Research article Special Issues

Scheduling deferrable electric appliances in smart homes: a bi-objective stochastic optimization approach


  • Received: 21 August 2021 Accepted: 28 October 2021 Published: 08 November 2021
  • In the last decades, cities have increased the number of activities and services that depends on an efficient and reliable electricity service. In particular, households have had a sustained increase of electricity consumption to perform many residential activities. Thus, providing efficient methods to enhance the decision making processes in demand-side management is crucial for achieving a more sustainable usage of the available resources. In this line of work, this article presents an optimization model to schedule deferrable appliances in households, which simultaneously optimize two conflicting objectives: the minimization of the cost of electricity bill and the maximization of users satisfaction with the consumed energy. Since users satisfaction is based on human preferences, it is subjected to a great variability and, thus, stochastic resolution methods have to be applied to solve the proposed model. In turn, a maximum allowable power consumption value is included as constraint, to account for the maximum power contracted for each household or building. Two different algorithms are proposed: a simulation-optimization approach and a greedy heuristic. Both methods are evaluated over problem instances based on real-world data, accounting for different household types. The obtained results show the competitiveness of the proposed approach, which are able to compute different compromising solutions accounting for the trade-off between these two conflicting optimization criteria in reasonable computing times. The simulation-optimization obtains better solutions, outperforming and dominating the greedy heuristic in all considered scenarios.

    Citation: Diego G. Rossit, Segio Nesmachnow, Jamal Toutouh, Francisco Luna. Scheduling deferrable electric appliances in smart homes: a bi-objective stochastic optimization approach[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 34-65. doi: 10.3934/mbe.2022002

    Related Papers:

    [1] Hamed Karami, Pejman Sanaei, Alexandra Smirnova . Balancing mitigation strategies for viral outbreaks. Mathematical Biosciences and Engineering, 2024, 21(12): 7650-7687. doi: 10.3934/mbe.2024337
    [2] Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298
    [3] Holly Gaff, Elsa Schaefer . Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6(3): 469-492. doi: 10.3934/mbe.2009.6.469
    [4] Stefanie Fuderer, Christina Kuttler, Michael Hoelscher, Ludwig Christian Hinske, Noemi Castelletti . Data suggested hospitalization as critical indicator of the severity of the COVID-19 pandemic, even at its early stages. Mathematical Biosciences and Engineering, 2023, 20(6): 10304-10338. doi: 10.3934/mbe.2023452
    [5] Vinicius Piccirillo . COVID-19 pandemic control using restrictions and vaccination. Mathematical Biosciences and Engineering, 2022, 19(2): 1355-1372. doi: 10.3934/mbe.2022062
    [6] ZongWang, Qimin Zhang, Xining Li . Markovian switching for near-optimal control of a stochastic SIV epidemic model. Mathematical Biosciences and Engineering, 2019, 16(3): 1348-1375. doi: 10.3934/mbe.2019066
    [7] Zi Sang, Zhipeng Qiu, Xiefei Yan, Yun Zou . Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Mathematical Biosciences and Engineering, 2012, 9(1): 147-164. doi: 10.3934/mbe.2012.9.147
    [8] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [9] Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925
    [10] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
  • In the last decades, cities have increased the number of activities and services that depends on an efficient and reliable electricity service. In particular, households have had a sustained increase of electricity consumption to perform many residential activities. Thus, providing efficient methods to enhance the decision making processes in demand-side management is crucial for achieving a more sustainable usage of the available resources. In this line of work, this article presents an optimization model to schedule deferrable appliances in households, which simultaneously optimize two conflicting objectives: the minimization of the cost of electricity bill and the maximization of users satisfaction with the consumed energy. Since users satisfaction is based on human preferences, it is subjected to a great variability and, thus, stochastic resolution methods have to be applied to solve the proposed model. In turn, a maximum allowable power consumption value is included as constraint, to account for the maximum power contracted for each household or building. Two different algorithms are proposed: a simulation-optimization approach and a greedy heuristic. Both methods are evaluated over problem instances based on real-world data, accounting for different household types. The obtained results show the competitiveness of the proposed approach, which are able to compute different compromising solutions accounting for the trade-off between these two conflicting optimization criteria in reasonable computing times. The simulation-optimization obtains better solutions, outperforming and dominating the greedy heuristic in all considered scenarios.





    [1] C. Calvillo, A. Sánchez, J. Villar, Energy management and planning in smart cities, Renewable Sustainable Energy Rev., 55 (2016), 273–287. doi: 10.1016/j.rser.2015.10.133. doi: 10.1016/j.rser.2015.10.133
    [2] M. Harding, C. Lamarche, Empowering consumers through data and smart technology: Experimental evidence on the consequences of time-of-use electricity pricing policies, J. Policy Anal. Manage., 35 (2016), 906–931. doi: 10.1002/pam.21928. doi: 10.1002/pam.21928
    [3] M. Beaudin, H. Zareipour, Home energy management systems: A review of modelling and complexity, Renewable Sustainable Energy Rev., 45 (2015), 318–335. doi: 10.1016/j.rser.2015.01.046. doi: 10.1016/j.rser.2015.01.046
    [4] W. Li, T. Logenthiran, W. Woo, Intelligent multi-agent system for smart home energy management, in 2015 IEEE Innovative Smart Grid Technologies-Asia, (2015), 1–6. doi: 10.1109/ISGT-Asia.2015.7386985.
    [5] W. Li, T. Logenthiran, V. Phan, W. Woo, A novel smart energy theft system (SETS) for IoT-based smart home, IEEE Internet Things J., 6 (2019), 5531–5539. doi: 10.1109/JIOT.2019.2903281.
    [6] J. Chavat, J. Graneri, S. Nesmachnow, Household energy disaggregation based on pattern consumption similarities, in Ibero-American Congress of Smart Cities, (2019), 54–69.
    [7] J. Chavat, S. Nesmachnow, J. Graneri, Nonintrusive energy disaggregation by detecting similarities in consumption patterns, Revista Facultad de Ingeniería Universidad de Antioquia, 98 (2021), 27–46. doi: 10.17533/udea.redin.20200370.
    [8] R. Porteiro, S. Nesmachnow, L. Hernández-Callejo, Short term load forecasting of industrial electricity using machine learning, in Ibero-American Congress of Smart Cities, (2019), 146–161.
    [9] J. Kolter, M. Johnson, REDD: A public data set for energy disaggregation research, in Workshop on Data Mining Applications in Sustainability (SIGKDD), 2011.
    [10] D. Rossit, Desarrollo de modelos y algoritmos para optimizar redes logísticas de residuos sólidos urbanos, Universidad Nacional del Sur, 2018. Available from: http://repositoriodigital.uns.edu.ar/handle/123456789/4436.
    [11] D. Rossit, J. Toutouh, S. Nesmachnow, Exact and heuristic approaches for multi-objective garbage accumulation points location in real scenarios, Waste Manage., 105 (2020), 467–481. doi: 10.1016/j.wasman.2020.02.016. doi: 10.1016/j.wasman.2020.02.016
    [12] S. Robinson, Analysis of sample-path optimization, Math. Oper. Res., 21 (1996), 513–528. doi: 10.1287/moor.21.3.513. doi: 10.1287/moor.21.3.513
    [13] A. Shapiro, Monte Carlo simulation approach to stochastic programming, in Proceeding of the 2001 Winter Simulation Conference, (2001), 428–431. doi: 10.1109/WSC.2001.977317
    [14] A. Kleywegt, A. Shapiro, T. Homem-de-Mello, The sample average approximation method for stochastic discrete optimization, SIAM J. Optimization, 12 (2002), 479–502. doi: 10.1137/S1052623499363220. doi: 10.1137/S1052623499363220
    [15] V. Norkin, G. Pflug, A. Ruszczyński, A branch and bound method for stochastic global optimization, Math. Programm., 83 (1998), 425–450. doi: 10.1007/BF02680569. doi: 10.1007/BF02680569
    [16] B. Verweij, S. Ahmed, A. Kleywegt, G. Nemhauser, A. Shapiro, The sample average approximation method applied to stochastic routing problems: a computational study, Comput. Optim. Appl., 24 (2003), 289–333. doi: 10.1023/A:1021814225969. doi: 10.1023/A:1021814225969
    [17] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, MIT press, (2009), 414–443.
    [18] G. Colacurcio, S. Nesmachnow, J. Toutouh, F. Luna, D. Rossit, Multiobjective household energy planning using evolutionary algorithms, in Ibero-American Congress of Smart Cities, (2019), 269–284.
    [19] S. Nesmachnow, G. Colacurcio, D. Rossit, J. Toutouh, F. Luna, Optimizing household energy planning in Smart cities: a multiobjective approach, Revista Facultad de Ingeniería Universidad de Antioquia, 101 (2021), 8–19. doi: 10.17533/udea.redin.20200587.
    [20] E. Orsi, S. Nesmachnow, Smart home energy planning using IoT and the cloud, in 2017 IEEE URUCON, 2017. doi: 10.1109/URUCON.2017.8171843.
    [21] X. Lu, K. Zhou, X. Zhang, S. Yang, A systematic review of supply and demand side optimal load scheduling in a smart grid environment, J. Cleaner Prod., 203 (2018), 757–768. doi: 10.1016/j.jclepro.2018.08.301. doi: 10.1016/j.jclepro.2018.08.301
    [22] I. Koutsopoulos, L. Tassiulas, Control and optimization meet the smart power grid: Scheduling of power demands for optimal energy management, in Proceedings of the 2nd International Conference on Energy-efficient Computing and Networking, (2011), 41–50. doi: 10.1145/2318716.2318723.
    [23] H. Liang, W. Zhuang, Stochastic modeling and optimization in a microgrid: A survey, Energies, 7 (2014), 2027–2050. doi: 10.3390/en7042027. doi: 10.3390/en7042027
    [24] X. Chen, T. Wei, S. Hu, Uncertainty-aware household appliance scheduling considering dynamic electricity pricing in smart home, IEEE Trans. Smart Grid, 4 (2013), 932–941. doi: 10.1109/TSG.2012.2226065 doi: 10.1109/TSG.2012.2226065
    [25] R. Hemmati, H. Saboori, Stochastic optimal battery storage sizing and scheduling in home energy management systems equipped with solar photovoltaic panels, Energy Build., 152 (2017), 290–300. doi: 10.1016/j.enbuild.2017.07.043. doi: 10.1016/j.enbuild.2017.07.043
    [26] M. Jacomino, M. Le, Robust energy planning in buildings with energy and comfort costs, 4OR, 10 (2012), 81–103. doi: 10.1007/s10288-011-0192-6. doi: 10.1007/s10288-011-0192-6
    [27] C. Wang, Y. Zhou, B. Jiao, Y. Wang, W. Liu, D. Wang, Robust optimization for load scheduling of a smart home with photovoltaic system, Energy Convers. Manage., 102 (2015), 247–257. doi: 10.1016/j.enconman.2015.01.053. doi: 10.1016/j.enconman.2015.01.053
    [28] J. Wang, P. Li, K. Fang, Y. Zhou, Robust optimization for household load scheduling with uncertain parameters, Appl. Sci., 8 (2018), 575. doi: 10.3390/app8040575. doi: 10.3390/app8040575
    [29] M. Judge, A. Manzoor, C. Maple, J. Rodrigues, S. Ul Islam, Price-based demand response for household load management with interval uncertainty, Energy Rep., 2021 2021. doi: 10.1016/j.egyr.2021.02.064.
    [30] A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. doi: 10.1016/j.future.2019.02.028. doi: 10.1016/j.future.2019.02.028
    [31] S. Hosseini, R. Carli, M. Dotoli, Robust optimal energy management of a residential microgrid under uncertainties on demand and renewable power generation, IEEE Trans. Autom. Sci. Eng., 18 (2020), 618–637. doi: 10.1109/TASE.2020.2986269. doi: 10.1109/TASE.2020.2986269
    [32] R. Shi, S. Li, P. Zhang, K. Lee, Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization, Renewable Energy, 153 (2020), 1067–1080. doi: 10.1016/j.renene.2020.02.027. doi: 10.1016/j.renene.2020.02.027
    [33] P. Scarabaggio, S. Grammatico, R. Carli, M. Dotoli, Distributed demand side management with stochastic wind power forecasting, IEEE Trans. Control Syst. Technol., 2021 (2021), 1–6. doi: 10.1109/TCST.2021.3056751. doi: 10.1109/TCST.2021.3056751
    [34] M. Nassourou, J. Blesa, V. Puig, Robust economic model predictive control based on a zonotope and local feedback controller for energy dispatch in smart-grids considering demand uncertainty, Energies, 13 (2020), 3. doi: 10.3390/en13030696. doi: 10.3390/en13030696
    [35] K. Kursawe, G. Danezis, M. Kohlweiss, Privacy-friendly aggregation for the smart-grid, in International Symposium on Privacy Enhancing Technologies Symposium, (2011), 175–191. doi: 10.1007/978-3-642-22263-4_10.
    [36] S. Tonyali, O. Cakmak, K. Akkaya, M. Mahmoud, I. Guvenc, Secure data obfuscation scheme to enable privacy-preserving state estimation in smart grid AMI networks, IEEE Internet Things J., 3 (2016), 709–719. doi: 10.1109/JIOT.2015.2510504. doi: 10.1109/JIOT.2015.2510504
    [37] H. Mohammed, S. Tonyali, K. Rabieh, M. Mahmoud, K. Akkaya Efficient privacy-preserving data collection scheme for smart grid AMI networks, in 2016 IEEE Global Communications Conference, (2016), 1–6. doi: 10.1109/GLOCOM.2016.7841782.
    [38] H. Chang, W. Chiu, H. Sun, C. Chen, User-centric multiobjective approach to privacy preservation and energy cost minimization in smart home, IEEE Syst. J., 13 (2018), 1030–1041. doi: 10.1109/JSYST.2018.2876345. doi: 10.1109/JSYST.2018.2876345
    [39] O. Tan, D. Gündüz, J. Gómez, Optimal privacy-cost trade-off in demand-side management with storage, in 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications, (2015), 370–374. doi: 10.1109/SPAWC.2015.7227062.
    [40] Z. Yahia, A. Pradhan, Optimal load scheduling of household appliances considering consumer preferences: An experimental analysis, Energy, 163 (2018), 15–26. doi:10.1016/j.energy.2018.08.113. doi: 10.1016/j.energy.2018.08.113
    [41] Z. Yahia, A. Pradhan, Multi-objective optimization of household appliance scheduling problem considering consumer preference and peak load reduction, Sustainable Cities Soc., 55 (2020), 102058. doi: 10.1016/j.scs.2020.102058. doi: 10.1016/j.scs.2020.102058
    [42] S. Nesmachnow, D. Rossit, J. Toutouh, F. Luna, An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes, Int. J. Ind. Eng. Comput., 12 (2021), 365–380. doi: 10.5267/j.ijiec.2021.5.005. doi: 10.5267/j.ijiec.2021.5.005
    [43] S. Nesmachnow, S. Baña, R. Massobrio, A distributed platform for big data analysis in smart cities: combining intelligent transportation systems and socioeconomic data for Montevideo, Uruguay, EAI Endorsed Trans. Smart Cities, 2 (2017), 153478. doi: 10.4108/eai.19-12-2017.153478.
    [44] M. Goldberg, Measure twice, cut once, IEEE Power Energy Mag., 8 (2010), 46–54. doi: 10.1109/MPE.2010.936351.
    [45] J. Chavat, S. Nesmachnow, J. Graneri, G. Alvez, ECD-UY: Detailed household electricity consumption dataset of Uruguay, Sci. Data, Forthcoming, 2021.
    [46] A. Rad, T. Barforoushi, Optimal scheduling of resources and appliances in smart homes under uncertainties considering participation in spot and contractual markets, Energy, 192 (2020), 116548. doi: 10.1016/j.energy.2019.116548. doi: 10.1016/j.energy.2019.116548
    [47] S. Hosseini, R. Carli, M. Dotoli, Robust day-ahead energy scheduling of a smart residential user under uncertainty, in 2019 18th European Control Conference (ECC), (2019), 935–940. doi: 10.23919/ECC.2019.8796182.
    [48] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2020. Available from: http://www.gurobi.com.
    [49] W. E. Hart, C. D. Laird, J. P. Watson, D. L. Woodruff, G. Hackebeil, B. L. Nicholson, et al., Pyomo-optimization Modeling in Python, Springer, 2017.
    [50] W. Chiu, J. Hsieh, C. Chen, Pareto optimal demand response based on energy costs and load factor in smart grid, IEEE Trans. Ind. Inf., 16 (2019), 1811–1822. doi: 10.1109/TII.2019.2928520. doi: 10.1109/TII.2019.2928520
    [51] S. Pal, B. Singh, R. Kumar, B. Panigrahi, Consumer end load scheduling in DSM using multi-objective genetic algorithm approach, in 2015 IEEE International Conference on Computational Intelligence & Communication Technology, (2015), 518–523. doi: 10.1109/CICT.2015.65.
  • This article has been cited by:

    1. Inkyung Ahn, Seongman Heo, Seunghyun Ji, Kyung Hyun Kim, Taehwan Kim, Eun Joo Lee, Jooyoung Park, Keehoon Sung, Investigation of nonlinear epidemiological models for analyzing and controlling the MERS outbreak in Korea, 2018, 437, 00225193, 17, 10.1016/j.jtbi.2017.10.004
    2. Carl-Etienne Juneau, Tomas Pueyo, Matt Bell, Genevieve Gee, Pablo Collazzo, Louise Potvin, Lessons from past pandemics: a systematic review of evidence-based, cost-effective interventions to suppress COVID-19, 2022, 11, 2046-4053, 10.1186/s13643-022-01958-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3153) PDF downloads(136) Cited by(6)

Article outline

Figures and Tables

Figures(4)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog