Processing math: 70%
Research article Special Issues

k-domination and total k-domination numbers in catacondensed hexagonal systems


  • Received: 17 March 2022 Revised: 26 April 2022 Accepted: 29 April 2022 Published: 13 May 2022
  • In this paper we study the k-domination and total k-domination numbers of catacondensed hexagonal systems. More precisely, we give the value of the total domination number, we find upper and lower bounds for the 2-domination number and the total 2-domination number, characterizing the catacondensed hexagonal systems which attain these bounds, and we give the value of the 3-domination number for any catacondensed hexagonal system with a given number of hexagons. These results complete the study of k-domination and total k-domination of catacondensed hexagonal systems for all possible values of k.

    Citation: Sergio Bermudo, Robinson A. Higuita, Juan Rada. k-domination and total k-domination numbers in catacondensed hexagonal systems[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 7138-7155. doi: 10.3934/mbe.2022337

    Related Papers:

    [1] Van Thi Hong Ho, Hanh Thi Thuy Doan, Ha Thanh Vo, Thanh Thi Nguyen, Chi Thi Nguyen, Chinh Ngoc Dao, Dzung Trung Le, Trang Gia Hoang, Nga Thi Hang Nguyen, Ngoc Hoan Le, Gai Thi Tran, Duc Trong Nguyen . Effects of teaching approaches on science subject choice toward STEM career orientation of Vietnamese students. STEM Education, 2025, 5(3): 498-514. doi: 10.3934/steme.2025024
    [2] Rrezart Prebreza, Bleona Beqiraj, Besart Prebreza, Arianit Krypa, Marigona Krypa . Factors influencing the lower number of women in STEM compared to men: A case study from Kosovo. STEM Education, 2025, 5(1): 19-40. doi: 10.3934/steme.2025002
    [3] Ibrahim Khalil, Amirah AL Zahrani, Bakri Awaji, Mohammed Mohsen . Teachers' perceptions of teaching mathematics topics based on STEM educational philosophy: A sequential explanatory design. STEM Education, 2024, 4(4): 421-444. doi: 10.3934/steme.2024023
    [4] Dragana Martinovic, Marina Milner-Bolotin . Examination of modelling in K-12 STEM teacher education: Connecting theory with practice. STEM Education, 2021, 1(4): 279-298. doi: 10.3934/steme.2021018
    [5] Rommel AlAli, Wardat Yousef . Enhancing student motivation and achievement in science classrooms through STEM education. STEM Education, 2024, 4(3): 183-198. doi: 10.3934/steme.2024012
    [6] Yicong Zhang, Yanan Lu, Xianqing Bao, Feng-Kuang Chiang . Impact of participation in the World Robot Olympiad on K-12 robotics education from the coach's perspective. STEM Education, 2022, 2(1): 37-46. doi: 10.3934/steme.2022002
    [7] Ping Chen, Aminuddin Bin Hassan, Firdaus Mohamad Hamzah, Sallar Salam Murad, Heng Wu . Impact of gender role stereotypes on STEM academic performance among high school girls: Mediating effects of educational aspirations. STEM Education, 2025, 5(4): 617-642. doi: 10.3934/steme.2025029
    [8] Usman Ghani, Xuesong Zhai, Riaz Ahmad . Mathematics skills and STEM multidisciplinary literacy: Role of learning capacity. STEM Education, 2021, 1(2): 104-113. doi: 10.3934/steme.2021008
    [9] Hyunkyung Kwon, Yujin Lee . A meta-analysis of STEM project-based learning on creativity. STEM Education, 2025, 5(2): 275-290. doi: 10.3934/steme.2025014
    [10] Yujuan Li, Robert N. Hibbard, Peter L. A. Sercombe, Amanda L. Kelk, Cheng-Yuan Xu . Inspiring and engaging high school students with science and technology education in regional Australia. STEM Education, 2021, 1(2): 114-126. doi: 10.3934/steme.2021009
  • In this paper we study the k-domination and total k-domination numbers of catacondensed hexagonal systems. More precisely, we give the value of the total domination number, we find upper and lower bounds for the 2-domination number and the total 2-domination number, characterizing the catacondensed hexagonal systems which attain these bounds, and we give the value of the 3-domination number for any catacondensed hexagonal system with a given number of hexagons. These results complete the study of k-domination and total k-domination of catacondensed hexagonal systems for all possible values of k.



    The concept of embedded tensors initially emerged in the research on gauged supergravity theory [1]. Using embedding tensors, the N=8 supersymmetric gauge theories as well as the Bagger-Lambert theory of multiple M2-branes were investigated in [2]. See [3,4,5] and the references therein for a great deal of literature on embedding tensors and related tensor hierarchies. In [6], the authors first observed the mathematical essence behind the embedding tensor and proved that the embedding tensor naturally produced Leibniz algebra. In the application of physics, they observed that in the construction of the corresponding gauge theory, they focused more on Leibniz algebra than on embedding tensor.

    In [7], Sheng et al. considered cohomology, deformations, and homotopy theory for embedding tensors and Lie-Leibniz triples. Later on, the deformation and cohomology theory of embedding tensors on 3-Lie algebras were extensively elaborated in [8]. Tang and Sheng [9] first proposed the concept of a nonabelian embedding tensor on Lie algebras, which is a nonabelian generalization of the embedding tensors, and gave the algebraic structures behind the nonabelian embedding tensors as Leibniz-Lie algebras. This generalization for embedding tensors on associative algebras has been previously explored in [10,11], where they are referred to as average operators with any nonzero weights. Moreover, the nonabelian embedding tensor on Lie algebras has been extended to the Hom setting in [12].

    On the other hand, Filippov [13] first introduced the concepts of 3-Lie algebras and, more generally, n-Lie algebras (also called Filippov algebras). Over recent years, the study and application of 3-Lie algebras have expanded significantly across the realms of mathematics and physics, including string theory, Nambu mechanics [14], and M2-branes [15,16]. Further research on 3-Lie algebras could be found in [17,18,19] and references cited therein.

    Drawing inspiration from Tang and Sheng's [9] terminology of nonabelian embedding tensors and recognizing the significance of 3-Lie algebras, cohomology, and deformation theories, this paper primarily investigates the nonabelian embedding tensors on 3-Lie algebras, along with their fundamental algebraic structures, cohomology, and deformations.

    This paper is organized as follows: Section 2 first recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. Then we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra and the notion of nonabelian embedding tensors on 3-Lie algebras with respect to a coherent action. In Section 3, the concept of 3-Leibniz-Lie algebra is presented as the fundamental algebraic structure for a nonabelian embedding tensor on the 3-Lie algebra. Naturally, a 3-Leibniz-Lie algebra induces a 3-Leibniz algebra. Subsequently, we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras. In Section 4, the cohomology theory of nonabelian embedding tensors on 3-Lie algebras is introduced. As an application, we characterize the infinitesimal deformation using the first cohomology group.

    All vector spaces and algebras considered in this paper are on the field K with the characteristic of 0.

    This section recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. After that, we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra, and we introduce the concept of nonabelian embedding tensors on 3-Lie algebras by its coherent action as a nonabelian generalization of embedding tensors on 3-Lie algebras [8].

    Definition 2.1. (see [13]) A 3-Lie algebra is a pair (L,[,,]L) consisting of a vector space L and a skew-symmetric ternary operation [,,]L:3LL such that

    [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, (2.1)

    for all liL,1i5.

    A homomorphism between two 3-Lie algebras (L1,[,,]L1) and (L2,[,,]L2) is a linear map f:L1L2 that satisfies f([l1,l2,l3]L1)=[f(l1),f(l2),f(l3)]L2, for all l1,l2,l3L1.

    Definition 2.2. 1) (see [20]) A representation of a 3-Lie algebra (L,[,,]L) on a vector space H is a skew-symmetric linear map ρ:2LEnd(H), such that

    ρ([l1,l2,l3]L,l4)=ρ(l2,l3)ρ(l1,l4)+ρ(l3,l1)ρ(l2,l4)+ρ(l1,l2)ρ(l3,l4), (2.2)
    ρ(l1,l2)ρ(l3,l4)=ρ(l3,l4)ρ(l1,l2)+ρ([l1,l2,l3]L,l4)+ρ(l3,[l1,l2,l4]L), (2.3)

    for all l1,l2,l3,l4L. We also denote a representation of L on H by (H;ρ).

    2) A coherent action of a 3-Lie algebra (L,[,,]L) on another 3-Lie algebra (H,[,,]H) is defined by a skew-symmetric linear map ρ:2LDer(H) that satisfies Eqs (2.2) and (2.3), along with the condition that

    [ρ(l1,l2)h1,h2,h3]H=0, (2.4)

    for all l1,l2L and h1,h2,h3H. We denote a coherent action of L on H by (H,[,,]H;ρ).

    Note that Eq (2.4) and ρ(l1,l2)Der(H) imply that

    ρ(l1,l2)[h1,h2,h3]H=0. (2.5)

    Example 2.3. Let (H,[,,]H) be a 3-Lie algebra. Define ad:2HDer(H) by

    ad(h1,h2)h:=[h1,h2,h]H, for all h1,h2,hH.

    Then (H;ad) is a representation of (H,[,,]H), which is called the adjoint representation. Furthermore, if the ad satisfies

    [ad(h1,h2)h1,h2,h3]H=0, for allh1,h2,h3H,

    then (H,[,,]H;ad) is a coherent adjoint action of (H,[,,]H).

    Definition 2.4. (see [21]) A 3-Leibniz algebra is a vector space L together with a ternary operation [,,]L:LLLL such that

    [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L,

    for all liL,1i5.

    Proposition 2.5. Let (L,[,,]L) and (H,[,,]H) be two 3-Lie algebras, and let ρ be a coherent action of L on H. Then, LH is a 3-Leibniz algebra under the following map:

    [l1+h1,l2+h2,l3+h3]ρ:=[l1,l2,l3]L+ρ(l1,l2)h3+[h1,h2,h3]H,

    for all l1,l2,l3L and h1,h2,h3H. This 3-Leibniz algebra (LH,[,,]ρ) is called the nonabelian hemisemidirect product 3-Leibniz algebra, which is denoted by LρH.

    Proof. For any l1,l2,l3,l4,l5L and h1,h2,h3,h4,h5H, by Eqs (2.1)–(2.5), we have

    [l1+h1,l2+h2,[l3+h3,l4+h4,l5+h5]ρ]ρ[[l1+h1,l2+h2,l3+h3]ρ,l4+h4,l5+h5]ρ[l3+h3,[l1+h1,l2+h2,l4+h4]ρ,l5+h5]ρ[l3+h3,l4+h4,[l1+h1,l2+h2,l5+h5]ρ]ρ=[l1,l2,[l3,l4,l5]L]L+ρ(l1,l2)ρ(l3,l4)h5+ρ(l1,l2)[h3,h4,h5]H+[h1,h2,ρ(l3,l4)h5]H+[h1,h2,[h3,h4,h5]H]H[[l1,l2,l3]L,l4,l5]Lρ([l1,l2,l3]L,l4)h5[ρ(l1,l2)h3,h4,h5]H[[h1,h2,h3]H,h4,h5]H[l3,[l1,l2,l4]L,l5]Lρ(l3,[l1,l2,l4]L)h5[h3,ρ(l1,l2)h4,h5]H[h3,[h1,h2,h4]H,h5]H[l3,l4,[l1,l2,l5]L]Lρ(l3,l4)ρ(l1,l2)h5ρ(l3,l4)[h1,h2,h5]H[h3,h4,ρ(l1,l2)h5]H[h3,h4,[h1,h2,h5]H]H=[h1,h2,ρ(l3,l4)h5]Hρ(l3,l4)[h1,h2,h5]H=0.

    Thus, (LH,[,,]ρ) is a 3-Leibniz algebra.

    Definition 2.6. 1) A nonabelian embedding tensor on a 3-algebra (L,[,,]L) with respect to a coherent action (H,[,,]H;ρ) is a linear map Λ:HL that satisfies the following equation:

    [Λh1,Λh2,Λh3]L=Λ(ρ(Λh1,Λh2)h3+[h1,h2,h3]H), (2.6)

    for all h1,h2,h3H.

    2) A nonabelian embedding tensor 3-Lie algebra is a triple (H,L,Λ) consisting of a 3-Lie algebra (L,[,,]L), a coherent action (H,[,,]H;ρ) of L and a nonabelian embedding tensor Λ:HL. We denote a nonabelian embedding tensor 3-Lie algebra (H,L,Λ) by the notation HΛL.

    3) Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras. Then, a homomorphism from HΛ1L to HΛ2L consists of two 3-Lie algebras homomorphisms fL:LL and fH:HH, which satisfy the following equations:

    Λ2fH=fLΛ1, (2.7)
    fH(ρ(l1,l2)h)=ρ(fL(l1),fL(l2))fH(h), (2.8)

    for all l1,l2L and hH. Furthermore, if fL and fH are nondegenerate, (fL,fH) is called an isomorphism from HΛ1L to HΛ2L.

    Remark 2.7. If (H,[,,]H) is an abelian 3-Lie algebra, then we can get that Λ is an embedding tensor on 3-Lie algebra (see [8]). In addition, If ρ=0, then Λ is a 3-Lie algebra homomorphism from H to L.

    Example 2.8. Let H be a 4-dimensional linear space spanned by α1,α2,α3 and α4. We define a skew-symmetric ternary operation [,,]H:3HH by

    [α1,α2,α3]H=α4.

    Then (H,[,,]H) is a 3-Lie algebra. It is obvious that (H,[,,]H;ad) is a coherent adjoint action of (H,[,,]H). Moreover,

    Λ=(1000010000000000)

    is a nonabelian embedding tensor on (H,[,,]H).

    Next, we use graphs to describe nonabelian embedding tensors on 3-Lie algebras.

    Theorem 2.9. A linear map Λ:HL is a nonabelian embedding tensor on a 3-Lie algebra (L,[,,]L) with respect to the coherent action (H,[,,]H;ρ) if and only if the graph Gr(Λ)={Λh+h|hH} forms a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra LρH.

    Proof. Let Λ:HL be a linear map. Then, for any h1,h2,h3H, we have

    [Λh1+h1,Λh2+h2,Λh3+h3]ρ=[Λh1,Λh2,Λh3]L+ρ(Λh1,Λh2)h3+[h1,h2,h3]H,

    Thus, the graph Gr(Λ)={Λh+h|hH} is a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra LρH if and only if Λ satisfies Eq (2.6), which implies that Λ is a nonabelian embedding tensor on L with respect to the coherent action (H,[,,]H;ρ).

    Because H and Gr(Λ) are isomorphic as linear spaces, there is an induced 3-Leibniz algebra structure on H.

    Corollary 2.10. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. If a linear map [,,]Λ:3HH is given by

    [h1,h2,h3]Λ=ρ(Λh1,Λh2)h3+[h1,h2,h3]H, (2.9)

    for all h1,h2,h3H, then (H,[,,]Λ) is a 3-Leibniz algebra. Moreover, Λ is a homomorphism from the 3-Leibniz algebra (H,[,,]Λ) to the 3-Lie algebra (L,[,,]L). This 3-Leibniz algebra (H,[,,]Λ) is called the descendent 3-Leibniz algebra.

    Proposition 2.11. Let (fL,fH) be a homomorphism from HΛ1L to HΛ2L. Then fH is a homomorphism of descendent 3-Leibniz algebra from (H,[,,]Λ1) to (H,[,,]Λ2).

    Proof. For any h1,h2,h3H, by Eqs (2.7)–(2.9), we have

    fH([h1,h2,h3]Λ1)=fH(ρ(Λ1h1,Λ1h2)h3+[h1,h2,h3]H)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)+fH([h1,h2,h3]H)=ρ(Λ2fL(h1),Λ2fL(h2))fH(h3)+[fH(h1),fH(h2),fH(h3)]H=[fH(h1),fH(h2),fH(h3)]Λ2.

    The proof is finished.

    In this section, we present the concept of the 3-Leibniz-Lie algebra, which serves as the fundamental algebraic framework for the nonabelian embedding tensor 3-Lie algebra. Then we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.

    Definition 3.1. A 3-Leibniz-Lie algebra (H,[,,]H,{,,}H) encompasses a 3-Lie algebra (H,[,,]H) and a ternary operation {,,}H:3HH, which satisfies the following equations:

    {h1,h2,h3}H={h2,h1,h3}H, (3.1)
    {h1,h2,{h3,h4,h5}H}H={{h1,h2,h3}H,h4,h5}H+{h3,{h1,h2,h4}H,h5}H+{h3,h4,{h1,h2,h5}H}H+{[h1,h2,h3]H,h4,h5}H+{h3,[h1,h2,h4]H,h5}H, (3.2)
    {h1,h2,[h3,h4,h5]H}H=[{h1,h2,h3}H,h4,h5]H=0, (3.3)

    for all h1,h2,h3,h4,h5H.

    A homomorphism between two 3-Leibniz-Lie algebras (H1,[,,]H1,{,,}H1) and (H2,[,,]H2,{,,}H2) is a 3-Lie algebra homomorphism f:(H1,[,,]H1)(H2,[,,]H2) such that f({h1,h2,h3}H1)={f(h1),f(h2),f(h3)}H2, for all h1,h2,h3H1.

    Remark 3.2. A 3-Lie algebra (H,[,,]H) naturally constitutes a 3-Leibniz-Lie algebra provided that the underlying ternary operation {h1,h2,h3}H=0, for all h1,h2,h3H.

    Example 3.3. Let (H,[,,]H) be a 4-dimensional 3-Lie algebra given in Example 2.8. We define a nonzero operation {,,}H:3HH by

    {α1,α2,α3}H={α2,α1,α3}H=α4.

    Then (H,[,,]H,{,,}H) is a 3-Leibniz-Lie algebra.

    The subsequent theorem demonstrates that a 3-Leibniz-Lie algebra inherently gives rise to a 3-Leibniz algebra.

    Theorem 3.4. Let (H,[,,]H,{,,}H) be a 3-Leibniz-Lie algebra. Then the ternary operation ,,H:3HH, defined as

    h1,h2,h3H:=[h1,h2,h3]H+{h1,h2,h3}H, (3.4)

    for all h1,h2,h3H, establishes a 3-Leibniz algebra structure on H. This structure is denoted by (H,,,H) and is referred to as the subadjacent 3-Leibniz algebra.

    Proof. For any h1,h2,h3,h4,h5H, according to (H,[,,]H) is a 3-Lie algebra and Eqs (3.2)–(3.4), we have

    h1,h2,h3,h4,h5HHh1,h2,h3H,h4,h5Hh3,h1,h2,h4H,h5Hh3,h4,h1,h2,h5HH=[h1,h2,[h3,h4,h5]H]H+[h1,h2,{h3,h4,h5}H]H+{h1,h2,[h3,h4,h5]H}H+{h1,h2,{h3,h4,h5}H}H[[h1,h2,h3]H,h4,h5]H[{h1,h2,h3}H,h4,h5]H{[h1,h2,h3]H,h4,h5}H{{h1,h2,h3}H,h4,h5}H[h3,[h1,h2,h4]H,h5]H[h3,{h1,h2,h4}H,h5]H{h3,[h1,h2,h4]H,h5}H{h3,{h1,h2,h4}H,h5}H[h3,h4,[h1,h2,h5]H]H[h3,h4,{h1,h2,h5}H]H{h3,h4,[h1,h2,h5]H}H{h3,h4,{h1,h2,h5}H}H={h1,h2,{h3,h4,h5}H}H{[h1,h2,h3]H,h4,h5}H{{h1,h2,h3}H,h4,h5}H{h3,[h1,h2,h4]H,h5}H{h3,{h1,h2,h4}H,h5}H{h3,h4,{h1,h2,h5}H}H=0.

    Hence, (H,,,H) is a 3-Leibniz algebra.

    The following theorem shows that a nonabelian embedding tensor 3-Lie algebra induces a 3-Leibniz-Lie algebra.

    Theorem 3.5. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. Then (H,[,,]H,{,,}Λ) is a 3-Leibniz-Lie algebra, where

    {h1,h2,h3}Λ:=ρ(Λh1,Λh2)h3, (3.5)

    for all h1,h2,h3H.

    Proof. For any h1,h2,h3,h4,h5H, by Eqs (2.3), (2.6), and (3.5), we have

    {h1,h2,h3}Λ=ρ(Λh1,Λh2)h3=ρ(Λh2,Λh1)h3={h2,h1,h3}Λ,{{h1,h2,h3}Λ,h4,h5}Λ+{h3,{h1,h2,h4}Λ,h5}Λ+{h3,h4,{h1,h2,h5}Λ}Λ+{[h1,h2,h3]H,h4,h5}Λ+{h3,[h1,h2,h4]H,h5}Λ{h1,h2,{h3,h4,h5}Λ}Λ=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ(Λ[h1,h2,h3]H,Λh4)h5+ρ(Λh3,Λ[h1,h2,h4]H)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]LΛρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]LΛρ(Λh1,Λh2)h4)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=0.

    Furthermore, by Eqs (2.4), (2.5), and (3.5), we have

    [{h1,h2,h3}Λ,h4,h5]H=[ρ(Λh1,Λh2)h3,h4,h5]H=0,{h1,h2,[h3,h4,h5]H}Λ=ρ(Λh1,Λh2)[h3,h4,h5]H=0.

    Thus, (H,[,,]H,{,,}Λ) is a 3-Leibniz-Lie algebra.

    Proposition 3.6. Let (fL,fH) be a homomorphism from HΛ1L to HΛ2L. Then fH is a homomorphism of 3-Leibniz-Lie algebras from (H,[,,]H,{,,}Λ1) to (H,[,,]H,{,,}Λ2).

    Proof. For any h1,h2,h3H, by Eqs (2.7), (2.8), and (3.5), we have

    fH({h1,h2,h3}Λ1)=fH(ρ(Λ1h1,Λ1h2)h3)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)=ρ(Λ2fH(h1),Λ2fH(h2))fH(h3)={fH(h1),fH(h2),fH(h3)}Λ2.

    The proof is finished.

    Motivated by the construction of 3-Lie algebras from Lie algebras [17], at the end of this section, we investigate 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.

    Definition 3.7. (see [9]) A Leibniz-Lie algebra (H,[,]H,) encompasses a Lie algebra (H,[,]H) and a binary operation ⊳:HHH, ensuring that

    h1(h2h3)=(h1h2)h3+h2(h1h3)+[h1,h2]Hh3,h1[h2,h3]H=[h1h2,h3]H=0,

    for all h1,h2,h3H.

    Theorem 3.8. Let (H,[,]H,) be a Leibniz-Lie algebra, and let ςH be a trace map, which is a linear map that satisfies the following conditions:

    ς([h1,h2]H)=0,ς(h1h2)=0,for allh1,h2H.

    Define two ternary operations by

    [h1,h2,h3]Hς=ς(h1)[h2,h3]H+ς(h2)[h3,h1]H+ς(h3)[h1,h2]H,{h1,h2,h3}Hς=ς(h1)h2h3ς(h2)h1h3,for allh1,h2,h3H.

    Then (H,[,,]Hς,{,,}Hς) is a 3-Leibniz-Lie algebra.

    Proof. First, we know from [17] that (H,[,,]Hς) is a 3-Lie algebra. Next, for any h1,h2,h3,h4,h5H, we have

    {h1,h2,h3}Hς=ς(h1)h2h3ς(h2)h1h3=(ς(h2)h1h3ς(h1)h2h3)={h2,h1,h3}Hς

    and

    {{h1,h2,h3}Hς,h4,h5}Hς+{h3,{h1,h2,h4}Hς,h5}Hς+{h3,h4,{h1,h2,h5}Hς}Hς+{[h1,h2,h3]Hς,h4,h5}Hς+{h3,[h1,h2,h4]Hς,h5}Hς{h1,h2,{h3,h4,h5}Hς}Hς=ς(h1)ς(h2h3)h4h5ς(h4)ς(h1)(h2h3)h5ς(h2)ς(h1h3)h4h5+ς(h4)ς(h2)(h1h3)h5+ς(h3)ς(h1)(h2h4)h5ς(h1)ς(h2h4)h3h5ς(h3)ς(h2)(h1h4)h5+ς(h2)ς(h1h4)h3h5+ς(h1)ς(h3)h4(h2h5)ς(h1)ς(h4)h3(h2h5)ς(h2)ς(h3)h4(h1h5)+ς(h2)ς(h4)h3(h1h5)+ς(h1)ς([h2,h3]H)h4h5ς(h4)ς(h1)[h2,h3]Hh5+ς(h2)ς([h3,h1]H)h4h5ς(h4)ς(h2)[h3,h1]Hh5+ς(h3)ς([h1,h2]H)h4h5ς(h4)ς(h3)[h1,h2]Hh5+ς(h3)ς(h1)[h2,h4]Hh5ς(h1)ς([h2,h4]H)h3h5+ς(h3)ς(h2)[h4,h1]Hh5ς(h2)ς([h4,h1]H)h3h5+ς(h3)ς(h4)[h1,h2]Hh5ς(h4)ς([h1,h2]H)h3h5ς(h1)ς(h3)h2(h4h5)+ς(h2)ς(h3)h1(h4h5)+ς(h1)ς(h4)h2(h3h5)ς(h2)ς(h4)h1(h3h5)=ς(h4)ς(h1)(h2h3)h5+ς(h4)ς(h2)(h1h3)h5+ς(h3)ς(h1)(h2h4)h5ς(h3)ς(h2)(h1h4)h5+ς(h1)ς(h3)h4(h2h5)ς(h1)ς(h4)h3(h2h5)ς(h2)ς(h3)h4(h1h5)+ς(h2)ς(h4)h3(h1h5)ς(h4)ς(h1)[h2,h3]Hh5ς(h4)ς(h2)[h3,h1]Hh5+ς(h3)ς(h1)[h2,h4]Hh5+ς(h3)ς(h2)[h4,h1]Hh5ς(h1)ς(h3)h2(h4h5)+ς(h2)ς(h3)h1(h4h5)+ς(h1)ς(h4)h2(h3h5)ς(h2)ς(h4)h1(h3h5)=0.

    Similarly, we obtain

    {h1,h2,[h3,h4,h5]Hς}Hς=ς(h1)ς(h3)h2[h4,h5]Hς(h2)ς(h3)h1[h4,h5]H+ς(h1)ς(h4)h2[h5,h3]Hς(h2)ς(h4)h1[h5,h3]H+ς(h1)ς(h5)h2[h3,h4]Hς(h2)ς(h5)h1[h3,h4]H=0

    and

    [{h1,h2,h3}Hς,h4,h5]Hς=ς(h1)ς(h2h3)[h4,h5]H+ς(h4)ς(h1)[h5,h2h3]H+ς(h5)ς(h1)[h2h3,h4]Hς(h2)ς(h1h3)[h4,h5]Hς(h4)ς(h2)[h5,h1h3]Hς(h5)ς(h2)[h1h3,h4]H=0.

    Hence Eqs (3.1)–(3.3) hold and we complete the proof.

    In this section, we revisit fundamental results pertaining to the representations and cohomologies of 3-Leibniz algebras. We construct a representation of the descendent 3-Leibniz algebra (H,[,,]Λ) on the vector space L and define the cohomologies of a nonabelian embedding tensor on 3-Lie algebras. As an application, we characterize the infinitesimal deformation using the first cohomology group.

    Definition 4.1. (see [22]) A representation of the 3-Leibniz algebra (H,[,,]H) is a vector space V equipped with 3 actions

    l:HHVV,m:HVHV,r:VHHV,

    satisfying for any a1,a2,a3,a4,a5H and uV

    l(a1,a2,l(a3,a4,u))=l([a1,a2,a3]H,a4,u)+l(a3,[a1,a2,a4]H,u)+l(a3,a4,l(a1,a2,u)), (4.1)
    l(a1,a2,m(a3,u,a5))=m([a1,a2,a3]H,u,a5)+m(a3,l(a1,a2,u),a5)+m(a3,u,[a1,a2,a5]H), (4.2)
    l(a1,a2,r(u,a4,a5))=r(l(a1,a2,u),a4,a5)+r(u,[a1,a2,a4]H,a5)+r(u,a4,[a1,a2,a5]H), (4.3)
    m(a1,u,[a3,a4,a5]H)=r(m(a1,u,a3),a4,a5)+m(a3,m(a1,u,a4),a5)+l(a3,a4,m(a1,u,a5)), (4.4)
    r(u,a2,[a3,a4,a5]H)=r(r(u,a2,a3),a4,a5)+m(a3,r(u,a2,a4),a5)+l(a3,a4,r(u,a2,a5)). (4.5)

    For n1, denote the n-cochains of 3-Leibniz algebra (H,[,,]H) with coefficients in a representation (V;l,m,r) by

    Cn3Leib(H,V)=Hom(n12H2HH,V).

    The coboundary map δ:Cn3Leib(H,V)Cn+13Leib(H,V), for Ai=aibi2H,1in and cH, as

    (δφ)(A1,A2,,An,c)=1j<kn(1)jφ(A1,,^Aj,,Ak1,ak[aj,bj,bk]H+[aj,bj,ak]Hbk,,An,c)+nj=1(1)jφ(A1,,^Aj,,An,[aj,bj,c]H)+nj=1(1)j+1l(Aj,φ(A1,,^Aj,,An,c))+(1)n+1(m(an,φ(A1,,An1,bn),c)+r(φ(A1,,An1,an),bn,c)).

    It was proved in [23,24] that δ2=0. Therefore, (+n=1Cn3Leib(H,V),δ) is a cochain complex.

    Let HΛL be a nonabelian embedding tensor 3-Lie algebra. By Corollary 2.10, (H,[,,]Λ) is a 3-Leibniz algebra. Next we give a representation of (H,[,,]Λ) on L.

    Lemma 4.2. With the above notations. Define 3 actions

    lΛ:HHLL,mΛ:HLHL,rΛ:LHHL,

    by

    lΛ(h1,h2,l)=[Λh1,Λh2,l]L,mΛ(h1,l,h2)=[Λh1,l,Λh2]LΛρ(Λh1,l)h2,rΛ(l,h1,h2)=[l,Λh1,Λh2]LΛρ(l,Λh1)h2,

    for all h1,h2H,lL. Then (L;lΛ,mΛ,rΛ) is a representation of the descendent 3-Leibniz algebra (H,[,,]Λ).

    Proof. For any h1,h2,h3,h4,h5H and lL, by Eqs (2.1), (2.3)–(2.6), and (2.9), we have

    lΛ(h1,h2,lΛ(h3,h4,l))lΛ([h1,h2,h3]Λ,h4,l)lΛ(h3,[h1,h2,h4]Λ,l)lΛ(h3,h4,lΛ(h1,h2,l))=[Λh1,Λh2,[Λh3,Λh4,l]L]L[[Λh1,Λh2,Λh3]L,Λh4,l]L[Λh3,[Λh1,Λh2,Λh4]L,l]L[Λh3,Λh4,[Λh1,Λh2,l]L]L=0

    and

    lΛ(h1,h2,mΛ(h3,l,h5))mΛ([h1,h2,h3]Λ,l,h5)mΛ(h3,lΛ(h1,h2,l),h5)mΛ(h3,l,[h1,h2,h5]Λ)=[Λh1,Λh2,[Λh3,l,Λh5]L]L[Λh1,Λh2,Λρ(Λh3,l)h5]L[[Λh1,Λh2,Λh3]L,l,Λh5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5[Λh3,[Λh1,Λh2,l]L,Λh5]L+Λρ(Λh3,[Λh1,Λh2,l]L)h5[Λh3,l,[Λh1,Λh2,Λh5]L]L+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=[Λh1,Λh2,Λρ(Λh3,l)h5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5+Λρ(Λh3,[Λh1,Λh2,l]L)h5+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=Λ(ρ(Λh1,Λh2)ρ(Λh3,l)h5+[h1,h2,ρ(Λh3,l)h5]H)+Λρ(Λh1,Λh2)ρ(Λh3,l)h5+Λρ(Λh3,l)[h1,h2,h5]H=Λ[h1,h2,ρ(Λh3,l)h5]H+Λρ(Λh3,l)[h1,h2,h5]H=0,

    which imply that Eqs (4.1) and (4.2) hold. Similarly, we can prove that Eqs (4.3)–(4.5) are true. The proof is finished.

    Proposition 4.3. Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras and (fL,fH) a homomorphism from HΛ1L to HΛ2L. Then the induced representation (L;lΛ1,mΛ1,rΛ1) of the descendent 3-Leibniz algebra (H,[,,]Λ1) and the induced representation (L;lΛ2,mΛ2,rΛ2) of the descendent 3-Leibniz algebra (H,[,,]Λ2) satisfying the following equations:

    fL(lΛ1(h1,h2,l))=lΛ2(fH(h1),fH(h2),fL(l)), (4.6)
    fL(mΛ1(h1,l,h2))=mΛ2(fH(h1),fL(l),fH(h2)), (4.7)
    fL(rΛ1(l,h1,h2))=rΛ2(fL(l),fH(h1),fH(h2)), (4.8)

    for all h1,h2H,lL. In other words, the following diagrams commute:

    Proof. For any h1,h2H,lL, by Eqs (2.7) and (2.8), we have

    fL(lΛ1(h1,h2,l))=fL([Λ1h1,Λ1h2,l]L)=[fL(Λ1h1),fL(Λ1h2),fL(l)]L=[Λ2fH(h1),Λ2fH(h2),fL(l)]L=lΛ2(fH(h1),fH(h2),fL(l)),fL(mΛ1(h1,l,h2))=fL([Λ1h1,l,Λ1h2]LΛ1ρ(Λ1h1,l)h2)=[fL(Λ1h1),fL(l),fL(Λ1h2)]LfL(Λ1ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]LΛ2fH(ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]LΛ2ρ(Λ2fH(h1),fL(l))fH(h2)=mΛ2(fH(h1),fL(l),fH(h2)).

    And the other equation is similar to provable.

    For n1, let δΛ:Cn3Leib(H,L)Cn+13Leib(H,L) be the coboundary operator of the 3-Leibniz algebra (H,[,,]Λ) with coefficients in the representation (L;lΛ,mΛ,rΛ). More precisely, for all ϕCn3Leib(H,L),Hi=uivi2H,1in and wH, we have

    (δΛϕ)(H1,H2,,Hn,w)=1j<kn(1)jϕ(H1,,^Hj,,Hk1,uk[uj,vj,vk]Λ+[uj,vj,uk]Λvk,,Hn,w)+nj=1(1)jϕ(H1,,^Hj,,Hn,[uj,vj,w]Λ)+nj=1(1)j+1lΛ(Hj,ϕ(H1,,^Hj,,Hn,w))+(1)n+1(mΛ(un,ϕ(H1,,Hn1,vn),w)+rΛ(ϕ(H1,,Hn1,un),vn,w)).

    In particular, for ϕC13Leib(H,L):=Hom(H,L) and u1,v1,wH, we have

    (δΛϕ)(u1,v1,w)=ϕ([u1,v1,w]Λ)+lΛ(u1,v1,ϕ(w))+mΛ(u1,ϕ(v1),w)+rΛ(ϕ(u1),v1,w)=ϕ([u1,v1,w]Λ)+[Λu1,Λv1,ϕ(w)]L+[Λu1,ϕ(v1),Λw]LΛρ(Λu1,ϕ(v1))w+[ϕ(u1),Λv1,Λw]LΛρ(ϕ(u1),Λv1)w.

    For any (a1,a2)C03Leib(H,L):=2L, we define δΛ:C03Leib(H,L)C13Leib(H,L),(a1,a2)δΛ(a1,a2) by

    δΛ(a1,a2)u=Λρ(a1,a2)u[a1,a2,Λu]L,uH.

    Proposition 4.4. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. Then δΛ(δΛ(a1,a2))=0, that is, the composition C03Leib(H,L)δΛC13Leib(H,L)δΛC23Leib(H,L) is the zero map.

    Proof. For any u_1, v_1, w\in V, by Eqs (2.1)–(2.6) and (2.9) we have

    \begin{align*} &\delta_\Lambda (\delta_\Lambda(a_1, a_2))(u_1, v_1, w)\\ = &-\delta_\Lambda(a_1, a_2)([u_1, v_1, w]_\Lambda)+[\Lambda u_1, \Lambda v_1, \delta_\Lambda(a_1, a_2)(w)]_L+[\Lambda u_1, \delta_\Lambda(a_1, a_2)(v_1), \Lambda w]_L\\ &-\Lambda\rho(\Lambda u_1, \delta_\Lambda(a_1, a_2)(v_1))w+[\delta_\Lambda(a_1, a_2)(u_1), \Lambda v_1, \Lambda w]_L-\Lambda\rho(\delta_\Lambda(a_1, a_2)(u_1), \Lambda v_1)w\\ = &-\Lambda\rho(a_1, a_2)[u_1, v_1, w]_\Lambda+[a_1, a_2, [\Lambda u_1, \Lambda v_1, \Lambda w]_L]_L+[\Lambda u_1, \Lambda v_1, \Lambda\rho(a_1, a_2)w]_L\\ &-[\Lambda u_1, \Lambda v_1, [a_1, a_2, \Lambda w]_L]_L+[\Lambda u_1, \Lambda\rho(a_1, a_2)v_1, \Lambda w]_L-[\Lambda u_1, [a_1, a_2, \Lambda v_1]_L, \Lambda w]_L\\ &-\Lambda\rho(\Lambda u_1, \Lambda\rho(a_1, a_2)v_1)w+\Lambda\rho(\Lambda u_1, [a_1, a_2, \Lambda v_1]_L)w+[\Lambda\rho(a_1, a_2)u_1, \Lambda v_1, \Lambda w]_L\\ &-[[a_1, a_2, \Lambda u_1]_L, \Lambda v_1, \Lambda w]_L-\Lambda\rho(\Lambda\rho(a_1, a_2)u_1, \Lambda v_1)w+\Lambda\rho([a_1, a_2, \Lambda u_1]_L, \Lambda v_1)w\\ = &-\Lambda\rho(a_1, a_2)\rho(\Lambda u_1, \Lambda v_1)w-\Lambda\rho(a_1, a_2)[u_1, v_1, w]_H+\Lambda\rho(\Lambda u_1, \Lambda v_1)\rho(a_1, a_2)w\\ &+\Lambda[u_1, v_1, \rho(a_1, a_2)w]_H+\Lambda\rho(\Lambda u_1, \Lambda\rho(a_1, a_2)v_1) w+\Lambda[u_1, \rho(a_1, a_2)v_1, w]_H\\ &-\Lambda\rho(\Lambda u_1, \Lambda\rho(a_1, a_2)v_1)w+\Lambda\rho(\Lambda u_1, [a_1, a_2, \Lambda v_1]_L)w+\Lambda(\Lambda\rho(a_1, a_2)u_1, \Lambda v_1)w\\ &+\Lambda[\rho(a_1, a_2)u_1, v_1, w]_H-\Lambda\rho(\Lambda\rho(a_1, a_2)u_1, \Lambda v_1)w+\Lambda\rho([a_1, a_2, \Lambda u_1]_L, \Lambda v_1)w\\ = &-\Lambda\rho(a_1, a_2)\rho(\Lambda u_1, \Lambda v_1)w+\Lambda\rho(\Lambda u_1, \Lambda v_1)\rho(a_1, a_2)w+\Lambda\rho(\Lambda u_1, \Lambda\rho(a_1, a_2)v_1) w\\ &-\Lambda\rho(\Lambda u_1, \Lambda\rho(a_1, a_2)v_1)w+\Lambda\rho(\Lambda u_1, [a_1, a_2, \Lambda v_1]_L)w+\Lambda(\Lambda\rho(a_1, a_2)u_1, \Lambda v_1)w\\ &-\Lambda\rho(\Lambda\rho(a_1, a_2)u_1, \Lambda v_1)w+\Lambda\rho([a_1, a_2, \Lambda u_1]_L, \Lambda v_1)w\\ = &-\Lambda\rho(a_1, a_2)\rho(\Lambda u_1, \Lambda v_1)w+\Lambda\rho(\Lambda u_1, \Lambda v_1)\rho(a_1, a_2)w+\Lambda\rho(\Lambda u_1, [a_1, a_2, \Lambda v_1]_L)w\\ &+\Lambda\rho([a_1, a_2, \Lambda u_1]_L, \Lambda v_1)w\\ = &0. \end{align*}

    Therefore, we deduce that \delta_\Lambda (\delta_\Lambda(a_1, a_2)) = 0.

    Now we develop the cohomology theory of a nonabelian embedding tensor \Lambda on the 3-Lie algebra (L, [−, −, −]_L) with respect to the coherent action (H, [−, −, −]_H; \rho^{\dagger}) .

    For n\geq 0 , define the set of n -cochains of \Lambda by \mathcal{C}^n_\Lambda(H, L): = \mathcal{C}^n_{\mathrm{3Leib}}(H, L). Then (\oplus_{n = 0}^{\infty}\mathcal{C}^n_\Lambda(H, L), \delta_\Lambda) is a cochain complex.

    For n\geq 1 , we denote the set of n -cocycles by {\bf Z}^n_\Lambda(H, L) , the set of n -coboundaries by {\bf B}^n_\Lambda(H, L) , and the n -th cohomology group of the nonabelian embedding tensor \Lambda by

    \mathrm{H}\mathrm{H}^n_\Lambda(H, L) = \frac{{\bf Z}^n_\Lambda(H, L)}{{\bf B}^n_\Lambda(H, L)}.

    Proposition 4.5. Let H\stackrel{\Lambda_1}{\longrightarrow}L and H\stackrel{\Lambda_2}{\longrightarrow}L be two nonabelian embedding tensor 3-Lie algebras and let (f_L, f_{H}) be a homomorphism from H\stackrel{\Lambda_1}{\longrightarrow}L to H\stackrel{\Lambda_2}{\longrightarrow}L in which f_H is invertible. We define a map \Psi:\mathcal{C}^{n}_{\Lambda_1}(H, L)\rightarrow \mathcal{C}^{n}_{\Lambda_2}(H, L) by

    \begin{align*} \Psi (\phi)(\mathfrak{H}_1, \mathfrak{H}_2, \ldots, \mathfrak{H}_{n-1}, w) = f_L\big(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, f_H^{-1}(u_{n-1})\wedge f_H^{-1}(v_{n-1}), f_H^{-1}(w) )\big), \end{align*}

    for all \phi\in \mathcal{C}^{n}_{\mathrm{\Lambda_1}}(H, L), \mathfrak{H}_i = u_i\wedge v_i\in \wedge^2 H, 1\leq i\leq {n-1} , and w\in H . Then \Psi: (\mathcal{C}^{n+1}_{\mathrm{\Lambda_1}}(H, L), \delta_{\Lambda_1})\rightarrow (\mathcal{C}^{n+1}_{\mathrm{\Lambda_2}}(H, L), \delta_{\Lambda_2}) is a cochain map.

    That is, the following diagram commutes:

    Consequently, it induces a homomorphism \Psi^* from the cohomology group \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_1}}(H, L) to \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_2}}(H, L) .

    Proof. For any \phi\in \mathcal{C}^{n}_{\mathrm{\Lambda_1}}(H, L), \mathfrak{H}_i = u_i\wedge v_i\in \wedge^2 H, 1\leq i\leq {n} , and w\in H , by Eqs (4.6)–(4.8) and Proposition 2.11, we have

    \begin{align*} &(\delta_{\Lambda_2}\Psi(\phi))(\mathfrak{H}_1, \mathfrak{H}_2, \ldots, \mathfrak{H}_n, w)\\ = &\sum\limits_{1\leq j < k\leq n}(-1)^j\Psi(\phi)(\mathfrak{H}_1, \ldots, \widehat{\mathfrak{H}_j}, \ldots, \mathfrak{H}_{k-1}, u_k \wedge[u_j, v_j, v_k]_{\Lambda_2}+[u_j, v_j, u_k]_{\Lambda_2}\wedge v_k, \ldots, \mathfrak{H}_n, w)\\ &+\sum\limits_{j = 1}^n(-1)^j\Psi(\phi)(\mathfrak{H}_1, \ldots, \widehat{\mathfrak{H}_j}, \ldots, \mathfrak{H}_{n}, [u_j, v_j, w]_{\Lambda_2})+\sum\limits_{j = 1}^n(-1)^{j+1}\mathfrak{l}_{\Lambda_2}(\mathfrak{H}_j, \Psi(\phi)(\mathfrak{H}_1, \ldots, \widehat{\mathfrak{H}_j}, \ldots, \mathfrak{H}_{n}, w))\\ &+(-1)^{n+1}\mathfrak{m}_{\Lambda_2}(u_n, \Psi(\phi)(\mathfrak{H}_1, \ldots, \mathfrak{H}_{n-1}, v_n), w)+(-1)^{n+1}\mathfrak{r}_{\Lambda_2}(\Psi(\phi)(\mathfrak{H}_1, \ldots, \mathfrak{H}_{n-1}, u_n), v_n, w) \\ = &\sum\limits_{1\leq j < k\leq n}(-1)^jf_L(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_{k-1})\wedge f_H^{-1}(v_{k-1}), \\ &f_H^{-1}(u_k) \wedge f_H^{-1}([u_j, v_j, v_k]_{\Lambda_2})+f_H^{-1}([u_j, v_j, u_k]_{\Lambda_2}) \wedge f_H^{-1}(v_k), \ldots, f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), f_H^{-1}(w) ))\\ &+\sum\limits_{j = 1}^n(-1)^jf_L(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), f_H^{-1}([u_j, v_j, w]_{\Lambda_2})))\\ &+\sum\limits_{j = 1}^n(-1)^{j+1}\mathfrak{l}_{\Lambda_2}(\mathfrak{H}_j, f_L(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), f_H^{-1}(w))))\\ &+(-1)^{n+1}\mathfrak{m}_{\Lambda_2}(u_n, f_L(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, f_H^{-1}(u_{n-1})\wedge f_H^{-1}(v_{n-1}), f_H^{-1}(v_n))), w)\\ &+(-1)^{n+1}\mathfrak{r}_{\Lambda_2}(f_L(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, f_H^{-1}(u_{n-1})\wedge f_H^{-1}(v_{n-1}), f_H^{-1}(u_n))), v_n, w)\\ = &f_L\Big(\sum\limits_{1\leq j < k\leq n}(-1)^j\phi\big(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_{k-1})\wedge f_H^{-1}(v_{k-1}), \\ &f_H^{-1}(u_k) \wedge [f_H^{-1}(u_j), f_H^{-1}(v_j), f_H^{-1}(v_k)]_{\Lambda_1}+[f_H^{-1}(u_j), f_H^{-1}(v_j), f_H^{-1}(u_k)]_{\Lambda_1} \wedge f_H^{-1}(v_k), \ldots, \\ &f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), f_H^{-1}(w)\big)+\sum\limits_{j = 1}^n(-1)^j\phi\big(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), \\ &[f_H^{-1}(u_j), f_H^{-1}(v_j), f_H^{-1}(w)]_{\Lambda_1}\big)+\sum\limits_{j = 1}^n(-1)^{j+1}\mathfrak{l}_{\Lambda_1}(f_H^{-1}(u_j), f_H^{-1}(v_j), \phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \\ &\widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), f_H^{-1}(w)))+(-1)^{n+1}\mathfrak{m}_{\Lambda_1}(f_H^{-1}(u_n), \phi(f_H^{-1}(u_1), f_H^{-1}(v_1), \ldots, \\ &f_H^{-1}(u_{n-1})\wedge f_H^{-1}(v_{n-1}), f_H^{-1}(v_n)), f_H^{-1}(w))+(-1)^{n+1}\mathfrak{r}_{\Lambda_1}(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \\ &f_H^{-1}(u_{n-1})\wedge f_H^{-1}(v_{n-1}), f_H^{-1}(u_n)), f_H^{-1}(v_n), f_H^{-1}(w))\Big)\\ = &f_L(\delta_{\Lambda_1}\phi)(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, f_H^{-1}(u_{n})\wedge f_H^{-1}(v_{n}), f_H^{-1}(w))\\ = &\Psi(\delta_{\Lambda_1}\phi)(\mathfrak{H}_1, \mathfrak{H}_2, \ldots, \mathfrak{H}_n, w). \end{align*}

    Hence, \Psi is a cochain map and induces a cohomology group homomorphism \Psi^*: \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_1}}(H, L) \rightarrow \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_2}}(H, L) .

    At the conclusion of this section, we employ the well-established cohomology theory to describe the infinitesimal deformations of nonabelian embedding tensors on 3-Lie algebras.

    Definition 4.6. Let \Lambda: H\rightarrow L be a nonabelian embedding tensor on a 3-Lie algebra (L, [−, −, −]_L) with respect to a coherent action (H, [−, −, −]_H; \rho^\dagger) . An infinitesimal deformation of \Lambda is a nonabelian embedding tensor of the form \Lambda_t = \Lambda+t\Lambda_1 , where t is a parameter with t^2 = 0.

    Let \Lambda_t = \Lambda+t\Lambda_1 be an infinitesimal deformation of \Lambda , then we have

    \begin{align*} [\Lambda_tu_1, \Lambda_tu_2, \Lambda_tu_3 ]_L = & \Lambda_t\rho(\Lambda_tu_1, \Lambda_tu_2)u_3+\Lambda_t[u_1, u_2, u_3]_H, \end{align*}

    for all u_1, u_2, u_3\in H. Therefore, we obtain the following equation:

    \begin{align} &[\Lambda_1u_1, \Lambda u_2, \Lambda u_3]_L+[\Lambda u_1, \Lambda_1 u_2, \Lambda u_3]_L+[\Lambda u_1, \Lambda u_2, \Lambda_1 u_3]_L \\ & = \Lambda_1\rho(\Lambda u_1, \Lambda u_2)u_3+\Lambda\rho(\Lambda_1 u_1, \Lambda u_2)u_3+\Lambda\rho(\Lambda u_1, \Lambda_1 u_2)u_3+\Lambda_1 [u_1, u_2, u_3]_H. \end{align} (4.9)

    It follows from Eq (4.9) that \Lambda_1\in \mathcal{C}_\Lambda^1(H, L) is a 1-cocycle in the cohomology complex of \Lambda . Thus the cohomology class of \Lambda_1 defines an element in \mathrm{H}\mathrm{H}_\Lambda^1(H, L) .

    Let \Lambda_t = \Lambda+t\Lambda_1 and \Lambda'_t = \Lambda+t\Lambda'_1 be two infinitesimal deformations of \Lambda . They are said to be equivalent if there exists a_1\wedge a_2\in \wedge^2 L such that the pair (id_L+tad(a_1, a_2), id_H+t\rho(a_1, a_2)) is a homomorphism from H\stackrel{\Lambda_t}{\longrightarrow}L to H\stackrel{\Lambda'_t}{\longrightarrow}L . That is, the following conditions must hold:

    1) The maps id_L+tad(a_1, a_2):L\rightarrow L and id_H+t\rho(a_1, a_2): H\rightarrow H are two 3-Lie algebra homomorphisms,

    2) The pair (id_L+tad(a_1, a_2), id_H+t\rho(a_1, a_2)) satisfies:

    \begin{array}{c} \big(id_H+t\rho(a_1, a_2)\big)\big(\rho(a, b)u\big) = \rho\big((id_L+tad(a_1, a_2))a, (id_L+tad(a_1, a_2))b\big)\big(id_H+t\rho(a_1, a_2)\big)(u), \\ (\Lambda+t\Lambda'_1)\big(id_H+t\rho(a_1, a_2)\big)(u) = \big(id_L+tad(a_1, a_2)\big)\big((\Lambda+t\Lambda_1)u\big), \end{array} (4.10)

    for all a, b\in L, u\in H. It is easy to see that Eq (4.10) gives rise to

    \Lambda_1 u-\Lambda'_1u = \Lambda\rho(a_1, a_2)u-[a_1, a_2, \Lambda u] = \delta_\Lambda(a_1, a_2)u\in \mathcal{C}_\Lambda^1(H, L).

    This shows that \Lambda_1 and \Lambda'_1 are cohomologous. Thus, their cohomology classes are the same in \mathrm{H}\mathrm{H}_\Lambda^1(H, L) .

    Conversely, any 1-cocycle \Lambda_1 gives rise to the infinitesimal deformation \Lambda+t\Lambda_1 . Furthermore, we have arrived at the following result.

    Theorem 4.7. Let \Lambda: H\rightarrow L be a nonabelian embedding tensor on (L, [−, −, −]_L) with respect to (H, [−, −, −]_H; \rho^{\dagger}) . Then, there exists a bijection between the set of all equivalence classes of infinitesimal deformations of \Lambda and the first cohomology group \mathrm{H}\mathrm{H}_\Lambda^1(H, L) .

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by the National Natural Science Foundation of China (Grant No. 12361005) and the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province (Grant No. 2023013).

    The authors declare there is no conflicts of interest.



    [1] J. F. Fink, M. S. Jacobson, n-domination in graphs, in Graph Theory with Applications to Algorithms and Computer Science, Wiley, (1985), 127–147.
    [2] Y. Caro, On the k-domination and k-transversal numbers of graphs and hypergraphs, Ars Comb., 29 (1990), 49–55.
    [3] Y. Caro, Y. Roditty, A note on the k-domination number of a graph, Int. J. Math. Math. Sci., 13 (1990), 205–206. https://doi.org/10.1155/S016117129000031X doi: 10.1155/S016117129000031X
    [4] M. Chellali, O. Favaron, A. Hansberg, L. Volkmann, k-domination and k-independence in graphs: A survey, Graphs Comb., 28 (2012), 1–55. https://DOI 10.1007/s00373-011-1040-3 doi: 10.1007/s00373-011-1040-3
    [5] G. B. Ekinci, C. Bujtás, Bipartite graphs with close domination and k-domination numbers, Open Math., 18 (2020), 873–885. https://doi.org/10.1515/math-2020-0047 doi: 10.1515/math-2020-0047
    [6] O. Favaron, k-domination and k-independence in graphs, Ars Comb., 25 (1988), 159–167.
    [7] O. Favaron, A. Hansberg, L. Volkmann, On k-domination and minimum degree in graphs, J. Graph Theory, 57 (2008), 33–40. https://doi.org/10.1002/jgt.20279 doi: 10.1002/jgt.20279
    [8] A. Hansberg, R. Pepper, On k-domination and j-independence in graphs, Discrete Appl. Math., 161 (2013), 1472–1480. https://doi:10.1016/j.dam.2013.02.008 doi: 10.1016/j.dam.2013.02.008
    [9] A. Hansberg, On the k-domination number, the domination number and the cycle of length four, Utilitas Math., 98 (2015), 65–76.
    [10] S. Bermudo, J. C. Hernández-Gómez, J. M. Sigarreta, On the total k-domination in graphs, Discuss. Math. Graph Theory, 38 (2018), 301–317. https://doi:10.7151/dmgt.2016 doi: 10.7151/dmgt.2016
    [11] S. Bermudo, J. L. Sánchez, J. M. Sigarreta, Total k-domination in Cartesian product graphs, Period. Math. Hung., 75 (2017), 255–267. https://DOI 10.1007/s10998-017-0191-2 doi: 10.1007/s10998-017-0191-2
    [12] H. Fernau, J. A. Rodríguez-Velázquez, J. M. Sigarreta, Global powerful r-alliances and total k-domination in graphs, Util. Math., 98 (2015), 127–147.
    [13] V. R. Kulli, On n-total domination number in graphs, in Graph Theory, Combinatorics, Algorithms and Applications, SIAM, Philadelphia, USA, (1991), 319–324.
    [14] T. W. Haynes, S. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
    [15] T. W. Haynes, S. Hedetniemi, P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
    [16] A. Cabrera-Martínez, New bounds on the double domination number of trees, Discrete Appl. Math., 315 (2022), 97–103. https://doi.org/10.1016/j.dam.2022.03.022 doi: 10.1016/j.dam.2022.03.022
    [17] M. Hajian, M. A. Henning, N. Jafari Rad, A classification of cactus graphs according to their domination number, Discuss. Math. Graph Theory, 42 (2022), 613–626. https://doi.org/10.7151/dmgt.2295 doi: 10.7151/dmgt.2295
    [18] M. A. Henning, P. Kaemawichanurat, Connected domination critical graphs with a block having maximum number of cut vertices, Appl. Math. Comput., 406 (2021), 126248. https://doi.org/10.1016/j.amc.2021.126248 doi: 10.1016/j.amc.2021.126248
    [19] M. A. Henning, A. Yeo, A new upper bound on the total domination number in graphs with minimum degree six, Discrete Appl. Math., 302 (2021), 1–7. https://doi.org/10.1016/j.dam.2021.05.033 doi: 10.1016/j.dam.2021.05.033
    [20] I. Gutman, S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer, Berlin, 1989.
    [21] S. Ding, M. I. Qureshi, S. F. Shah, A. Fahad, M. K. Jamil, J. B. Liu, Face index of nanotubes and regular hexagonal lattices, Int. J. Quantum Chem., 121 (2021), e26761. https://doi.org/10.1002/qua.26761 doi: 10.1002/qua.26761
    [22] J. B. Liu, Y. Bao, W. T. Zheng, Network coherence analysis on a family of nested weighted n-polygon networks, Fractals, 29 (2021), 2150260–2150276. https://doi.org/10.1142/S0218348X21502601 doi: 10.1142/S0218348X21502601
    [23] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
    [24] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
    [25] T. Haynes, D. Kinsley, E. Seier, Y. Zou, A quantitative analysis of secondary RNA structure using domination based parameters on trees, BMC Bioinf., 7 (2006), 108. https://doi.org/10.1186/1471-2105-7-108 doi: 10.1186/1471-2105-7-108
    [26] S. Bermudo, R. A. Higuita, J. Rada, Domination in hexagonal chains, Appl. Math. Comput., 369 (2020), 124817. https://doi.org/10.1016/j.amc.2019.124817 doi: 10.1016/j.amc.2019.124817
    [27] S. Bermudo, R. A. Higuita, J. Rada, Domination number of catacondensed hexagonal systems, J. Math. Chem., 59 (2021), 1348–1367. https://doi.org/10.1007/s10910-021-01243-5 doi: 10.1007/s10910-021-01243-5
    [28] L. Hutchinson, V. Kamat, C. E. Larson, S. Mehta, D. Muncy, N. Van Cleemput, Automated conjecturing VI : domination number of benzenoids, Match-Commun. Math. Comput. Chem., 80 (2018), 821–834.
    [29] T. Iqbal, M. Imran, S. A. U. H. Bokhary, Domination and power domination in certain families of nanostars dendrimers, IEEE Access, 8 (2020), 130947–130951.
    [30] S. Majstorović, A. Klobučar, Upper bound for total domination number on linear and double hexagonal chains, Int. J. Chem. Mod., 3 (2010), 139–145.
    [31] J. Quadras, A. S. Merlin Mahizl. I. Rajasingh, R. S. Rajan, Domination in certain chemical graphs, J. Math. Chem., 53 (2015), 207–219. https://doi.org/10.1007/s10910-014-0422-1 doi: 10.1007/s10910-014-0422-1
    [32] D. Vukičević, A. Klobučar, K-Dominating sets on linear benzenoids and on the infinite hexagonal grid, Croat. Chem. Acta, 80 (2007), 187–191.
    [33] N. Almalki, P. Kaemawichanurat, Domination and independent domination in hexagonal systems, Mathematics, 10 (2022). https://doi.org/10.3390/math10010067
    [34] Y. Gao, E. Zhu, Z. Shao, I. Gutman, A. Klobučar, Total domination and open packing in some chemical graphs, J. Math. Chem., 56 (2018), 1481–1492. https://doi.org/10.1007/s10910-018-0877-6 doi: 10.1007/s10910-018-0877-6
    [35] A. Klobučar, A. Klobučar, Total and double total domination number on hexagonal grid, Mathematics, 7 (2019), 1110. https://doi.org/10.3390/math7111110 doi: 10.3390/math7111110
    [36] S. Majstorović, T. Došlić, A. Klobučar, K-Domination on hexagonal cactus chains, Kragujevac J. Math., 36 (2012), 335–347.
    [37] S. Majstorović, A. Klobučar, T. Došlić, Domination numbers of m-cactus chains, Ars Comb., 125 (2016), 11–22.
  • This article has been cited by:

    1. Halyna V. Tkachuk, Pavlo V. Merzlykin, Ivan I. Donchev, STEM project design in computer microelectronics education, 2025, 2833-5473, 10.55056/cte.929
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1990) PDF downloads(82) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog