Research article Special Issues

PBDiff: Neural network based program-wide diffing method for binaries


  • Received: 10 September 2021 Revised: 27 December 2021 Accepted: 05 January 2022 Published: 13 January 2022
  • Program-wide binary code diffing is widely used in the binary analysis field, such as vulnerability detection. Mature tools, including BinDiff and TurboDiff, make program-wide diffing using rigorous comparison basis that varies across versions, optimization levels and architectures, leading to a relatively inaccurate comparison result. In this paper, we propose a program-wide binary diffing method based on neural network model that can make diffing across versions, optimization levels and architectures. We analyze the target comparison files in four different granularities, and implement the diffing by both top down process and bottom up process according to the granularities. The top down process aims to narrow the comparison scope, selecting the candidate functions that are likely to be similar according to the call relationship. Neural network model is applied in the bottom up process to vectorize the semantic features of candidate functions into matrices, and calculate the similarity score to obtain the corresponding relationship between functions to be compared. The bottom up process improves the comparison accuracy, while the top down process guarantees efficiency. We have implemented a prototype PBDiff and verified its better performance compared with state-of-the-art BinDiff, Asm2vec and TurboDiff. The effectiveness of PBDiff is further illustrated through the case study of diffing and vulnerability detection in real-world firmware files.

    Citation: Lu Yu, Yuliang Lu, Yi Shen, Jun Zhao, Jiazhen Zhao. PBDiff: Neural network based program-wide diffing method for binaries[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2774-2799. doi: 10.3934/mbe.2022127

    Related Papers:

    [1] Rinaldo M. Colombo, Mauro Garavello . A Well Posed Riemann Problem for the --System at a Junction. Networks and Heterogeneous Media, 2006, 1(3): 495-511. doi: 10.3934/nhm.2006.1.495
    [2] Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016
    [3] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [4] Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008
    [5] Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012
    [6] Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005
    [7] Jan Friedrich, Simone Göttlich, Annika Uphoff . Conservation laws with discontinuous flux function on networks: a splitting algorithm. Networks and Heterogeneous Media, 2023, 18(1): 1-28. doi: 10.3934/nhm.2023001
    [8] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [9] Michael Herty, J.-P. Lebacque, S. Moutari . A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826. doi: 10.3934/nhm.2009.4.813
    [10] Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
  • Program-wide binary code diffing is widely used in the binary analysis field, such as vulnerability detection. Mature tools, including BinDiff and TurboDiff, make program-wide diffing using rigorous comparison basis that varies across versions, optimization levels and architectures, leading to a relatively inaccurate comparison result. In this paper, we propose a program-wide binary diffing method based on neural network model that can make diffing across versions, optimization levels and architectures. We analyze the target comparison files in four different granularities, and implement the diffing by both top down process and bottom up process according to the granularities. The top down process aims to narrow the comparison scope, selecting the candidate functions that are likely to be similar according to the call relationship. Neural network model is applied in the bottom up process to vectorize the semantic features of candidate functions into matrices, and calculate the similarity score to obtain the corresponding relationship between functions to be compared. The bottom up process improves the comparison accuracy, while the top down process guarantees efficiency. We have implemented a prototype PBDiff and verified its better performance compared with state-of-the-art BinDiff, Asm2vec and TurboDiff. The effectiveness of PBDiff is further illustrated through the case study of diffing and vulnerability detection in real-world firmware files.





    [1] Synopsys 2020 open source security and risk analysis report, 2020. Avaiable from: https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html?cmp=pr-sig.
    [2] Eliminating vulnerabilities in third-party code with binary analysis, 2020. Avaiable from: https://codesonar.grammatech.com/eliminating-vulnerabilities-in-third-party-code-with-binary-analysis.
    [3] Breaking down mirai: An iot ddos botnet, 2020. Avaiable from: https://www.imperva.com/blog/malware-analysis-mirai-ddos-botnet/.
    [4] Diaphora, 2020. Avaiable from: https://github.com/joxeankoret/diaphora.
    [5] Zynamics bindiff, 2020. Avaiable from: https://www.zynamics.com/bindiff.html.
    [6] Turbodiff, 2020, Avaiable from https://www.coresecurity.com/core-labs/open-source-tools/turbodiff-cs.
    [7] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, H. Yin, Scalable graph-based bug search for firmware images, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM, (2016), 480–491. https://doi.org/10.1145/2976749.2978370
    [8] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, D. Song, Neural network-based graph embedding for cross-platform binary code similarity detection, in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, ACM, (2017), 363–376. https://doi.org/10.1145/3133956.3134018
    [9] J. Gao, X. Yang, Y. Fu, Y. Jiang, J. Sun, Vulseeker: a semantic learning based vulnerability seeker for cross-platform binary, in Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ACM, (2018), 896–899. https://doi.org/10.1145/3238147.3240480
    [10] K. Redmond, L. Luo, Q. Zeng, A cross-architecture instruction embedding model for natural language, preprint, arXiv: 1812.09652.
    [11] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, S. Wu, Order matters: semantic-aware neural networks for binary code similarity detection, in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), 1145–1152. https://doi.org/10.1609/aaai.v34i01.5466
    [12] Y. Bai, H. Ding, K. Gu, Y. Sun, W. Wang, Learning-based efficient graph similarity computation via multi-scale convolutional set matching, in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), 3219–3226. https://doi.org/10.1609/aaai.v34i04.5720
    [13] Y. Duan, X. Li, J. Wang, H. Yin, Deepbindiff: Learning program-wide code representations for binary diffing, in Network and Distributed System Security Symposium, 2020.
    [14] S. H. Ding, B. C. Fung, P. Charland, Asm2vec: Boosting static representation robustness for binary clone search against code obfuscation and compiler optimization, in 2019 IEEE Symposium on Security and Privacy (SP), IEEE, (2019), 472–489. https://doi.org/10.1109/SP.2019.00003
    [15] Z. Yu, W. Zheng, J. Wang, Q. Tang, S. Nie, S. Wu, Codecmr: Cross-modal retrieval for function-level binary source code matching, Adv. Neural Inf. Process. Syst., 33 (2020).
    [16] Y. Rubner, C. Tomasi, L. J. Guibas, A metric for distributions with applications to image databases, in Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), IEEE, (1998), 59–66. https://doi.org/10.1109/ICCV.1998.710701
    [17] D. Callahan, A. Carle, M. W. Hall, K. Kennedy, Constructing the procedure call multigraph, IEEE Trans. Software Eng., 16 (1990), 483–487. https://doi.org/10.1109/32.54302 doi: 10.1109/32.54302
    [18] U. P. Khedker, A. Sanyal, B. Karkare, Data flow analysis: theory and practice, CRC Press, (2017). https://doi.org/10.1201/9780849332517
    [19] L. Yu, Y. Shen, Z. Pan, Structure analysis of function call network based on percolation, in 2018 Eighth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), IEEE, (2018), 350–354. https://doi.org/10.1109/IMCCC.2018.00080
    [20] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, et al., Skip-thought vectors, in Adv. Neural Inf. Process. Syst., (2015), 3294–3302.
    [21] T. N. Kipf, M. Welling, Variational graph auto-encoders, preprint, arXiv: 1611.07308.
    [22] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, et al., Signature verification using a siamese time delay neural network, Intern. J. Pattern Recognit. Artif. Intell., 7 (1993), 669–688. https://doi.org/10.1142/S0218001493000339 doi: 10.1142/S0218001493000339
    [23] H. Flake, Structural comparison of executable objects, in Detection of intrusions and malware and vulnerability assessment, DIMVA, (2004), 161–173.
    [24] D. Gao, M. K. Reiter, D. Song, Binhunt: Automatically finding semantic differences in binary programs, in International Conference on Information and Communications Security, Springer, (2008), 238–255. https://doi.org/10.1007/978-3-540-88625-9_16
    [25] J. Ming, M. Pan, D. Gao, ibinhunt: Binary hunting with inter-procedural control flow, in International Conference on Information Security and Cryptology, Springer, (2012), 92–109. https://doi.org/10.1007/978-3-642-37682-5-8
    [26] Y. David, E. Yahav, Tracelet-based code search in executables, Acm Sigplan Not., 49 (2014), 349–360. https://doi.org/10.1145/2666356.2594343 doi: 10.1145/2666356.2594343
    [27] L. Nouh, A. Rahimian, D. Mouheb, M. Debbabi, A. Hanna, Binsign: fingerprinting binary functions to support automated analysis of code executables, in IFIP International Conference on ICT Systems Security and Privacy Protection, Springer, (2017), 341–355. https://doi.org/10.1007/978-3-319-58469-0-23
    [28] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, T. Holz, Cross-architecture bug search in binary executables, in 2015 IEEE Symposium on Security and Privacy, IEEE, (2015), 709–724. https://doi.org/10.1109/SP.2015.49
    [29] A. J. P. Tixier, G. Nikolentzos, P. Meladianos, M. Vazirgiannis, Graph classification with 2d convolutional neural networks, in International Conference on Artificial Neural Networks, Springer, (2019), 578–593. https://doi.org/10.1007/978-3-030-30493-5-54
    [30] L. Wang, B. Zong, Q. Ma, W. Cheng, J. Ni, W. Yu, et al., Inductive and unsupervised representation learning on graph structured objects, in International Conference On Learning Representations, 2020.
    [31] S. Liu, M. F. Demirel, Y. Liang, N-gram graph: Simple unsupervised representation for graphs, with applications to molecules, preprint, arXiv: 1806.09206.
    [32] Y. Li, C. Gu, T. Dullien, O. Vinyals, P. Kohli, Graph matching networks for learning the similarity of graph structured objects, in International Conference on Machine Learning, PMLR, (2019), 3835–3845.
    [33] R. Wang, J. Yan, X. Yang, Learning combinatorial embedding networks for deep graph matching, in Proceedings of the IEEE/CVF International Conference on Computer Vision, (2019), 3056–3065.
    [34] B. Jiang, P. Sun, J. Tang, B. Luo, Glmnet: Graph learning-matching networks for feature matching, preprint, arXiv: 1911.07681.
    [35] H. Zhang, Z. Qian, Precise and accurate patch presence test for binaries, in 27th USENIX Security Symposium, (2018), 887–902.
    [36] S. C. Wang, C. L. Liu, Y. Li, W. Y. Xu, Semdiff: Finding semtic differences in binary programs based on angr, in ITM Web of Conferences, 12 (2017), 03029. https://doi.org/10.1051/itmconf/20171203029
    [37] C. Yang, Z. Liu, D. Zhao, M. Sun, E. Chang, Network representation learning with rich text information, in Twenty-fourth international joint conference on artificial intelligence, (2015), 2111–2117.
    [38] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, Z. Zhang, Neural machine translation inspired binary code similarity comparison beyond function pairs, preprint, arXiv: 1808.04706.
    [39] S. Alrabaee, P. Shirani, L. Wang, M. Debbabi, Sigma: A semantic integrated graph matching approach for identifying reused functions in binary code, Digital Invest., 12 (2015), S61–S71. https://doi.org/10.1016/j.diin.2015.01.011 doi: 10.1016/j.diin.2015.01.011
    [40] R. Li, C. Zhang, C. Feng, X. Zhang, C. Tang, Locating vulnerability in binaries using deep neural networks, Ieee Access, 7 (2019), 134660–134676. https://doi.org/10.1109/ACCESS.2019.2942043 doi: 10.1109/ACCESS.2019.2942043
    [41] Y. Hu, H. Wang, Y. Zhang, B. Li and D. Gu, A semantics-based hybrid approach on binary code similarity comparison, IEEE Trans. Software Eng., 47(2021), 1241-1258. https://doi.org/10.1109/TSE.2019.2918326 doi: 10.1109/TSE.2019.2918326
    [42] S. H. Ding, B. C. Fung, P. Charland, Kam1n0: Mapreduce-based assembly clone search for reverse engineering, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2016), 461–470. https://doi.org/10.1145/2939672.2939719
    [43] Y. Li, J. Jang and X. Ou, Topology-aware hashing for effective control flow graph similarity analysis, in International Conference on Security and Privacy in Communication Systems, Springer, (2019), 278–298. https://doi.org/10.1007/978-3-030-37228-6-14
  • This article has been cited by:

    1. R. M. Colombo, M. Herty, V. Sachers, On Conservation Laws at a Junction, 2008, 40, 0036-1410, 605, 10.1137/070690298
    2. BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART, EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA, 2010, 20, 0218-2025, 1859, 10.1142/S0218202510004817
    3. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057
    4. M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks, 2010, 33, 01704214, 845, 10.1002/mma.1197
    5. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    6. Jochen Kall, Rukhsana Kausar, Stephan Trenn, Modeling water hammers via PDEs and switched DAEs with numerical justification, 2017, 50, 24058963, 5349, 10.1016/j.ifacol.2017.08.927
    7. Michael Herty, Coupling Conditions for Networked Systems of Euler Equations, 2008, 30, 1064-8275, 1596, 10.1137/070688535
    8. Kristen DeVault, Pierre A. Gremaud, Vera Novak, Mette S. Olufsen, Guillaume Vernières, Peng Zhao, Blood Flow in the Circle of Willis: Modeling and Calibration, 2008, 7, 1540-3459, 888, 10.1137/07070231X
    9. CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042
    10. Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray, Anatoly Zlotnik, 2019, Chapter 8, 978-3-030-27549-5, 59, 10.1007/978-3-030-27550-1_8
    11. Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper, 2012, Chapter 7, 978-3-0348-0132-4, 123, 10.1007/978-3-0348-0133-1_7
    12. Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye, Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks, 2010, 31, 1064-8275, 4633, 10.1137/080722138
    13. Jeroen J. Stolwijk, Volker Mehrmann, Error Analysis and Model Adaptivity for Flows in Gas Networks, 2018, 26, 1844-0835, 231, 10.2478/auom-2018-0027
    14. Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x
    15. Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko, Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results, 2021, 13, 2073-8994, 1300, 10.3390/sym13071300
    16. Rinaldo M. Colombo, Mauro Garavello, On the Cauchy Problem for the p-System at a Junction, 2008, 39, 0036-1410, 1456, 10.1137/060665841
    17. J.B. Collins, P.A. Gremaud, Analysis of a domain decomposition method for linear transport problems on networks, 2016, 109, 01689274, 61, 10.1016/j.apnum.2016.06.004
    18. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066
    19. Martin Gugat, Michael Herty, Siegfried Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, 2017, 12, 1556-181X, 371, 10.3934/nhm.2017016
    20. H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373
    21. Yannick Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, 2020, 269, 00220396, 1192, 10.1016/j.jde.2020.01.005
    22. Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi, Numerical modelling of open channel junctions using the Riemann problem approach, 2019, 57, 0022-1686, 662, 10.1080/00221686.2018.1534283
    23. Mapundi K. Banda, Michael Herty, Towards a space mapping approach to dynamic compressor optimization of gas networks, 2011, 32, 01432087, 253, 10.1002/oca.929
    24. Rinaldo M. Colombo, 2011, Chapter 13, 978-1-4419-9553-7, 267, 10.1007/978-1-4419-9554-4_13
    25. Seok Woo Hong, Chongam Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, 2011, 65, 02712091, 707, 10.1002/fld.2212
    26. Michael Herty, Mohammed Seaïd, Assessment of coupling conditions in water way intersections, 2013, 71, 02712091, 1438, 10.1002/fld.3719
    27. Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759
    28. R. Borsche, A. Klar, Flooding in urban drainage systems: coupling hyperbolic conservation laws for sewer systems and surface flow, 2014, 76, 02712091, 789, 10.1002/fld.3957
    29. Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034
    30. Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017
    31. Mapundi Kondwani Banda, 2015, Chapter 9, 978-3-319-11321-0, 439, 10.1007/978-3-319-11322-7_9
    32. Yogiraj Mantri, Sebastian Noelle, Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law, 2021, 429, 00219991, 110011, 10.1016/j.jcp.2020.110011
    33. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    34. Mauro Garavello, 2011, Chapter 15, 978-1-4419-9553-7, 293, 10.1007/978-1-4419-9554-4_15
    35. Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke, A multiscale approach to liquid flows in pipes I: The single pipe, 2012, 219, 00963003, 856, 10.1016/j.amc.2012.06.054
    36. Raul Borsche, Jochen Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, 2014, 273, 00219991, 658, 10.1016/j.jcp.2014.05.042
    37. Mapundi K. Banda, Michael Herty, Multiscale modeling for gas flow in pipe networks, 2008, 31, 01704214, 915, 10.1002/mma.948
    38. Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022
    39. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004
    40. Raul Borsche, Numerical schemes for networks of hyperbolic conservation laws, 2016, 108, 01689274, 157, 10.1016/j.apnum.2016.01.006
    41. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3
    42. Christian Contarino, Eleuterio F. Toro, Gino I. Montecinos, Raul Borsche, Jochen Kall, Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes, 2016, 315, 00219991, 409, 10.1016/j.jcp.2016.03.049
    43. Michael Herty, Nouh Izem, Mohammed Seaid, Fast and accurate simulations of shallow water equations in large networks, 2019, 78, 08981221, 2107, 10.1016/j.camwa.2019.03.049
    44. F. Daude, P. Galon, A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction, 2018, 362, 00219991, 375, 10.1016/j.jcp.2018.01.055
    45. Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3
    46. Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66
    47. F. Daude, R.A. Berry, P. Galon, A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model, 2019, 354, 00457825, 820, 10.1016/j.cma.2019.06.010
    48. Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112
    49. Mouhamadou Samsidy Goudiaby, Gunilla Kreiss, Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data, 2020, 17, 0219-8916, 185, 10.1142/S021989162050006X
    50. Michael Herty, Mohammed Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, 2008, 56, 02712091, 485, 10.1002/fld.1531
    51. RINALDO M. COLOMBO, CRISTINA MAURI, EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION, 2008, 05, 0219-8916, 547, 10.1142/S0219891608001593
    52. Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye, On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections, 2015, 276, 03770427, 81, 10.1016/j.cam.2014.08.021
    53. Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin, The interface coupling of the gas dynamics equations, 2008, 66, 0033-569X, 659, 10.1090/S0033-569X-08-01087-X
    54. Sara Grundel, Michael Herty, Hyperbolic discretization of simplified Euler equation via Riemann invariants, 2022, 106, 0307904X, 60, 10.1016/j.apm.2022.01.006
    55. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    56. Edwige Godlewski, Pierre-Arnaud Raviart, 2021, Chapter 7, 978-1-0716-1342-9, 627, 10.1007/978-1-0716-1344-3_7
    57. Jens Brouwer, Ingenuin Gasser, Michael Herty, Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks, 2011, 9, 1540-3459, 601, 10.1137/100813580
    58. Raul Borsche, Jochen Kall, High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models, 2016, 327, 00219991, 678, 10.1016/j.jcp.2016.10.003
    59. MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS, A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS, 2013, 10, 0219-8916, 431, 10.1142/S021989161350015X
    60. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    61. Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576
    62. Gunhild A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, 2014, 9, 1556-181X, 65, 10.3934/nhm.2014.9.65
    63. Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison, 2024, Mathematical Modeling of Chattering and the Optimal Design of a Valve*, 979-8-3503-1633-9, 76, 10.1109/CDC56724.2024.10886245
    64. Michael T. Redle, Michael Herty, An asymptotic-preserving scheme for isentropic flow in pipe networks, 2025, 20, 1556-1801, 254, 10.3934/nhm.2025013
    65. Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini, Coherence of Coupling Conditions for the Isothermal Euler System, 2025, 0170-4214, 10.1002/mma.10847
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3041) PDF downloads(55) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog