Research article

Bifurcations of an SIRS epidemic model with a general saturated incidence rate

  • Received: 20 March 2022 Revised: 27 May 2022 Accepted: 22 June 2022 Published: 28 July 2022
  • This paper is concerned with the bifurcations of a susceptible-infectious-recovered-susceptible (SIRS) epidemic model with a general saturated incidence rate kIp/(1+αIp). For general p>1, it is shown that the model can undergo saddle-node bifurcation, Bogdanov-Takens bifurcation of codimension two, and degenerate Hopf bifurcation of codimension two with the change of parameters. Combining with the results in [1] for 0<p1, this type of SIRS model has Hopf cyclicity 2 for any p>0. These results also improve some previous ones in [2] and [3], which are dealt with the special case of p=2.

    Citation: Fang Zhang, Wenzhe Cui, Yanfei Dai, Yulin Zhao. Bifurcations of an SIRS epidemic model with a general saturated incidence rate[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 10710-10730. doi: 10.3934/mbe.2022501

    Related Papers:

    [1] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [2] C. Connell McCluskey . Global stability of an SIR epidemic model with delay and general nonlinear incidence. Mathematical Biosciences and Engineering, 2010, 7(4): 837-850. doi: 10.3934/mbe.2010.7.837
    [3] Cunjuan Dong, Changcheng Xiang, Wenjin Qin, Yi Yang . Global dynamics for a Filippov system with media effects. Mathematical Biosciences and Engineering, 2022, 19(3): 2835-2852. doi: 10.3934/mbe.2022130
    [4] Hui Cao, Yicang Zhou, Zhien Ma . Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399
    [5] Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259
    [6] Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
    [7] Fang Wang, Juping Zhang, Maoxing Liu . Dynamical analysis of a network-based SIR model with saturated incidence rate and nonlinear recovery rate: an edge-compartmental approach. Mathematical Biosciences and Engineering, 2024, 21(4): 5430-5445. doi: 10.3934/mbe.2024239
    [8] Thomas Torku, Abdul Khaliq, Fathalla Rihan . SEINN: A deep learning algorithm for the stochastic epidemic model. Mathematical Biosciences and Engineering, 2023, 20(9): 16330-16361. doi: 10.3934/mbe.2023729
    [9] Ke Guo, Wanbiao Ma . Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Mathematical Biosciences and Engineering, 2021, 18(1): 643-672. doi: 10.3934/mbe.2021035
    [10] Cheng-Cheng Zhu, Jiang Zhu . Spread trend of COVID-19 epidemic outbreak in China: using exponential attractor method in a spatial heterogeneous SEIQR model. Mathematical Biosciences and Engineering, 2020, 17(4): 3062-3087. doi: 10.3934/mbe.2020174
  • This paper is concerned with the bifurcations of a susceptible-infectious-recovered-susceptible (SIRS) epidemic model with a general saturated incidence rate kIp/(1+αIp). For general p>1, it is shown that the model can undergo saddle-node bifurcation, Bogdanov-Takens bifurcation of codimension two, and degenerate Hopf bifurcation of codimension two with the change of parameters. Combining with the results in [1] for 0<p1, this type of SIRS model has Hopf cyclicity 2 for any p>0. These results also improve some previous ones in [2] and [3], which are dealt with the special case of p=2.





    [1] Z. Hu, P. Bi, W. Ma, S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate, Discrete Contin. Dyn. Syst. B, 15 (2011), 93–112. https://doi.org/10.3934/dcdsb.2011.15.93 doi: 10.3934/dcdsb.2011.15.93
    [2] S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equations, 188 (2003), 135–163. https://doi.org/10.1016/S0022-0396(02)00089-X doi: 10.1016/S0022-0396(02)00089-X
    [3] Y. Tang, D. Huang, S. Ruan, W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621–639. https://doi.org/10.1137/070700966 doi: 10.1137/070700966
    [4] H. W. Hethcote, The mathematics of infectious disease, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [5] W. M. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187–204. https://doi.org/10.1007/BF00276956 doi: 10.1007/BF00276956
    [6] V. Capasso, G. Serio, A generalization of the Kermack-McKendrick determinist epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
    [7] H. W. Hethcote, P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271–287. https://doi.org/10.1007/BF00160539 doi: 10.1007/BF00160539
    [8] W. Wang, Epidemic models with nonlinear infection forces, Math. Biosci. Eng., 3 (2006), 267–279. https://doi.org/10.3934/mbe.2006.3.267 doi: 10.3934/mbe.2006.3.267
    [9] D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419–429. https://doi.org/10.1016/j.mbs.2006.09.025 doi: 10.1016/j.mbs.2006.09.025
    [10] G. Li, W. Wang, Bifurcation analysis of an epidemic model with nonlinear incidence, Appl. Math. Comput., 214 (2009), 411–423. https://doi.org/10.1016/j.amc.2009.04.012 doi: 10.1016/j.amc.2009.04.012
    [11] R. R. Regoes, D. Ebert, S. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology, Proc. Roy. Soc. London Ser. B, 269 (2002), 271–279. https://doi.org/10.1098/rspb.2001.1816 doi: 10.1098/rspb.2001.1816
    [12] M. G. M. Gomes, A. Margheri, G. F. Medley, C. Rebelo, Dynamical behaviour of epidemiological models with sub-optimal immunity and nonlinear incidence, J. Math. Biol., 51 (2005), 414–430. https://doi.org/10.1007/s00285-005-0331-9 doi: 10.1007/s00285-005-0331-9
    [13] M. Lu, J. Huang, S. Ruan, P. Yu, Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate, J. Differ. Equations, 267 (2019), 1859–1898. https://doi.org/10.1016/j.jde.2019.03.005 doi: 10.1016/j.jde.2019.03.005
    [14] Z. Zhang, T. Ding, W. Huang, Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs vol. 101, American Mathematical Society, Providence, RI, 1992.
    [15] J. Huang, Y. Gong, S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. B, 18 (2013), 2101–2121. https://doi.org/10.3934/dcdsb.2013.18.2101 doi: 10.3934/dcdsb.2013.18.2101
    [16] R. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Sel. Math. Sov., 1 (1981), 373–388.
    [17] R. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigen-values, Sel. Math. Sov., 1 (1981), 389–421.
    [18] F. Takens, Forced oscillations and bifurcation, in Applications of Global Analysis I, Communications of the Mathematical Institute Rijksuniversitat Utrecht, 3 (1974), 1–59.
    [19] L. Perko, Differential Equations and Dynamical System, 3rd edition, Springer, New York, 2001.
    [20] Y. Dai, Y. Zhao, B. Sang, Four limit cycles in a predator-prey system of Leslie type with generalized Holling type III functional response, Nonlinear Anal. Real World Appl., 50 (2019), 218–239. https://doi.org/10.1016/j.nonrwa.2019.04.003 doi: 10.1016/j.nonrwa.2019.04.003
    [21] Y. Dai, Y. Zhao, Hopf cyclicity and global dynamics for a predator-prey system of Leslie type with simplified Holling type IV functional response, Int. J. Bifurcat. Chaos, 28 (2018), 1850166. https://doi.org/10.1142/S0218127418501663 doi: 10.1142/S0218127418501663
  • This article has been cited by:

    1. Hai-Feng Huo, Fang-Fang Cui, Hong Xiang, Dynamics of an SAITS alcoholism model on unweighted and weighted networks, 2018, 496, 03784371, 249, 10.1016/j.physa.2018.01.003
    2. Shouying Huang, Fengde Chen, Yanhong Zhang, Global analysis of epidemic spreading with a general feedback mechanism on complex networks, 2019, 2019, 1687-1847, 10.1186/s13662-019-2095-3
    3. Xinxin Cheng, Yi Wang, Gang Huang, Dynamics of a competing two-strain SIS epidemic model with general infection force on complex networks, 2021, 59, 14681218, 103247, 10.1016/j.nonrwa.2020.103247
    4. Hong Xiang, Fang-Fang Cui, Hai-Feng Huo, Analysis of the SAITS alcoholism model on scale-free networks with demographic and nonlinear infectivity, 2019, 13, 1751-3758, 621, 10.1080/17513758.2019.1683629
    5. Yucui Wu, Zhipeng Zhang, Limei Song, Chengyi Xia, Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network, 2024, 179, 09600779, 114414, 10.1016/j.chaos.2023.114414
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2410) PDF downloads(207) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog