl. Intell., 30 (2021), 1–18. https://doi.org/10.1007/s10489-021-02690-y doi: 10.1007/s10489-021-02690-y
|
[30]
|
H. Peng, J. Li, Y. Song, R. Yang, R. Ranjan, P. S. Yu, et al., Streaming social event detection and evolution discovery in heterogeneous information networks, ACM Trans. Knowl. Discovery Data, 15 (2021), 1–33. https://doi.org/10.1145/3447585 doi: 10.1145/3447585
|
[31]
|
Z. Jia, L. Yang, Z. Zhang, H. Liu, F. Kong, Sequence to point learning based on bidirectional dilated residual network for non-intrusive load monitoring, Int. J. Electr. Power Energy Syst., 129 (2021), 106837. https://doi.org/10.1016/j.ijepes.2021.106837 doi: 10.1016/j.ijepes.2021.106837
|
[32]
|
H. Peng, R. Zhang, Y. Dou, R. Yang, J. Zhang, P. S. Yu, Reinforced neighborhood selection guided multi-relational graph neural networks, ACM Trans. Inf. Syst., 40 (2021), 1–46. https://doi.org/10.1145/3490181 doi: 10.1145/3490181
|
[33]
|
C. Dinesh, S. Makonin, I. V. Bajić, Residential power forecasting using load identification and graph spectral clustering, IEEE Trans. Circuits Syst. II Express Briefs, 66 (2019), 1900–1904. https://doi.org/10.1109/TCSII.2019.2891704 doi: 10.1109/TCSII.2019.2891704
|
[34]
|
H. Peng, J. Li, Z. Wang, R. Yang, M. Liu, M. Zhang, et al., Lifelong property price prediction: A case study for the toronto real estate market, IEEE Trans. Knowl. Data Eng., 40 (2021). https://doi.org/10.1109/TKDE.2021.3112749
|
[35]
|
Z. Wu, C. Wang, H. Zhang, W. Peng, W. Liu, A time-efficient factorial hidden Semi-Markov model for non-intrusive load monitoring, Electr. Power Syst. Res., 199 (2021), 107372. https://doi.org/10.1016/j.epsr.2021.107372 doi: 10.1016/j.epsr.2021.107372
|
[36]
|
N. Henao, K. Agbossou, S. Kelouwani, Y. Dubé, M. Fournier, Approach in nonintrusive type I load monitoring using subtractive clustering, IEEE Trans. Smart Grid, 8 (2017), 812–821. https://doi.org/10.1109/TSG.2015.2462719 doi: 10.1109/TSG.2015.2462719
|
[37]
|
D. Yang, X. Gao, L. Kong, Y. Pang, B. Zhou, An event-driven convolutional neural architecture for non-intrusive load monitoring of residential appliance, IEEE Trans. Consum. Electron., 66 (2020), 173–182. https://doi.org/10.1109/TCE.2020.2977964 doi: 10.1109/TCE.2020.2977964
|
[38]
|
T. T. H. Le, S. Heo, H. Kim, Toward load identification based on the hilbert transform and sequence to sequence long short-term memory, IEEE Trans. Smart Grid, 12 (2021), 3252–3264. https://doi.org/10.1109/TSG.2021.3066570 doi: 10.1109/TSG.2021.3066570
|
[39]
|
H. Rafiq, X. Shi, H. Zhang, H. Li, M. K. Ochani, A. A. Shah, Generalizability improvement of deep learning based non-intrusive load monitoring system using data augmentation, IEEE Trans. Smart Grid, 99 (2021), 75–114. https://doi.org/10.1109/TSG.2021.3082622 doi: 10.1109/TSG.2021.3082622
|
[40]
|
S. Makonin, F. Popowich, I. V. Bajić, B. Gill, L. Bartram, Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring, IEEE Trans. Smart Grid, 7 (2016), 2575–2585. https://doi.org/10.1109/TSG.2015.2494592 doi: 10.1109/TSG.2015.2494592
|
[41]
|
S. P. Cai, Z. M. Sun, J. Yan, D. H. Tang, Y. Chen, Z. Y. Zhou, Fisher information and online SVR-based dynamic modeling methodology for meteorological sensitive load forecasting in smart grids, IEEE Trans. Smart Grid, 104 (2021), 513–527. https://doi.org/10.1007/s00202-021-01308-3 doi: 10.1007/s00202-021-01308-3
|
[42]
|
V. Álvarez, S. Mazuelas, J. A. Lozano, Probabilistic load forecasting based on adaptive online learning, IEEE Trans. Smart Grid, 36 (2021), 3668–3680. https://doi.org/10.1109/TPWRS.2021.3050837 doi: 10.1109/TPWRS.2021.3050837
|
[43]
|
Y. Du, F. Li, Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning, IEEE Trans. Smart Grid, 11 (2019), 1066–1076. https://doi.org/10.1109/TSG.2019.2930299 doi: 10.1109/TSG.2019.2930299
|
[44]
|
C. Wang, S. Mei, H. Yu, S. Cheng, L. Du, P. Yang, Unintentional islanding transition control strategy for three-/single-phase multimicrogrids based on artificial emotional reinforcement learning, IEEE Syst. J., 15 (2021), 5464–5475. https://doi.org/10.1109/JSYST.2021.3074296 doi: 10.1109/JSYST.2021.3074296
|
[45]
|
H. Peng, H. Wang, B. Du, M. Bhuiyan, H. Ma, J. Liu, et al., Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting, Inf. Sci., 521 (2020), 277–290. https://doi.org/10.1016/j.ins.2020.01.043 doi: 10.1016/j.ins.2020.01.043
|
[46]
|
H. Peng, H. Li, Y. Song, V. W. Zheng, J. Li, Differentially private federated knowledge graphs embedding, IEEE Trans. Knowl. Data Eng., 40 (2021). https://doi.org/10.1145/3459637.3482252
|
[47]
|
Y. Li, R. Wang, Z. Yang, Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting, IEEE Trans. Sustainable Energy, 13 (2022), 159–169. https://doi.org/10.1109/TSTE.2021.3105529 doi: 10.1109/TSTE.2021.3105529
|
[48]
|
D. Cao, W. Hu, X. Xu, Q. Wu, Q. Huang, Z. Chen, et al., Deep reinforcement learning based approach for optimal power flow of distribution networks embedded with renewable energy and storage devices, J. Mod. Power Syst. Clean Energy, 9 (2021), 1101–1110. https://doi.org/10.35833/MPCE.2020.000557 doi: 10.35833/MPCE.2020.000557
|
[49]
|
J. Li, H. Peng, Y. Cao, Y. Dou, H. Zhang, P. S. Yu, et al., Higher-order attribute-enhancing heterogeneous graph neural networks, IEEE Trans. Knowl. Data Eng., 40 (2021). https://doi.org/10.48550/arXiv.2104.07892
|
[50]
|
L. Xi, L. Zhou, L. Liu, D. Duan, Y. Xu, L. Yang, et al., A deep reinforcement learning algorithm for the power order optimization allocation of AGC in interconnected power grids, CSEE J. Power Energy Syst., 6 (2020), 712–723. https://doi.org/10.17775/CSEEJPES.2019.01840 doi: 10.17775/CSEEJPES.2019.01840
|
[51]
|
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, et al., Mastering the game of Go without human knowledge, Nature, 550 (2017), 354–359. https://doi.org/10.1038/nature24270 doi: 10.1038/nature24270
|
[52]
|
R. Yao, X. Lu, H. Zhou, J. Lai, A novel category-specific pricing strategy for demand response in microgrids, IEEE Trans. Sustainable Energy, 12 (2020), 182–195. https://doi.org/10.1109/TSTE.2021.3106329 doi: 10.1109/TSTE.2021.3106329
|
[53]
|
Z. Xiao, C. Fan, J. Yuan, X. Xu, W. Gang, Comparison between artificial neural network and random forest for effective disaggregation of building cooling load, Case Stud. Therm. Eng., 28 (2021), 101589. https://doi.org/10.1016/j.csite.2021.101589 doi: 10.1016/j.csite.2021.101589
|
[54]
|
R. Yao, H. Zhou, D. Zhou, H. Zhang, State characteristic clustering for nonintrusive load monitoring with stochastic bhaviours in smart grids, Complexity, 2021 (2021), 8839595. https://doi.org/10.1155/2021/8839595 doi: 10.1155/2021/8839595
|
[55]
|
H. Peng, J. Li, Q. Gong, Y. Song, P. S. Yu, Fine-grained event categorization with heterogeneous graph convolutional networks, in Twenty-Eighth International Joint Conference on Artificial Intelligence IJCAI-19, (2019), 3238–3245. https://doi.org/10.48550/arXiv.1906.04580
|
[56]
|
Y. J. Zhang, L. Yu, Z. J. Fang, N. N. Xiong, L. J. Zhang, H. Y. Tian, An end-to-end deep learning model for robust smooth filtering identification, Future Gener. Comput. Syst., 127 (2021), 182–195. https://doi.org/10.1016/j.future.2021.09.004 doi: 10.1016/j.future.2021.09.004
|
[57]
|
Q. Liu, K. M. Kamoto, X. Liu, M. Sun, N. Linge, Low-complexity non-intrusive load monitoring using unsupervised learning and generalized appliance models, IEEE Trans. Consum. Electron., 65 (2019), 28–37. https://doi.org/10.1109/TCE.2019.2891160 doi: 10.1109/TCE.2019.2891160
|
[58]
|
H. Shuai, H. He, Online scheduling of a residential microgrid via Monte-Carlo tree search and a learned model, IEEE Trans. Smart Grid, 12 (2020), 1073–1087. https://doi.org/10.1109/TSG.2020.3035127 doi: 10.1109/TSG.2020.3035127
|
[59]
|
T. Shao, H. Zhang, K. Cheng, K. Zhang, L. Bie, The hierarchical task network planning method based on Monte Carlo tree search, Knowl.-Based Syst., 225 (2021), 107067. https://doi.org/10.1016/j.knosys.2021.107067 doi: 10.1016/j.knosys.2021.107067
|
[60]
|
R. Lu, S. H. Hong, M. Yu, Demand response for home energy management using reinforcement learning and artificial neural network, IEEE Trans. Smart Grid, 10 (2019), 6629–6639. https://doi.org/10.1109/TSG.2019.2909266 doi: 10.1109/TSG.2019.2909266
|
[61]
|
V. de Carvalho Neiva Pinheiro, A. L. Francato, W. B. Powell, Reinforcement learning for electricity dispatch in grids with high intermittent generation and energy storage systems: A case study for the Brazilian grid, Int. J. Energy Res., 44 (2020), 8635–8653. https://doi.org/10.1002/er.5551 doi: 10.1002/er.5551
|
[62]
|
H. Shuai, H. He, Online scheduling of a residential microgrid via Monte-Carlo tree search and a learned model, IEEE Trans. Smart Grid, 12 (2020), 1073–1087. https://doi.org/10.1109/TSG.2020.3035127 doi: 10.1109/TSG.2020.3035127
|
[63]
|
X. Liu, A. Fotouhi, Formula-E race strategy development using artificial neural networks and Monte Carlo tree search, Neural Comput. Appl., 32 (2020), 15191–15207. https://doi.org/10.1007/s00521-020-04871-1 doi: 10.1007/s00521-020-04871-1
|
[64]
|
E. J. Powley, P. I. Cowling, D. Whitehouse, Memory bounded Monte Carlo tree search, in Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference, 13 (2017), 94–100. Available from: https://ojs.aaai.org/index.php/AIIDE/article/view/12932.
|
[65]
|
R. Bonfigli, A. Felicetti, E. Principi, M. Fagiani, S. Squartini, F. Piazza, Denoising autoencoders for non-intrusive load monitoring: Improvements and comparative evaluation, Energy Build., 158 (2018), 1461–1474. https://doi.org/10.1016/j.enbuild.2017.11.054 doi: 10.1016/j.enbuild.2017.11.054
|
[66]
|
Y. Himeur, A. Alsalemi, F. Bensaali, A. Amira, Smart non-intrusive appliance identification using a novel local power histogramming descriptor with an improved k-nearest neighbors classifier, Sustainable Cities Soc., 67 (2021), 102764. https://doi.org/10.1016/j.scs.2021.102764 doi: 10.1016/j.scs.2021.102764
|
[67]
|
L. D. Nolasco, A. E. Lazzaretti, B. M. Mulinari, DeepDFML-NILM: A new CNN-based architecture for detection, feature extraction and multi-label classification in NILM signals, IEEE Sens. J., 22 (2022), 501–509. https://doi.org/10.1109/JSEN.2021.3127322 doi: 10.1109/JSEN.2021.3127322
|
[68]
|
Z. Huang, X. Wei, Y. Kai, Bidirectional LSTM-CRF models for sequence tagging, Comput. Sci., 2015 (2015). https://doi.org/10.48550/arXiv.1508.01991
|