Research article Special Issues

Identification of ferroptosis-associated genes exhibiting altered expression in pulmonary arterial hypertension


  • Received: 07 August 2021 Accepted: 25 August 2021 Published: 03 September 2021
  • Pulmonary arterial hypertension (PAH) is a life-threatening illness and ferroptosis is an iron-dependent form of regulated cell death, driven by the accumulation of lipid peroxides to levels that are sufficient to trigger cell death. However, only few studies have examined PAH-associated ferroptosis. In the present study, lung samples mRNA expression profiles (derived from 15 patients with PAH and 11 normal controls) were downloaded from a public database, and 514 differentially expressed genes (DEGs) were identified using the Wilcoxon rank-sum test and weighted gene correlation network analyses. These DEGs were screened for ferroptosis-associated genes using the FerrDb database: eight ferroptosis-associated genes were identified. Finally, the construction of gene-microRNA (miRNA) and gene-transcription factor (TF) networks, in conjunction with gene ontology and biological pathway enrichment analysis, were used to inform hypotheses regarding the molecular mechanisms underlying PAH-associated ferroptosis. Ferroptosis-associated genes were largely involved in oxidative stress responses and could be regulated by several identified miRNAs and TFs. This suggests the existence of modulatable pathways that are potentially involved in PAH-associated ferroptosis. Our findings provide novel directions for targeted therapy of PAH in regard to ferroptosis. These findings may ultimately help improve the therapeutic outcomes of PAH.

    Citation: Fan Zhang, Hongtao Liu. Identification of ferroptosis-associated genes exhibiting altered expression in pulmonary arterial hypertension[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 7619-7630. doi: 10.3934/mbe.2021377

    Related Papers:

    [1] Fu Tan, Bing Wang, Daijun Wei . A new structural entropy measurement of networks based on the nonextensive statistical mechanics and hub repulsion. Mathematical Biosciences and Engineering, 2021, 18(6): 9253-9263. doi: 10.3934/mbe.2021455
    [2] Mohamed Kayid . Some new results on bathtub-shaped hazard rate models. Mathematical Biosciences and Engineering, 2022, 19(2): 1239-1250. doi: 10.3934/mbe.2022057
    [3] Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor . Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences and Engineering, 2009, 6(1): 1-25. doi: 10.3934/mbe.2009.6.1
    [4] Xiaoshan Qian, Lisha Xu, Xinmei Yuan . Dynamic correction of soft measurement model for evaporation process parameters based on ARMA. Mathematical Biosciences and Engineering, 2024, 21(1): 712-735. doi: 10.3934/mbe.2024030
    [5] Amal S. Hassan, Najwan Alsadat, Christophe Chesneau, Ahmed W. Shawki . A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves. Mathematical Biosciences and Engineering, 2023, 20(11): 19871-19911. doi: 10.3934/mbe.2023880
    [6] Yefu Zheng, Jun Xu, Hongzhang Chen . TOPSIS-based entropy measure for intuitionistic trapezoidal fuzzy sets and application to multi-attribute decision making. Mathematical Biosciences and Engineering, 2020, 17(5): 5604-5617. doi: 10.3934/mbe.2020301
    [7] Ziqiang Cheng, Jin Wang . Modeling epidemic flow with fluid dynamics. Mathematical Biosciences and Engineering, 2022, 19(8): 8334-8360. doi: 10.3934/mbe.2022388
    [8] Fankang Bu, Jun He, Haorun Li, Qiang Fu . Interval-valued intuitionistic fuzzy MADM method based on TOPSIS and grey correlation analysis. Mathematical Biosciences and Engineering, 2020, 17(5): 5584-5603. doi: 10.3934/mbe.2020300
    [9] Qingqun Huang, Muhammad Labba, Muhammad Azeem, Muhammad Kamran Jamil, Ricai Luo . Tetrahedral sheets of clay minerals and their edge valency-based entropy measures. Mathematical Biosciences and Engineering, 2023, 20(5): 8068-8084. doi: 10.3934/mbe.2023350
    [10] Bing Wang, Fu Tan, Jia Zhu, Daijun Wei . A new structure entropy of complex networks based on nonextensive statistical mechanics and similarity of nodes. Mathematical Biosciences and Engineering, 2021, 18(4): 3718-3732. doi: 10.3934/mbe.2021187
  • Pulmonary arterial hypertension (PAH) is a life-threatening illness and ferroptosis is an iron-dependent form of regulated cell death, driven by the accumulation of lipid peroxides to levels that are sufficient to trigger cell death. However, only few studies have examined PAH-associated ferroptosis. In the present study, lung samples mRNA expression profiles (derived from 15 patients with PAH and 11 normal controls) were downloaded from a public database, and 514 differentially expressed genes (DEGs) were identified using the Wilcoxon rank-sum test and weighted gene correlation network analyses. These DEGs were screened for ferroptosis-associated genes using the FerrDb database: eight ferroptosis-associated genes were identified. Finally, the construction of gene-microRNA (miRNA) and gene-transcription factor (TF) networks, in conjunction with gene ontology and biological pathway enrichment analysis, were used to inform hypotheses regarding the molecular mechanisms underlying PAH-associated ferroptosis. Ferroptosis-associated genes were largely involved in oxidative stress responses and could be regulated by several identified miRNAs and TFs. This suggests the existence of modulatable pathways that are potentially involved in PAH-associated ferroptosis. Our findings provide novel directions for targeted therapy of PAH in regard to ferroptosis. These findings may ultimately help improve the therapeutic outcomes of PAH.



    The Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions has been widely utilized in practical applications. This family is defined by the given marginal distribution functions (DFs) FY(y) and FZ(z) for the random variables (RVs) Y and Z, respectively, along with a parameter α, resulting in the bivariate DF given by

    FY,Z(y,z)=FY(y)FZ(z)[1+α(1FY(y))(1FZ(z))], (1.1)

    with the corresponding probability density function (PDF)

    fY,Z(y,z)=fY(y)fZ(z)[1+α(2FY(y)1)(2FZ(z)1)]. (1.2)

    Here fY(y) and fZ(z) are the marginals of fY,Z(y,z), and α is referred to as the association parameter. The RVs Y and Z are treated as independent at α=0. The initial introduction of this model was done by [1] and further examined by [2] for exponential marginals. The overall structure described in Eq (1.1) is credited to [3,4]. The parameter α must lie in the range [1,1] to ensure that the function FY,Z(y,z) remains a valid DF. The Pearson correlation coefficient ρ between Y and Z cannot exceed 13. An aspect of the behavior of the bivariate PDF with the associated parameter α for the FGM association (i.e., the FGM family with uniform margins) is depicted in Figure 1.

    Figure 1.  The bivariate PDF for FGM copula.

    Reference [5] proposed the concept of the GOSs as a comprehensive framework for RVs arranged in ascending order. The subclass mGOSs of GOSs encompasses the most prominent models of ordered RVs. These models include OSs, lower and upper record values, krecords, sequential OSs, and progressive type Ⅱ censoring with a constant scheme. We exclusively consider the mGOSs model. Consider FY(y)=P(Yy) as an arbitrary continuous DF with the PDF fY(y). Then the RVs Y(1,n,m,k)Y(2,n,m,k)...Y(n,n,m,k) (k>0,m1) are said to be mGOSs if their joint PDF (JPDF) is given by

    f(m,k)1,2,...,n:n(y1,y2,...,yn)=(nj=1γj)(n1j=1¯FmY(yj)fY(yj))¯Fk1Y(yn)fY(yn),

    where F1Y(1)yn...y1F1Y(0) and γj=k+(nj)(m+1)>0,j=1,2,...,n (note that γn=k). The marginal PDF of rth mGOS, 1rn, is given by (cf. [5])

    fY(r,n,m,k)(y)=Cr1(r1)!(¯FY(y))γr1fY(y)gr1m(FY(y)),

    where Cr1=ri=1γi,r=1,2,...,n,gm(y)=hm(y)hm(0),y[0,1), and hm(y)=1(m+1)(1y)m+1, if m1, while h1(y)=log(1y).

    The concomitant subject has recently gained traction again because of its applicability to prediction problems and selection processes. The concept of the concomitants of OSs may be traced back to [6], while [7] further developed the broad theory of concomitants of OSs. Reference [6] provided an exceptional examination of the concomitants of OSs. Compared to the concomitants of OSs, the concomitants of GOSs have not been as fully studied. Numerous researchers have studied this topic, including[8,9,10].

    For the FGM family defined by (1.1) and (1.2), the PDF, DF, and survival function (SF) of the concomitant of the rth m-GOS are given by [9], respectively, as

    f[r,n,m,k](z)=fZ(z)[1+αC(r,n,m,k)(12FZ(z))],
    F[r,n,m,k](z)=FZ(z)[1+αC(r,n,m,k)(1FZ(z))], (1.3)

    and

    ¯F[r,n,m,k](z)=¯FZ(z)[1αC(r,n,m,k)FZ(z)], (1.4)

    where C(r,n,m,k)=2rj=1γjri=1(γi+1)1 and ¯FZ(z)=1FZ(z).

    Reference [9] conducted a study on the concomitants of m-GOSs in the FGM family. Reference[11] derived certain characteristics of the concomitants of m-GOSs from the bivariate Rayleigh distribution of FGM type. References [12,13] examined various information measures in concomitants of m-GOSs under iterated FGM and Huang-Kotz FGM, respectively. References [14,15,16] examined certain characteristics of concomitants of m-GOSs from the bivariate Cambanis family.

    Shannon entropy, established by [17], is one of the most extensively used measures of uncertainty. It is used to quantify the amount of uncertainty involved in an RV and has multiple uses in various fields. Let Y be a non-negative RV having PDF fY(y). [17] defined the entropy of Y by

    H(Y)=0fY(y)logfY(y)dy.

    An entropic expression with an index θ was first presented by [18] and results in non-extensive statistics. The so-called non-extensive statistical mechanics, which generalize Boltzmann-Gibbs theory, is based on Tsallis entropy. Applications of Tsallis statistics can be found in a wide range of fields, including physics, chemistry, biology, medicine, economics, and geophysics. According to [18], the non-additive generalization of Shannon's entropy of order θ is called Tsallis entropy. This measure is crucial in the uncertainty assessments of an RV Y, defined as

    Tθ(Y)=1θ1(10fθY(y)dy),

    where θ1,θ>0. Tsallis entropy approaches Shannon entropy as θ1.

    Tsallis statistics, rooted in the generalized entropy framework, are particularly valuable for systems with long-range interactions, non-equilibrium dynamics, and fractal-like structures. These properties make them highly applicable to fields dealing with complex and noisy data, such as seismic inversion and magnetic resonance imaging evaluations. For example, seismic inversion involves extracting subsurface geological properties (e.g., porosity, fluid content, rock type) from seismic reflection data. These data sets are typically noisy, incomplete, and exhibit long-range spatial correlations, making them ideal candidates for Tsallis statistical approaches. In seismic inversion and MRI evaluations, Tsallis entropy and statistics provide enhanced tools for dealing with noisy, complex, and non-linear data. They enable better noise filtering, improved stability in inversion algorithms, and deeper insights into fractal-like patterns and tissue textures, ultimately leading to more accurate geological modeling and medical diagnoses. For additional information regarding Tsallis entropy, we suggest reading [19,20]. Numerous generalizations of Shannon entropy have been formulated, rendering these entropies responsive to various types of probability distributions by the incorporation of several additional factors.

    Reference [21] presented a novel measure of Shannon entropy known as cumulative residual entropy (CRE), which utilizes the SF rather than the PDF. The CRE is regarded as more stable and mathematically robust due to its more consistent SF compared to the PDF. Moreover, DFs exist even when PDFs do not exist (e.g., Govindarajulu, power-Pareto, and generalized lambda distributions). The CRE measure based on the SF ¯FY(y) is defined as

    J(Y)=0¯FY(y)log¯FY(y)dy.

    The cumulative residual Tsallis entropy (CRTE) of order θ is a helpful generalization of Shannon entropy that can be considered an alternate dispersion measure and has demonstrated promising results in several applications. Reference [22] devised the measure CRTE, which is defined by

    Jθ(Y)=1θ1(10¯FθY(y)dy),θ>0,θ1.

    When θ1, CRTE approaches CRE.

    Reference [23] unveiled an alternative measure for CRTE, which is defined by

    Eθ(Y)=1θ10(¯FY(y)¯FθY(y))dy,θ>0,θ1. (1.5)

    Unlike CRTE, the measure defined by (1.5) has some additional features and has simple relationships with other important information and reliability measures. Reference [24] established a parallel notion of CRE, the cumulative entropy, which is useful for measuring information when uncertainty is associated with the past. Motivated from (1.5), reference [25] introduced cumulative past Tsallis entropy (CPTE) which is defined as

    Pθ(Y)=1θ10(FY(y)FθY(y))dy,θ>0,θ1.

    Assigning appropriate weights is crucial for accurately reflecting the relative relevance or importance of different observations or events in a data set. Weighting methodologies ensure that observations or events in a data set are appropriately prioritized based on their relevance or importance. Key approaches include:

    1) Statistical weighting: based on variance (lower variance = higher weight) or frequency (higher frequency = higher weight).

    2) Entropy-based weighting: higher entropy events get higher weights due to their greater uncertainty.

    3) Expert knowledge-based weighting: relies on domain experts' insights.

    4) Information gain-based weighting: events providing more information gain are assigned higher weights.

    5) Distance-based weighting: observations closer to a reference point have higher weights (e.g., inverse distance weighting).

    Each methodology suits different scenarios and data set characteristics, and the choice depends on the objective and data context. Reference [26] defined weighted CPTE (WCPTE) of order θ as

    Pwθ(Y)=1θ10y(FY(y)FθY(y))dy,θ>0,θ1. (1.6)

    It was shown that the WCPTE can be used as a risk measure. Moreover, [27] proposed weighted CRTE (WCRTE) defined as

    ζwθ(Y)=1θ1(10y¯FθY(y)dy),θ>0,θ1. (1.7)

    For a non-negative continuous RV Y, [26] defined a new measure called "alternative weighted cumulative residual Tsallis entropy" (denoted as AWCRTE) by

    ξwθ(Y)=1θ10y(¯FY(y)¯FθY(y))dy,θ>0,θ1. (1.8)

    Despite the extensive use of Tsallis entropy in fields such as medical imaging (e.g., see [28,29]), there remains a need for further exploration of how Tsallis entropy can be applied to more complex, dynamic systemsespecially when considering weighted measures that reflect cumulative effects over time.

    This paper introduces the concepts of WCRTE and WCPTE, along with their dynamic versions, derived from m-GOSs in the context of the FGM family. The motivation for this work stems from the desire to enhance the versatility and applicability of Tsallis entropy in systems where dynamic and weighted measures are essential, such as in medical imaging, environmental studies, and artificial intelligence. The novel entropy measures introduced here offer new approaches for analyzing non-extensive and complex systems that cannot be adequately described by traditional entropy measures, such as Shannon entropy. The integration of these new tools with existing models opens up new possibilities for understanding and predicting behaviors in dynamic systems.

    This is how the remainder of the paper is structured. Section 2 discusses some cases and provides the WCRTE for the concomitant Z[r,n,m,k] based on the FGM family of bivariate distributions. In the same section, we suggest a dynamic version of AWCRTE and its characteristics for Z[r,n,m,k] based on this family. In Section 3, the WCPTE and its dynamic form are examined. In Section 4, we offer the empirical AWCRTE and WCPTE. In Section 5, two real data sets are analyzed for illustration. In Section 6, the paper outlines the study's essential findings and their ramifications.

    Theorem 2.1. The WCRTE of concomitant Z[r,n,m,k] of the rth mGOS based on the FGM family is given by

    ζwθ,α(Z[r,n,m,k])=1θ1(1N(θ)i=0(θi)(1)i(αC(r,n,m,k))iE[Ui(1U)θQ(U)q(U)]),

    where N(z)=, if z is a non-integer, N(z)=z, if z is an integer, U is the uniform RV on (0,1), Q(u) is the quantile function of the RV Z, and q(u) is the quantile density function, i.e., q(u)=dduQ(u).

    Proof. Using (1.4) and (1.7), then WCRTE is provided by

    ζwθ,α(Z[r,n,m,k])=1θ1(10z¯Fθ[r,n,m,k](z)dz)=1θ1(10z¯FθZ(z)(1αC(r,n,m,k)FZ(z))θdz)=1θ1(1N(θ)i=0(θi)(1)i(αC(r,n,m,k))iE[Z(1FZ(Z))θ(FZ(Z))ifZ(Z)]). (2.1)

    Let Q(u)=F1Z(z) be the quantile function. By using the well-known relation q(u)fZ(Q(u))=1 in (2.1), we get

    ζwθ,α(Z[r,n,m,k])=1θ1(1N(θ)i=0(θi)(1)i(αC(r,n,m,k))iE[Q(U)(1U)θUiq(U)]). (2.2)

    Remark 2.1. If m=0 and k=1, the WCRTE of the concomitant of the rth OS, Z[r,n,0,1]:=Z[r:n], based on the FGM family is given by

    ζwθ,α(Z[r:n])=1θ1(1N(θ)i=0(θi)(1)i(αϕ(r:n))iE[Ui(1U)θQ(U)q(U)]),

    where ϕ(r:n)=n2r+1n+1 (cf. [30]).

    Remark 2.2. The model of record values is a special case of the m-GOSs by putting m=1 and k=1. Therefore, the WCRTE of the concomitant Z[n] of the nth upper record value based on the FGM family is given by

    ζwθ,α(Z[n])=1θ1(1N(θ)i=0(θi)(1)i(αδ(n))iE[Ui(1U)θQ(U)q(U)]),

    where δ(n)=2(n1)1.

    Example 2.1. Consider the two variables, Y and Z, that possess exponential distribution (ED) from the FGM family (represented by FGM-ED) (i.e., FZ(z)=1eλz,z,λ>0). Then

    0z(1eλz)i(eλz)θdz=ip=0(ip)(1)p1λ2(p+θ)2.

    Based on (2.2), we get the WCRTE in Z[r,n,m,k] as follows:

    ζwθ,α(Z[r,n,m,k])=1(θ1)(1N(θ)i=0ip=0(θi)(ip)(1)i+p(αC(r,n,m,k))iλ2(p+θ)2).

    Example 2.2. Consider Y and Z to be Weibull distributions (WD) derived from the FGM family (i.e., FZ(z)=1e(zβ)η,z>0,η,β>0). Then

    0z(1e(zβ)η)i(e(zβ)η)θdz=ip=0(ip)(1)p(p+θ)2ηΓ(2η)ηβη.

    Thus, ζwθ,α(Z[r,n,m,k]) is given by

    ζwθ,α(Z[r,n,m,k])=1(θ1)(1N(θ)i=0ip=0(θi)(ip)(1)i+p(αC(r,n,m,k))i(p+θ)2ηΓ(2η)ηβη).

    Tables 1 and 2 show aspects of the behavior of the WCRTE for Z[r:n] and Z[n], respectively. In Tables 1 and 2, the following properties can be extracted:

    Table 1.  ζwθ,α(Z[r:n]) based on FGM-WD.
    θ=4,β=1.2,η=0.5 θ=9,β=1.5,η=0.2
    n r α=0.1 α=0.1 α=0.5 α=0.5 α=0.9 α=0.9 α=0.1 α=0.1 α=0.5 α=0.5 α=0.9 α=0.9
    4 1 0.31693 0.32098 0.30563 0.32664 0.28891 0.32991 0.12492 0.12496 0.12469 0.12499 0.12405 0.12501
    4 2 0.31838 0.31973 0.31536 0.32213 0.31187 0.32417 0.12493 0.12495 0.12489 0.12497 0.12484 0.12498
    4 3 0.31973 0.31838 0.32213 0.31536 0.32417 0.31187 0.12495 0.12493 0.12497 0.12489 0.12498 0.12484
    4 4 0.32098 0.31693 0.32664 0.30563 0.32991 0.28891 0.12496 0.12492 0.12499 0.12469 0.12501 0.12405
    6 1 0.31649 0.32132 0.3022 0.3276 0.27969 0.3308 0.12491 0.12496 0.12459 0.12499 0.12352 0.12503
    6 2 0.31757 0.32046 0.31021 0.32494 0.30036 0.32803 0.12492 0.12495 0.1248 0.12498 0.12453 0.125
    6 3 0.31858 0.31954 0.31649 0.32132 0.31417 0.3229 0.12493 0.12494 0.12491 0.12496 0.12488 0.12497
    6 4 0.31954 0.31858 0.32132 0.31649 0.3229 0.31417 0.12494 0.12493 0.12496 0.12491 0.12497 0.12488
    6 5 0.32046 0.31757 0.32494 0.31021 0.32803 0.30036 0.12495 0.12492 0.12498 0.1248 0.125 0.12453
    6 6 0.32132 0.31649 0.3276 0.3022 0.3308 0.27969 0.12496 0.12491 0.12499 0.12459 0.12503 0.12352
    8 1 0.31625 0.3215 0.30015 0.32808 0.27397 0.33119 0.12491 0.12496 0.12452 0.125 0.12313 0.12505
    8 2 0.3171 0.32084 0.30688 0.32623 0.29214 0.32949 0.12492 0.12496 0.12473 0.12499 0.1242 0.12501
    8 3 0.31791 0.32016 0.31249 0.32385 0.30563 0.32664 0.12493 0.12495 0.12485 0.12498 0.12469 0.12499
    8 4 0.31869 0.31944 0.3171 0.32084 0.31536 0.32213 0.12494 0.12494 0.12492 0.12496 0.12489 0.12497
    8 5 0.31944 0.31869 0.32084 0.3171 0.32213 0.31536 0.12494 0.12494 0.12496 0.12492 0.12497 0.12489
    8 6 0.32016 0.31791 0.32385 0.31249 0.32664 0.30563 0.12495 0.12493 0.12498 0.12485 0.12499 0.12469
    8 7 0.32084 0.3171 0.32623 0.30688 0.32949 0.29214 0.12496 0.12492 0.12499 0.12473 0.12501 0.1242
    8 8 0.3215 0.31625 0.32808 0.30015 0.33119 0.27397 0.12496 0.12491 0.125 0.12452 0.12505 0.12313
    10 1 0.31609 0.32162 0.29879 0.32836 0.27008 0.33141 0.1249 0.12496 0.12448 0.125 0.12284 0.12507
    10 2 0.31679 0.32109 0.30457 0.32696 0.28612 0.33022 0.12491 0.12496 0.12466 0.12499 0.1239 0.12502
    10 3 0.31747 0.32054 0.30956 0.32522 0.29879 0.32836 0.12492 0.12495 0.12479 0.12499 0.12448 0.125
    10 4 0.31813 0.31996 0.31384 0.3231 0.30862 0.32559 0.12493 0.12495 0.12487 0.12497 0.12477 0.12499
    10 5 0.31876 0.31937 0.31747 0.32054 0.31609 0.32162 0.12494 0.12494 0.12492 0.12495 0.1249 0.12496
    10 6 0.31937 0.31876 0.32054 0.31747 0.32162 0.31609 0.12494 0.12494 0.12495 0.12492 0.12496 0.1249
    10 7 0.31996 0.31813 0.3231 0.31384 0.32559 0.30862 0.12495 0.12493 0.12497 0.12487 0.12499 0.12477
    10 8 0.32054 0.31747 0.32522 0.30956 0.32836 0.29879 0.12495 0.12492 0.12499 0.12479 0.125 0.12448
    10 9 0.32109 0.31679 0.32696 0.30457 0.33022 0.28612 0.12496 0.12491 0.12499 0.12466 0.12502 0.1239
    10 10 0.32162 0.31609 0.32836 0.29879 0.33141 0.27008 0.12496 0.1249 0.125 0.12448 0.12507 0.12284

     | Show Table
    DownLoad: CSV
    Table 2.  ζwθ,α(Z[n]) based on FGM-WD.
    θ=4,β=1.2,η=0.5 θ=9,β=1.5,η=0.2
    n α=0.5 α=0.5 α=0.9 α=0.9 n α=0.5 α=0.5 α=0.9 α=0.9
    2 0.32569 0.30839 0.3289 0.29591 2 0.12499 0.12476 0.125 0.12437
    3 0.32787 0.30106 0.33103 0.27653 3 0.125 0.12456 0.12504 0.12331
    4 0.32874 0.29681 0.33168 0.26429 4 0.125 0.1244 0.1251 0.12237
    5 0.32913 0.29453 0.33193 0.25746 5 0.125 0.12431 0.12516 0.12176
    6 0.32931 0.29335 0.33204 0.25386 6 0.125 0.12426 0.12519 0.12141
    7 0.3294 0.29274 0.3321 0.252 7 0.125 0.12423 0.12521 0.12122
    8 0.32945 0.29244 0.33212 0.25107 8 0.125 0.12422 0.12522 0.12112
    9 0.32947 0.29229 0.33213 0.25059 9 0.12501 0.12421 0.12522 0.12107
    10 0.32948 0.29221 0.33214 0.25036 10 0.12501 0.12421 0.12522 0.12105
    11 0.32948 0.29217 0.33214 0.25024 11 0.12501 0.1242 0.12522 0.12104
    12 0.32949 0.29215 0.33214 0.25018 12 0.12501 0.1242 0.12523 0.12103
    13 0.32949 0.29215 0.33214 0.25015 13 0.12501 0.1242 0.12523 0.12103
    14 0.32949 0.29214 0.33215 0.25013 14 0.12501 0.1242 0.12523 0.12103
    15 0.32949 0.29214 0.33215 0.25013 15 0.12501 0.1242 0.12523 0.12102
    16 0.32949 0.29214 0.33215 0.25012 16 0.12501 0.1242 0.12523 0.12102
    17 0.32949 0.29214 0.33215 0.25012 17 0.12501 0.1242 0.12523 0.12102

     | Show Table
    DownLoad: CSV

    ● Generally, ζwθ,α(Z[r:n])=ζwθ,α(Z[nr+1:n]). Also, the value of ζwθ,α(Z[r:n]) slowly increases as the value of n increases (cf. Table 1).

    ● We see that the value of ζwθ,α(Z[n]) goes up as n goes up, the value of ζwθ,α(Z[n]) goes down as n goes up, and it almost stays the same when n=15 (cf. Table 2).

    Remark 2.3. It is worth noting that the relation ζwθ,α(Z[r:n])=ζwθ,α(Z[nr+1:n]) may be theoretically proved for every θ>0, 1α1, and any non-negative continuous RV Z by applying Theorem 2.1 and remarking that C(nr+1,n,0,1)=C(r,n,0,1).

    Theorem 2.2. The AWCRTE for the concomitant Z[r,n,m,k] of the mGOS based on the FGM family is given by

    ξwθ,α(Z[r,n,m,k])=1θ1(12E(Z2[r,n,m,k])N(θ)i=0(θi)(1)i(αC(r,n,m,k))iE[Ui(1U)θQ(U)q(U)]).

    Proof. Using (1.4) and (1.8), we get

    ξwθ,α(Z[r,n,m,k])=1θ10z(¯F[r,n,m,k](z)¯Fθ[r,n,m,k](z))dz=1θ1(0z¯F[r,n,m,k](z)dzN(θ)i=0(θi)(1)i(αC(r,n,m,k))iE[Z¯FθZ(Z)FiZ(Z)fZ(Z)])=1θ1(12E(Z2[r,n,m,k])N(θ)i=0(θi)(1)i(αC(r,n,m,k))iE[Ui(1U)θQ(U)q(U)]). (2.3)

    Remark 2.4. If m=0 and k=1, the AWCRTE of the concomitant Z[r:n] of the rth OS based on the FGM family is given by

    ξwθ,α(Z[r:n])=1θ1(12E(Z2[r:n])N(θ)i=0(θi)(1)i(αϕ(r:n))iE[Ui(1U)θQ(U)q(U)]).

    Remark 2.5. If m=1 and k=1, the AWCRTE of concomitant of the nth upper record value based on the FGM family is given by

    ξwθ,α(Z[n])=1θ1(12E(Z2[n])N(θ)i=0(θi)(1)i(αδ(n))iE[Ui(1U)θQ(U)q(U)]).

    In survival analysis, if an RV T given Θ=θ has a DF F(t|θ), the weighted mean residual lifetime (WMRL) of T given Θ=θ is then obtained as

    mF(t)=tz¯F(z|θ)¯F(t|θ)dz,

    which is valid for all θ that ¯F(t|θ)>0 and also plays a crucial role in survival analysis. Now, we provide a relationship between the WMRL, mF[r,n,m,k](t)=tz¯F[r,n,m,k](z)¯F[r,n,m,k](t)dz,¯F[r,n,m,k](t)>0, and the AWCRTE of an RV Z. This relationship illustrates AWCRTE's crucial role in survival analysis.

    Lemma 2.1. For a non-negative continuous RV Z with SF ¯FZ(z),

    ξwθ,α(Z[r,n,m,k])=E[mF[r,n,m,k](Z[r,n,m,k])¯Fθ1[r,n,m,k](Z[r,n,m,k])].

    Proof. First, we note ddz(mF[r,n,m,k](z)¯F[r,n,m,k](z))=z¯F[r,n,m,k](z). Thus, by using the fact in (1.8), we get

    ξwθ,α(Z[r,n,m,k])=1θ1[0ddz(mF[r,n,m,k](z)¯F[r,n,m,k](z))(1¯Fθ1[r,n,m,k](z))dz].

    Now the result follows by using integration by parts.

    Example 2.3. Consider the RVs, Y and Z, that follow FGM-ED. Based on (2.3), we get the AWCRTE in Z[r,n,m,k] as follows:

    ξwθ,α(Z[r,n,m,k])=1λ2(θ1)((134αC(r,n,m,k))N(θ)i=0ip=0(θi)(ip)(1)i+p(αC(r,n,m,k))i(p+θ)2).

    Moreover, it is easy to check that

    mF[r,n,m,k](t)=etλ(1+tλ)λ2¯F[r,n,m,k](t)[1αC(r,n,m,k)(1e2tλ(1+2tλ)4λ2)],

    which yields

    E[mF[r,n,m,k](Z[r,n,m,k])¯Fθ1[r,n,m,k](Z[r,n,m,k])]=((134αC(r,n,m,k))N(θ)i=0ip=0(θi)(ip)(1)i+p(αC(r,n,m,k))i(p+θ)2)λ2(θ1)=ξwθ,α(Z[r,n,m,k]).

    Example 2.4. Consider Y and Z to be WD derived from the FGM family. Then 0z(e(zβ)η)dz=Γ(2η)β2η,

    0z(e(zβ)η)(1e(zβ)η)dz=β2Γ(2η+1)(4η1)2(2η+1),

    and

    0z(1e(zβ)η)i(e(zβ)η)θdz=ij=0(ij)(1)j(j+θ)2ηΓ(2η)ηβη.

    Therefore, the measure ξwθ,α(Z[r,n,m,k]) is given by

    ξwθ,α(Z[r,n,m,k])=1θ1(β2ηΓ(2η)(1αC(r,n,m,k)(4η1)22η)N(θ)i=0ij=0(θi)(ij)(1)i+j×(αC(r,n,m,k))i((j+θ)2ηΓ(2η)ηβη)).

    Example 2.5. Suppose Y and Z are continuous RVs with respective PDF fY(y)=1a,0<y<a, and gZ(z)=1a,h<z<a+h,h>0. From (1.5), we have

    Eθ,α(Y[r,n,m,k])=Eθ,α(Z[r,n,m,k])=1θ1(a2(1αC(r,n,m,k)3)N(θ)i=0(θi)(1)i(αC(r,n,m,k))i(aβ(1+i,1+θ))).

    Now, from (1.8), we get

    ξwθ,α(Y[r,n,m,k])=1θ1(a212(2αC(r,n,m,k))N(θ)i=0(θi)(1)i(αC(r,n,m,k))i(a2β(2+i,1+θ)))

    and

    ξwθ,α(Z[r,n,m,k])=1θ1((a26+ah2)(1αC(r,n,m,k)a2+2ah2(a2+3ah))N(θ)i=0(θi)(1)i(αC(r,n,m,k))i
    (a(a(i+1)+h(2+i+θ))(i+θ+2)β(1+i,1+θ))).

    Therefore, although Eθ,α(Y[r,n,m,k])=Eθ,α(Z[r,n,m,k]), ξwθ,α(Y[r,n,m,k])ξwθ,α(Z[r,n,m,k]).

    Example 2.6. Suppose Z has a Pareto distribution with DF FZ(z)=1(bz)a,zb,b>0,a>0. Then

    ξwθ,α(Z[r,n,m,k])=1θ1(b2(a2)(1aαC(r,n,m,k)2(a1))N(θ)i=0is=0(θi)(is)(1)i+sb2(αC(r,n,m,k))i(a(s+θ)2)).

    Also, we can show that

    mF[r,n,m,k](t)=bat2a(a2)¯F[r,n,m,k](t)[1αC(r,n,m,k)(1bata(a2)2(a1))]

    and

    E[mF[r,n,m,k](Z[r,n,m,k])¯Fθ1[r,n,m,k](Z[r,n,m,k])]=b2a2(1aαC(r,n,m,k)2(a1))N(θ)i=0is=0(θi)(is)(1)i+sb2(αC(r,n,m,k))i(a(s+θ)2)θ1=ξwθ,α(Z[r,n,m,k]).

    The following lemma shows that ξwθ,α(Z[r,n,m,k]) is a shift-dependent measure.

    Lemma 2.2. Let Z=aX+b with a>0 and b0. Then

    ξwθ,α(Z[r,n,m,k])=a2ξwθ,α(X[r,n,m,k])+abEθ,α(X[r,n,m,k]).

    Proof. First, since the linear transformation, with b0, preserves the order relation, then for every 1rn, we get Zr,n,m,k=aXr,n,m,k+b and Z[r,n,m,k]=aX[r,n,m,k]+b. The proof follows using the fact that ¯FZ[r,n,m,k](u)=¯FX[r,n,m,k](uba).

    As shown in Tables 36 of the FGM-ED and FGM-WD, respectively, the AWCRTE for Z[r:n] and Z[n] are presented. After running the numbers through MATHEMATICA version 12, we can deduce the following properties from Tables 36.

    Table 3.  ξwθ,α(Z[r:n]) based on FGM-ED.
    θ=4,λ=0.5 θ=9,λ=0.9
    n r α=0.1 α=0.1 α=0.5 α=0.5 α=0.9 α=0.9 α=0.1 α=0.1 α=0.5 α=0.5 α=0.9 α=0.9
    4 1 0.2425 0.2569 0.2058 0.2793 0.1563 0.295 0.1229 0.1233 0.1217 0.1238 0.1198 0.1242
    4 2 0.2476 0.2524 0.2371 0.2612 0.2256 0.2691 0.123 0.1232 0.1227 0.1234 0.1224 0.1236
    4 3 0.2524 0.2476 0.2612 0.2371 0.2691 0.2256 0.1232 0.123 0.1234 0.1227 0.1236 0.1224
    4 4 0.2569 0.2425 0.2793 0.2058 0.295 0.1563 0.1233 0.1229 0.1238 0.1217 0.1242 0.1198
    6 1 0.241 0.2582 0.1953 0.2836 0.1305 0.3001 0.1228 0.1233 0.1214 0.1239 0.1186 0.1243
    6 2 0.2447 0.255 0.2202 0.2722 0.1897 0.2856 0.1229 0.1232 0.1222 0.1237 0.1212 0.124
    6 3 0.2483 0.2517 0.241 0.2582 0.2331 0.2641 0.123 0.1231 0.1228 0.1233 0.1226 0.1235
    6 4 0.2517 0.2483 0.2582 0.241 0.2641 0.2331 0.1231 0.123 0.1233 0.1228 0.1235 0.1226
    6 5 0.255 0.2447 0.2722 0.2202 0.2856 0.1897 0.1232 0.1229 0.1237 0.1222 0.124 0.1212
    6 6 0.2582 0.241 0.2836 0.1953 0.3001 0.1305 0.1233 0.1228 0.1239 0.1214 0.1243 0.1186
    8 1 0.2402 0.2588 0.1891 0.2858 0.1148 0.3026 0.1228 0.1233 0.1211 0.124 0.1179 0.1243
    8 2 0.2431 0.2564 0.2097 0.2776 0.1656 0.2928 0.1229 0.1233 0.1219 0.1238 0.1202 0.1241
    8 3 0.2459 0.2539 0.2276 0.2678 0.2058 0.2793 0.123 0.1232 0.1224 0.1236 0.1217 0.1238
    8 4 0.2487 0.2513 0.2431 0.2564 0.2371 0.2612 0.1231 0.1231 0.1229 0.1233 0.1227 0.1234
    8 5 0.2513 0.2487 0.2564 0.2431 0.2612 0.2371 0.1231 0.1231 0.1233 0.1229 0.1234 0.1227
    8 6 0.2539 0.2459 0.2678 0.2276 0.2793 0.2058 0.1232 0.123 0.1236 0.1224 0.1238 0.1217
    8 7 0.2564 0.2431 0.2776 0.2097 0.2928 0.1656 0.1233 0.1229 0.1238 0.1219 0.1241 0.1202
    8 8 0.2588 0.2402 0.2858 0.1891 0.3026 0.1148 0.1233 0.1228 0.124 0.1211 0.1243 0.1179
    10 1 0.2396 0.2593 0.185 0.2872 0.1043 0.3041 0.1228 0.1233 0.121 0.124 0.1173 0.1244
    10 2 0.242 0.2573 0.2025 0.2807 0.1484 0.2967 0.1229 0.1233 0.1216 0.1239 0.1195 0.1242
    10 3 0.2444 0.2553 0.2181 0.2734 0.185 0.2872 0.1229 0.1232 0.1221 0.1237 0.121 0.124
    10 4 0.2467 0.2532 0.232 0.2649 0.2151 0.2749 0.123 0.1232 0.1226 0.1235 0.122 0.1237
    10 5 0.2489 0.2511 0.2444 0.2553 0.2396 0.2593 0.1231 0.1231 0.1229 0.1232 0.1228 0.1233
    10 6 0.2511 0.2489 0.2553 0.2444 0.2593 0.2396 0.1231 0.1231 0.1232 0.1229 0.1233 0.1228
    10 7 0.2532 0.2467 0.2649 0.232 0.2749 0.2151 0.1232 0.123 0.1235 0.1226 0.1237 0.122
    10 8 0.2553 0.2444 0.2734 0.2181 0.2872 0.185 0.1232 0.1229 0.1237 0.1221 0.124 0.121
    10 9 0.2573 0.242 0.2807 0.2025 0.2967 0.1484 0.1233 0.1229 0.1239 0.1216 0.1242 0.1195
    10 10 0.2593 0.2396 0.2872 0.185 0.3041 0.1043 0.1233 0.1228 0.124 0.121 0.1244 0.1173

     | Show Table
    DownLoad: CSV
    Table 4.  ξwθ,α(Z[n]) based on FGM-ED.
    θ=4,λ=0.5 θ=9,λ=0.9
    n α=0.5 α=0.5 α=0.9 α=0.9 n α=0.5 α=0.5 α=0.9 α=0.9
    2 0.2753 0.21439 0.28981 0.17654 2 0.12373 0.12202 0.12406 0.12064
    3 0.28488 0.19183 0.30156 0.12176 3 0.12395 0.12123 0.12432 0.1182
    4 0.28903 0.17918 0.30602 0.08876 4 0.12404 0.12075 0.12443 0.11648
    5 0.29096 0.1725 0.30796 0.0707 5 0.12408 0.12048 0.12448 0.11546
    6 0.29189 0.16906 0.30887 0.06126 6 0.1241 0.12034 0.12451 0.11491
    7 0.29235 0.16732 0.3093 0.05644 7 0.12411 0.12027 0.12453 0.11462
    8 0.29257 0.16645 0.30952 0.054 8 0.12412 0.12023 0.12454 0.11447
    9 0.29269 0.16601 0.30962 0.05277 9 0.12412 0.12022 0.12454 0.1144
    10 0.29274 0.16579 0.30968 0.05216 10 0.12412 0.12021 0.12454 0.11436
    11 0.29277 0.16567 0.3097 0.05185 11 0.12412 0.1202 0.12454 0.11434
    12 0.29278 0.16562 0.30972 0.0517 12 0.12412 0.1202 0.12454 0.11433
    13 0.29279 0.16559 0.30972 0.05162 13 0.12412 0.1202 0.12454 0.11433
    14 0.29279 0.16558 0.30973 0.05158 14 0.12412 0.1202 0.12454 0.11432
    15 0.2928 0.16557 0.30973 0.05156 15 0.12412 0.1202 0.12454 0.11432
    16 0.2928 0.16557 0.30973 0.05155 16 0.12412 0.1202 0.12454 0.11432
    17 0.2928 0.16557 0.30973 0.05155 17 0.12412 0.1202 0.12454 0.11432
    18 0.2928 0.16557 0.30973 0.05155 18 0.12412 0.1202 0.12454 0.11432
    19 0.2928 0.16556 0.30973 0.05154 19 0.12412 0.1202 0.12454 0.11432

     | Show Table
    DownLoad: CSV
    Table 5.  ξwθ,α(Z[r:n]) based on FGM-WD.
    θ=4,β=0.2,η=0.5 θ=9,β=2,η=1.5
    n r α=0.1 α=0.1 α=0.5 α=0.5 α=0.9 α=0.9 α=0.1 α=0.1 α=0.5 α=0.5 α=0.9 α=0.9
    4 1 0.1195 0.13 0.0906 0.1451 0.0485 0.1543 0.2899 0.3026 0.2646 0.3277 0.239 0.3527
    4 2 0.1233 0.1268 0.1155 0.1331 0.1065 0.1384 0.2942 0.2984 0.2857 0.3067 0.2773 0.3151
    4 3 0.1268 0.1233 0.1331 0.1155 0.1384 0.1065 0.2984 0.2942 0.3067 0.2857 0.3151 0.2773
    4 4 0.13 0.1195 0.1451 0.0906 0.1543 0.0485 0.3026 0.2899 0.3277 0.2646 0.3527 0.239
    6 1 0.1184 0.1309 0.082 0.1477 0.0254 0.157 0.2887 0.3037 0.2585 0.3336 0.2278 0.3634
    6 2 0.1212 0.1287 0.1023 0.1405 0.0773 0.1489 0.2918 0.3008 0.2737 0.3187 0.2555 0.3366
    6 3 0.1238 0.1263 0.1184 0.1309 0.1124 0.1351 0.2948 0.2978 0.2887 0.3037 0.2827 0.3097
    6 4 0.1263 0.1238 0.1309 0.1184 0.1351 0.1124 0.2978 0.2948 0.3037 0.2887 0.3097 0.2827
    6 5 0.1287 0.1212 0.1405 0.1023 0.1489 0.0773 0.3008 0.2918 0.3187 0.2737 0.3366 0.2555
    6 6 0.1309 0.1184 0.1477 0.082 0.157 0.0254 0.3037 0.2887 0.3336 0.2585 0.3634 0.2278
    8 1 0.1178 0.1314 0.0768 0.1491 0.0111 0.1583 0.2881 0.3044 0.2551 0.3369 0.2216 0.3693
    8 2 0.1199 0.1297 0.0938 0.144 0.0566 0.1531 0.2904 0.3021 0.267 0.3253 0.2433 0.3485
    8 3 0.1221 0.1279 0.1081 0.1376 0.0906 0.1451 0.2928 0.2998 0.2787 0.3137 0.2646 0.3277
    8 4 0.1241 0.126 0.1199 0.1297 0.1155 0.1331 0.2951 0.2974 0.2904 0.3021 0.2857 0.3067
    8 5 0.126 0.1241 0.1297 0.1199 0.1331 0.1155 0.2974 0.2951 0.3021 0.2904 0.3067 0.2857
    8 6 0.1279 0.1221 0.1376 0.1081 0.1451 0.0906 0.2998 0.2928 0.3137 0.2787 0.3277 0.2646
    8 7 0.1297 0.1199 0.144 0.0938 0.1531 0.0566 0.3021 0.2904 0.3253 0.267 0.3485 0.2433
    8 8 0.1314 0.1178 0.1491 0.0768 0.1583 0.0111 0.3044 0.2881 0.3369 0.2551 0.3693 0.2216
    10 1 0.1174 0.1317 0.0733 0.1499 0.0014 0.159 0.2877 0.3048 0.253 0.339 0.2177 0.3731
    10 2 0.1192 0.1303 0.088 0.146 0.0415 0.1552 0.2896 0.3029 0.2627 0.3296 0.2354 0.3561
    10 3 0.1209 0.1289 0.1006 0.1413 0.0733 0.1499 0.2915 0.301 0.2723 0.3201 0.253 0.339
    10 4 0.1226 0.1274 0.1116 0.1356 0.0982 0.1423 0.2934 0.2991 0.2819 0.3106 0.2704 0.322
    10 5 0.1243 0.1259 0.1209 0.1289 0.1174 0.1317 0.2953 0.2972 0.2915 0.301 0.2877 0.3048
    10 6 0.1259 0.1243 0.1289 0.1209 0.1317 0.1174 0.2972 0.2953 0.301 0.2915 0.3048 0.2877
    10 7 0.1274 0.1226 0.1356 0.1116 0.1423 0.0982 0.2991 0.2934 0.3106 0.2819 0.322 0.2704
    10 8 0.1289 0.1209 0.1413 0.1006 0.1499 0.0733 0.301 0.2915 0.3201 0.2723 0.339 0.253
    10 9 0.1303 0.1192 0.146 0.088 0.1552 0.0415 0.3029 0.2896 0.3296 0.2627 0.3561 0.2354
    10 10 0.1317 0.1174 0.1499 0.0733 0.159 0.0014 0.3048 0.2877 0.339 0.253 0.3731 0.2177

     | Show Table
    DownLoad: CSV
    Table 6.  ξwθ,α(Z[n]) based on FGM-WD.
    θ=4,β=0.2,η=0.5 θ=9,β=2,η=1.5
    n α=0.5 α=0.5 α=0.9 α=0.9 n α=0.5 α=0.5 α=0.9 α=0.9
    2 0.14252 0.09764 0.15139 0.06608 2 0.32243 0.2699 0.3433 0.24861
    3 0.14849 0.07907 0.15772 0.01748 3 0.33548 0.25662 0.36672 0.22435
    4 0.15094 0.06835 0.15989 –0.01305 4 0.342 0.24995 0.37841 0.21204
    5 0.15205 0.0626 0.16079 –0.03006 5 0.34525 0.24661 0.38426 0.20584
    6 0.15257 0.05963 0.1612 –0.03904 6 0.34688 0.24493 0.38718 0.20272
    7 0.15283 0.05812 0.1614 –0.04364 7 0.34769 0.24409 0.38864 0.20116
    8 0.15296 0.05735 0.1615 –0.04598 8 0.3481 0.24368 0.38937 0.20037
    9 0.15302 0.05697 0.16154 –0.04715 9 0.3483 0.24347 0.38974 0.19998
    10 0.15305 0.05678 0.16157 –0.04774 10 0.3484 0.24336 0.38992 0.19979
    11 0.15307 0.05668 0.16158 –0.04804 11 0.34846 0.24331 0.39001 0.19969
    12 0.15307 0.05663 0.16158 –0.04818 12 0.34848 0.24328 0.39006 0.19964
    13 0.15308 0.05661 0.16159 –0.04826 13 0.34849 0.24327 0.39008 0.19961
    14 0.15308 0.0566 0.16159 –0.04829 14 0.3485 0.24326 0.39009 0.1996
    15 0.15308 0.05659 0.16159 –0.04831 15 0.3485 0.24326 0.3901 0.1996
    16 0.15308 0.05659 0.16159 –0.04832 16 0.3485 0.24326 0.3901 0.19959
    17 0.15308 0.05659 0.16159 –0.04833 17 0.34851 0.24326 0.3901 0.19959

     | Show Table
    DownLoad: CSV

    ● Generally, ξwθ,α(Z[r:n])=ξwθ,α(Z[nr+1:n]) (similar to Remark 2.3, this symmetry relation can easily be proved theoretically). Also, the value of ξwθ,α(Z[r:n]) slowly increases as the value of n increases (see Tables 3 and 5).

    ● We can see that the value of ξwθ,α(Z[n]) increases as n increases, the value of ξwθ,α(Z[n]) decreases as n decreases, and it almost stays the same when n=15 (see Table 4).

    ● At most, the value of ξwθ,α(Z[n]) increases as n increases, but the value of ξwθ,α(Z[n]) decreases as n increases, and it almost stays the same when n=17 (see Table 6).

    When doing a reliability analysis, one crucial quantity to consider is the component or system's residual lifetime. Assuming a component Z has survived for a certain amount of time t, its residual lifetime is Zt=(Zt)|Z>t. This is the AWCRTE with residual lifetime Zt, which is dynamic and has order θ. Then, the dynamic AWCRTE in the rth concomitant based on the FGM family is given by

    ξwθ,α(Z[r,n,m,k];t)=1θ1tz(¯FZt[r,n,m,k](z)¯FθZt[r,n,m,k](z))dz=1θ1tz(¯F[r,n,m,k](z)¯F[r,n,m,k](t)(¯F[r,n,m,k](z)¯F[r,n,m,k](t))θ)dz=1θ1(mF[r,n,m,k](t)tz(¯F[r,n,m,k](z)¯F[r,n,m,k](t))θdz). (2.4)

    In the following theorem, we establish the connection between the dynamic AWCRTE and WMRL.

    Theorem 2.3. Let Z be an absolutely continuous non-negative RV with WMRL function mF[r,n,m,k](t), and then,

    ξwθ,α(Z[r,n,m,k];t)=E[mF[r,n,m,k](Z[r,n,m,k])¯Fθ1[r,n,m,k](Z[r,n,m,k])|Z>t]¯Fθ1[r,n,m,k](t).

    Proof. From (2.4), we have

    ξwθ,α(Z[r,n,m,k];t)=1θ1[mF[r,n,m,k](t)+1¯Fθ[r,n,m,k](t)t[ddz(mF[r,n,m,k](z)¯F[r,n,m,k](z))¯Fθ1[r,n,m,k](z)]dz]=1θ1[mF[r,n,m,k](t)+1¯Fθ[r,n,m,k](t)(mF[r,n,m,k](t)¯Fθ[r,n,m,k](t)+(θ1)tmF[r,n,m,k](z)
    ׯFθ1[r,n,m,k](z)f[r,n,m,k](z)dz)]=1¯Fθ1[r,n,m,k](t)tmF[r,n,m,k](z)¯Fθ1[r,n,m,k](z)f[r,n,m,k](z)¯F[r,n,m,k](t)dz. (2.5)

    The proof is complete.

    Here, we study the WCPTE and its dynamic version in concomitant Z[r,n,m,k], from the FGM family, with numerical illustrations according to the sub-model OSs and record values.

    Theorem 3.1. The WCPTE for the rth concomitant of mGOSs based on the FGM family is given by

    Pwθ,α(Z[r,n,m,k])=1θ1(0zF[r,n,m,k](z)dzN(θ)j=0(θj)(αC(r,n,m,k))jE[Uθ(1U)jQ(U)q(U)]).

    Proof. Using (1.3) and (1.6), then the WCPTE is provided by

    Pwθ,α(Z[r,n,m,k])=1θ10z(F[r,n,m,k](z)Fθ[r,n,m,k](z))dz=1θ1(0zF[r,n,m,k](z)dzN(θ)j=0(θj)(αC(r,n,m,k))j×E[Z(1FZ(Z))j(FZ(Z))θfZ(Z)])=1θ1(0zF[r,n,m,k](z)dzN(θ)j=0(θj)(αC(r,n,m,k))j×E[Uθ(1U)jQ(U)q(U)]). (3.1)

    Remark 3.1. Let F[r:n](z) be the DF of the rth concomitant Z[r:n]. By putting m=0 and k=1, then the WCPTE in the rth concomitant of the OSs is given by

    Pwθ,α(Z[r:n])=1θ1(0zF[r:n](z)dzN(θ)j=0(θj)(αϕ(r:n))jE[Uθ(1U)jQ(U)q(U)]).

    Remark 3.2. Let F[n](z) be the DF of the nth upper record. By putting k=1 and m=1, then the WCPTE in the concomitant of the nth upper record value is given by

    Pwθ,α(Z[n])=1θ1(0zF[n](z)dzN(θ)j=0(θj)(αδ(n))jE[Uθ(1U)jQ(U)q(U)]).

    The link between the weighted mean past lifetime (WMPL), μF[r,n,m,k](t)=t0zF[r,n,m,k](z)F[r,n,m,k](t)dz, F[r,n,m,k](t)>0, and the WCPTE is then determined.

    Lemma 3.1. Let Z be a non-negative continuous RV with DF FZ(z), and then

    Pwθ,α(Z[r,n,m,k])=E[μF[r,n,m,k](Z[r,n,m,k])Fθ1[r,n,m,k](Z[r,n,m,k])].

    Proof. We have ddz(μF[r,n,m,k](z)F[r,n,m,k](z))=zF[r,n,m,k](z). Using (3.1), we get

    Pwθ,α(Z[r,n,m,k])=1θ1[0ddz(μF[r,n,m,k](z)F[r,n,m,k](z))(1Fθ1[r,n,m,k](z))dz].

    Example 3.1. Assume that the uniform distribution (UD) of Y and Z results from the FGM family (i.e., FZ(z)=z,0z1). After simple algebra, we get

    10zF[r,n,m,k](z)dz=13[1+(αC(r,n,m,k))4],

    and

    E[Uθ(1U)jQ(U)q(U)]=10z1+θ(1z)jdz=β(1+j,2+θ).

    Then, based on (3.1), this leads to the following WCPTE in Z[r,n,m,k]:

    Pwθ,α(Z[r,n,m,k])=1θ1(13[1+(αC(r,n,m,k))4]N(θ)j=0(θj)(αC(r,n,m,k))jβ(1+j,2+θ)),

    and

    μF[r,n,m,k](t)=1F[r,n,m,k](t)t0zF[r,n,m,k](z)dz=t33F[r,n,m,k](t)[1+αC(r,n,m,k)(43t4)].

    We can easily show that

    E[μF[r,n,m,k](Z[r,n,m,k])Fθ1[r,n,m,k](Z[r,n,m,k])]
    =1θ1(13[1+αC(r,n,m,k)4]N(θ)j=0(θj)(αC(r,n,m,k))jβ(1+j,2+θ)).

    Example 3.2. Let Y and Z be two variables that represent power distributions obtained from the FGM family (i.e., FZ(z)=zc,0z1,c>0). Then

    10zF[r,n,m,k](z)dz=12+c[1+c(αC(r,n,m,k))2(c+1)],

    and

    E[Uθ(1U)jQ(U)q(U)]=10z1+cθ(1zc)jdz=β(1+j,2c+θ)c.

    Thus, based on (3.1), this leads to the following WCPTE in Z[r,n,m,k]:

    Pwθ,α(Z[r,n,m,k])=1θ1(12+c[1+c(αC(r,n,m,k))2(c+1)]N(θ)j=0(θj)(αC(r,n,m,k))jβ(1+j,2c+θ)c).

    Lemma 3.2. If Z=aX+b with a>0 and b0, then

    Pwθ,α(Z[r,n,m,k])=a2Pwθ,α(X[r,n,m,k])+abPwθ,α(X[r,n,m,k]).

    Proof. The proof follows using the fact that FZ[r,n,m,k](u)=FX[r,n,m,k](uba).

    Tables 7 and 8 show some aspects of the behavior of the WCPTE for Z[n] and Z[r:n] based on the FGM-UD. From Tables 7 and 8, the ensuing characteristics are extractable:

    Table 7.  Pwθ,α(Z[n]) based on FGM-UD.
    θ=4 θ=9
    n α=0.5 α=0.5 α=0.9 α=0.9 n α=0.5 α=0.5 α=0.9 α=0.9
    2 0.0538 0.0558 0.0511 0.0552 2 0.0304 0.0295 0.0298 0.0286
    3 0.0522 0.0555 0.0466 0.0536 3 0.0301 0.029 0.0281 0.0273
    4 0.0513 0.0552 0.0437 0.0525 4 0.0299 0.0287 0.0268 0.0265
    5 0.0508 0.0551 0.042 0.0519 5 0.0297 0.0285 0.0259 0.0262
    6 0.0505 0.055 0.0411 0.0516 6 0.0296 0.0284 0.0255 0.026
    7 0.0504 0.0549 0.0407 0.0514 7 0.0296 0.0284 0.0252 0.0259
    8 0.0503 0.0549 0.0405 0.0513 8 0.0296 0.0283 0.0251 0.0258
    9 0.0503 0.0549 0.0404 0.0513 9 0.0295 0.0283 0.025 0.0258
    10 0.0503 0.0549 0.0403 0.0513 10 0.0295 0.0283 0.025 0.0258
    11 0.0503 0.0549 0.0403 0.0512 11 0.0295 0.0283 0.025 0.0258
    12 0.0503 0.0549 0.0403 0.0512 12 0.0295 0.0283 0.025 0.0258
    13 0.0503 0.0549 0.0402 0.0512 13 0.0295 0.0283 0.025 0.0258
    14 0.0502 0.0549 0.0402 0.0512 14 0.0295 0.0283 0.025 0.0258
    15 0.0502 0.0549 0.0402 0.0512 15 0.0295 0.0283 0.025 0.0258
    16 0.0502 0.0549 0.0402 0.0512 16 0.0295 0.0283 0.025 0.0258

     | Show Table
    DownLoad: CSV
    Table 8.  Pwθ,α(Z[r:n]) based on FGM-UD.
    θ=4 θ=9
    n r α=0.1 α=0.1 α=0.5 α=0.5 α=0.9 α=0.9 α=0.1 α=0.1 α=0.5 α=0.5 α=0.9 α=0.9
    4 1 0.0558 0.0553 0.0557 0.0532 0.0546 0.0495 0.0302 0.0304 0.0293 0.0303 0.0281 0.0293
    4 2 0.0556 0.0555 0.0558 0.055 0.0559 0.0544 0.0303 0.0303 0.0301 0.0304 0.0298 0.0305
    4 3 0.0555 0.0556 0.055 0.0558 0.0544 0.0559 0.0303 0.0303 0.0304 0.0301 0.0305 0.0298
    4 4 0.0553 0.0558 0.0532 0.0557 0.0495 0.0546 0.0304 0.0302 0.0303 0.0293 0.0293 0.0281
    6 1 0.0558 0.0552 0.0556 0.0525 0.0538 0.0473 0.0301 0.0304 0.0291 0.0302 0.0275 0.0284
    6 2 0.0557 0.0554 0.0559 0.0541 0.0555 0.0521 0.0302 0.0304 0.0297 0.0304 0.0289 0.0301
    6 3 0.0556 0.0555 0.0558 0.0552 0.0559 0.0548 0.0303 0.0303 0.0301 0.0304 0.03 0.0305
    6 4 0.0555 0.0556 0.0552 0.0558 0.0548 0.0559 0.0303 0.0303 0.0304 0.0301 0.0305 0.03
    6 5 0.0554 0.0557 0.0541 0.0559 0.0521 0.0555 0.0304 0.0302 0.0304 0.0297 0.0301 0.0289
    6 6 0.0552 0.0558 0.0525 0.0556 0.0473 0.0538 0.0304 0.0301 0.0302 0.0291 0.0284 0.0275
    8 1 0.0558 0.0552 0.0554 0.0521 0.0533 0.046 0.0301 0.0304 0.0289 0.0301 0.0271 0.0279
    8 2 0.0557 0.0553 0.0558 0.0535 0.0549 0.0502 0.0302 0.0304 0.0294 0.0304 0.0283 0.0295
    8 3 0.0557 0.0554 0.0559 0.0546 0.0557 0.0532 0.0302 0.0304 0.0299 0.0305 0.0293 0.0303
    8 4 0.0556 0.0555 0.0557 0.0553 0.0558 0.055 0.0303 0.0303 0.0302 0.0304 0.0301 0.0304
    8 5 0.0555 0.0556 0.0553 0.0557 0.055 0.0558 0.0303 0.0303 0.0304 0.0302 0.0304 0.0301
    8 6 0.0554 0.0557 0.0546 0.0559 0.0532 0.0557 0.0304 0.0302 0.0305 0.0299 0.0303 0.0293
    8 7 0.0553 0.0557 0.0535 0.0558 0.0502 0.0549 0.0304 0.0302 0.0304 0.0294 0.0295 0.0283
    8 8 0.0552 0.0558 0.0521 0.0554 0.046 0.0533 0.0304 0.0301 0.0301 0.0289 0.0279 0.0271
    10 1 0.0558 0.0551 0.0554 0.0518 0.053 0.045 0.0301 0.0304 0.0288 0.03 0.0269 0.0274
    10 2 0.0558 0.0553 0.0557 0.053 0.0544 0.0489 0.0302 0.0304 0.0292 0.0303 0.0279 0.029
    10 3 0.0557 0.0554 0.0559 0.054 0.0554 0.0518 0.0302 0.0304 0.0296 0.0304 0.0288 0.03
    10 4 0.0557 0.0554 0.0559 0.0548 0.0559 0.0538 0.0302 0.0304 0.03 0.0305 0.0296 0.0304
    10 5 0.0556 0.0555 0.0557 0.0554 0.0558 0.0551 0.0303 0.0303 0.0302 0.0304 0.0301 0.0304
    10 6 0.0555 0.0556 0.0554 0.0557 0.0551 0.0558 0.0303 0.0303 0.0304 0.0302 0.0304 0.0301
    10 7 0.0554 0.0557 0.0548 0.0559 0.0538 0.0559 0.0304 0.0302 0.0305 0.03 0.0304 0.0296
    10 8 0.0554 0.0557 0.054 0.0559 0.0518 0.0554 0.0304 0.0302 0.0304 0.0296 0.03 0.0288
    10 9 0.0553 0.0558 0.053 0.0557 0.0489 0.0544 0.0304 0.0302 0.0303 0.0292 0.029 0.0279
    10 10 0.0551 0.0558 0.0518 0.0554 0.045 0.053 0.0304 0.0301 0.03 0.0288 0.0274 0.0269

     | Show Table
    DownLoad: CSV

    ● We see that the value of Pwθ,α(Z[n]) increases as n increases, the value of Pwθ,α(Z[n]) decreases as n increases, and it almost stays the same when n=15 (see Table 7).

    ● Generally, Pwθ,α(Z[r:n])=Pwθ,α(Z[nr+1:n]). Also, the value of Pwθ,α(Z[r:n]) slowly increases at r(n2+1), and decreases at r(n2+1) (see Table 8).

    Dynamic WCPTE measure

    Dynamic WCPTE (DWCPTE) of an RV Z is the WCPTE of the RV [tZ|Z<t],t>0. The DWCPTE variant from the FGM family in Z[r,n,m,k] is provided as

    Pwθ,α(Z[r,n,m,k];t)=1θ1t0z(FZt[r,n,m,k](z)FθZt[r,n,m,k](z))dz=1θ1t0z(F[r,n,m,k](z)F[r,n,m,k](t)(F[r,n,m,k](z)F[r,n,m,k](t))θ)dz=1θ1(μF[r,n,m,k](t)t0z(F[r,n,m,k](z)F[r,n,m,k](t))θdz).

    Theorem 3.2. Let Z be an absolutely continuous non-negative RV with WMPL function μF[r,n,m,k](t), and then,

    Pwθ,α(Z[r,n,m,k],t)=E[μF[r,n,m,k](Z[r,n,m,k])Fθ1[r,n,m,k](Z[r,n,m,k])|Z<t]Fθ1[r,n,m,k](t).

    Proof. The Proof is similar to (2.5).

    The issue of estimating the AWCRTE and WCPTE for concomitant Z[r,n,m,k] utilizing the empirical AWCRTE will be examined next. For every i=1,2,...,n, consider the FGM sequence (Yi,Zi). In accordance with (2.3), the empirical AWCRTE of the set Z[r,n,m,k] can be computed as follows:

    ˆξwθ,α(Z[r,n,m,k])=1θ10z(ˆ¯F[r,n,m,k](z)ˆ¯Fθ[r,n,m,k](z))dz=1θ1n1j=1z(j+1)z(j)z((1ˆFZ(z))(1αC(r,n,m,k)ˆFZ(z))(1ˆFZ(z))θ×(1αC(r,n,m,k)ˆFZ(z))θ)dz=1θ1n1j=1Δj((1jn)(1αC(r,n,m,k)jn)(1jn)θ(1αC(r,n,m,k)jn)θ),

    where for any DF F(.), the symbol ˆF(.) stands for the empirical DF of F(.) and Δj=Z2(j+1)Z2(j)2, j=1,2...,n1, are the sample spacings based on ordered random samples of Zj. Similarly, based on (3.1), the empirical WCPTE of the set Z[r,n,m,k] can be expressed as

    ˆPwθ,α(Z[r,n,m,k])=1θ1n1j=1Δj(jn(1+αC(r,n,m,k)(1jn))(jn)θ(1+αC(r,n,m,k)(1jn))θ).

    Example 4.1. Suppose that Z has a Rayleigh distribution with PDF fZ(z)=2λzeλz2,z>0,λ>0. Then, Z2 has ED with mean 1λ and Δj=Z2(j+1)Z2(j)2 has ED with mean 12λ(nj),j=1,2...,n1. The expected value and variance of the empirical AWCRTE in ˆξwθ,α(Z[r,n,m,k]) are given by

    E[ˆξwθ,α(Z[r,n,m,k])]=12λ(θ1)n1j=11(nj)((1jn)(1αC(r,n,m,k)jn)(1jn)θ(1αC(r,n,m,k)jn)θ),

    and

    Var[ˆξwθ,α(Z[r,n,m,k])]=14λ2(θ1)2n1j=11(nj)2((1jn)(1αC(r,n,m,k)jn)(1jn)θ(1αC(r,n,m,k)jn)θ)2.

    Example 4.2. Let (Yi,Zi),i=1,2,...,n, be a random sample from the FGM family with PDF fZ(z)=2z,0<z<1. Then, Z2 has a standard uniform distribution. Furthermore, Δj=Z2(j+1)Z2(j)2 follows the beta distribution with mean 12(n+1) and variance n4(n+1)2(n+2). The mean and variance of the empirical WCPTE in ˆPwθ,α(Z[r,n,m,k]) are given by

    E[ˆPwθ,α(Z[r,n,m,k])]=12(n+1)(θ1)n1j=1(jn(1+αC(r,n,m,k)(1jn))(jn)θ(1+αC(r,n,m,k)(1jn))θ),

    and

    Var[ˆPwθ,α(Z[r,n,m,k])]=n4(n+1)2(n+2)(θ1)2n1j=1(jn(1+αC(r,n,m,k)(1jn))(jn)θ×(1+αC(r,n,m,k)(1jn))θ)2.

    Both the AWCRTE and empirical AWCRTE in Z[r:n] from FGM-ED at n=50, as well as the WCPTE and empirical WCPTE in Z[r:n] from FGM-UD, are shown in Figures 2 and 3. Figures 2 and 3 can be utilized to ascertain the subsequent properties:

    Figure 2.  Representation of AWCRTE and empirical AWCRTE in Z[r:n] based on FGM-ED for n=50.
    Figure 3.  Representation of WCPTE and empirical WCPTE in Z[r:n] based on FGM-UD for n=100.

    1) Mostly, the AWCRTE and the empirical AWCRTE are close together.

    2) Generally, the WCPTE and the empirical WCPTE are very close.

    As we have previously highlighted, Tsallis entropy is a generalization of Shannon entropy that works better with non-extensive systems. This makes it possible to analyze complex data, like those found in medical settings, such as electroencephalogram (EEG) signals used to diagnose epilepsy, in a more flexible and reliable manner. Tsallis entropy offers a more nuanced view of the system's non-linear and non-extensive dynamics, providing insights that may not be captured by Shannon entropy. EEG signals are an example of a complicated medical data set used in epilepsy diagnosis.

    Using Tsallis entropy and a few of its associated measures that are covered in this article, we examine two medical data sets below. Tsallis entropy provides information that Shannon entropy might miss, despite the fact that it is challenging to practically verify the level of complexity and non-linearity of the handled systems.

    Example 5.1. We use the data for 30 patients from [31]. Let Y refer to the first recurrence time and Z to the second recurrence time, as follows: Y is (8, 23, 22,447, 30, 24, 7,511, 53, 15, 7,141, 96,149,536, 17,185,292, 22, 15,152,402, 13, 39, 12,113,132, 34, 2,130) and Z is (16, 13, 28,318, 12,245, 9, 30,196,154,333, 8, 38, 70, 25, 4,117,114,159,108,362, 24, 66, 46, 40,201,156, 30, 25, 26). Reference [32] introduced FGM bivariate WD, and they discussed the estimation of the parameters of this model and found the maximum likelihood estimates (MLEs) of the shape and scale parameters (ηi,βi),i=1,2, as (0.75106,100.11993) and (0.92435,98.24665), respectively, and α=0.34801. To find a trust region or confidence intervals for the parameters of the FGM bivariate WD, we can further use, among many other methods, the fisher information matrix to derive asymptotic confidence intervals (which provides the standard method). However, the primary objective is to determine whether the FGM-WD model, after estimating its unknown parameters, adequately fits the given data and then examines the AWCRTE and WCRTE.

    Table 9 examines the AWCRTE and WCRTE for FGM-WD (0.75106,100.11993, 0.92435, 98.24665). For the concomitants Z[r:30],r=1,2,14,15,29,30, i.e., the lower and upper extremes concomitants, and the central values concomitants. We observe that the ξwθ,α(Z[r:30]) and ζwθ,α(Z[r:30]) have maximum values at extremes. Figures 4 and 5 provide a fundamental statistical analysis illustrating the data.

    Table 9.  The AWCRTE and WCRTE of FGM-WD.
    θ r 1 2 14 15 29 30
    4 ξwθ,α=0.348(Z[r:30]) 3958.94 3945.32 3781.93 3768.32 3577.69 3564.08
    ζwθ,α=0.348(Z[r:30]) 0.333164 0.333158 0.333068 0.333059 0.332893 0.332878
    9 ξwθ,α=0.348(Z[r:30]) 1484.6 1479.49 1418.22 1413.12 1341.64 1336.53
    ζwθ,α=0.348(Z[r:30]) 0.12499 0.124989 0.124983 0.124982 0.124968 0.124966

     | Show Table
    DownLoad: CSV
    Figure 4.  Plots of the first recurrence time data set.
    Figure 5.  Plots of the second recurrence time data set.

    Example 5.2 (Cholesterol data set). This data set includes cholesterol levels measured at 5 and 25 weeks after treatment in 30 patients (see [33]). We fit the data based on FGM-WD (η1,β1; η2,β2). The MLEs of parameters are ˆη1=2.93893,ˆβ1=1.21085,ˆη2=2.589, ˆβ2=1.10099, and ˆα=1. Table 10 examines the AWCRTE and WCRTE for FGM-WD (2.93893, 1.21085, 2.589, 1.10099). For the concomitants Z[r:30],r=1,2,14,15,29,30, i.e., the lower and upper extremes concomitants, and the central values concomitants. We observe that the ξwθ[r:30](Z) and ζwθ[r:30](Z) have maximum values at extremes.

    Table 10.  The AWCRTE and WCRTE of FGM-WD.
    θ r 1 2 14 15 29 30
    4 ξwθ[r:30](Z) 0.26141 0.253816 0.158299 0.149854 0.0190433 0.00855513
    ζwθ[r:30](Z) 0.308546 0.30781 0.294593 0.293007 0.258213 0.254584
    15 ξwθ[r:30](Z) 0.0594999 0.0579511 0.0392552 0.0376493 0.0123585 0.0101515
    ζwθ[r:30](Z) 0.0696003 0.0695212 0.0684611 0.0683249 0.0636092 0.0628719
    30 ξwθ[r:30](Z) 0.0291314 0.0283863 0.019546 0.0187973 0.00726299 0.00626894
    ζwθ[r:30](Z) 0.0340075 0.0339718 0.0336455 0.0336062 0.0320047 0.0317202

     | Show Table
    DownLoad: CSV

    Among bivariate distributions, the FGM model is one of the most well-known and useful in recent years. The FGM bivariate distribution family has been widely accepted for many practical applications. Furthermore, the recently introduced redundant concomitants of OSs have regained popularity due to their usefulness in prediction and selection contexts. Another important concept that has gained attention is Tsallis entropy, which has been applied in various fields, including physics and chemistry. Every year, new applications of these measures are discovered. Some of the most significant related measures recently introduced are WCRTE and WCPTE. AWCRTE, WCPTE, and their dynamic counterparts for the concomitants of m-GOSs were derived from the FGM bivariate family. The characteristics of the proposed entropy measures were analyzed. These entropy measures were used to characterize the exponential and Pareto distributions. Applications of these findings were presented for OS and record values with uniform, Weibull, and exponential marginal distributions. Additionally, non-parametric estimators of AWCRTE and WCPTE were proposed for calculating the new information measures.

    Two real-world data sets were evaluated for illustration, yielding satisfactory results. The parameter θ in Tsallis entropy controls the sensitivity of the entropy to rare events and affects the system's "distributional" properties. Specifically, when θ=1, it corresponds to the standard Shannon entropy, while θ>1 and θ<1 modify the sensitivity to the tail and central parts of the distribution, respectively.

    To estimate θ empirically, the Tsallis model is typically fitted to data using methods such as maximum likelihood estimation, least squares fitting, or numerical optimization. For more details, see [34]. However, in this study, we did not address the estimation of θ. Instead, we selected different values of θ to demonstrate how the results change as the value of θ varies.

    Validating the quality of estimates for unknown parameters in real data cases can be quite challenging and often requires specialized techniques like bootstrapping. However, this aspect is beyond the scope of our current study. It is important to note that parameter estimation is just one part of our statistical analysis. The primary objective is to determine whether the FGM-WD model, after estimating its unknown parameters, adequately fits the given data, which was confirmed in the examples we explored. In future work, where we will conduct an in-depth study of a specific practical situation, we plan to address this issue more thoroughly.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are grateful to the editor and anonymous referees for their insightful comments and suggestions, which helped to improve the paper's presentation. This research was conducted under a project titled "Ongoing Research Funding Program", funded by King Saudi University, Riyadh, Saudi Arabia, under grant number (ORF-2025-969).

    The authors declare no conflict of interest.



    [1] G. Mansueto, M. D. Napoli, C.P. Campobasso, M. Slevin, Pulmonary arterial hypertension (PAH) from autopsy study: T-cells, B-cells and mastocytes detection as morphological evidence of immunologically mediated pathogenesis, Pathol. Res. Pract., 225 (2021), 153552. doi: 10.1016/j.prp.2021.153552
    [2] S. Gräf, M. Haimel, M. Bleda, C. Hadinnapola, L. Southgate, W. Li, et al., Identification of rare sequence variation underlying heritable pulmonary arterial hypertension, Nat. Commun., 9 (2018), 1416. doi: 10.1038/s41467-018-03672-4
    [3] T. Hiraide, M. Kataoka, H. Suzuki, Y. Aimi, T. Chiba, K. Kanekura, et al., SOX17 Mutations in Japanese Patients with Pulmonary Arterial Hypertension, Am. J. Respir. Crit. Care Med., 198 (2018), 1231-1233. doi: 10.1164/rccm.201804-0766LE
    [4] S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, R. Skouta, E. M. Zaitsev, C. E. Gleason, et al., Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell, 149 (2012), 1060-1072. doi: 10.1016/j.cell.2012.03.042
    [5] Y. C. Li, Y. M. Cao, J. Xiao, J. W. Shang, Q. Tan, F. Ping, et al., Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury, Cell Death Differ., 27 (2020), 2635-2650. doi: 10.1038/s41418-020-0528-x
    [6] X. Li, L. J. Duan, S. J. Yuan, X. B. Zhuang, T. K. Qiao, J. He, Ferroptosis inhibitor alleviates Radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1, J. Inflamm. (Lond)., 16 (2019), 11. doi: 10.1186/s12950-019-0216-0
    [7] M. Mura, M. J. Cecchini, M. Joseph, J. T. Granton, Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension, Respirology, 24 (2019), 1104-1110. doi: 10.1111/resp.13557
    [8] T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, et al., NCBI GEO: archive for functional genomics data sets--update, Nucleic Acids Res., 41 (2013), D991-D995.
    [9] H. Jalal, P. Pechlivanoglou, E. Krijkamp, F. Alarid-Escudero, E. Enns, M. G. M. Hunink, An overview of R in health decision sciences, Med. Decis. Making, 37 (2017), 735-746. doi: 10.1177/0272989X16686559
    [10] M. E. Ritchie, B. Phipson, D. Wu, Y. F. Hu, C. W. Law, W. Shi, et al., Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47. doi: 10.1093/nar/gkv007
    [11] K. Ito, D. Murphy, Application of ggplot2 to Pharmacometric Graphics, CPT Pharmacometrics Syst. Pharmacol., 2 (2013), 1-16.
    [12] R. Kolde, Pheatmap: pretty heatmaps, R package version, 1.0.8., 2015. Available from: https://CRAN.R-project.org/package=pheatmap.
    [13] P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinf., 9 (2008), 559. doi: 10.1186/1471-2105-9-559
    [14] H. B. Chen, P.C. Boutros, VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R, BMC Bioinf., 12 (2011), 35. doi: 10.1186/1471-2105-12-35
    [15] N. Zhou, J. K. Bao, FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations, Database, 2020 (2020).
    [16] A. Eklund, Beeswarm: the bee swarm plot, an alternative to stripchart, R package version, 0.2.3., 2016. Available from: https://cran.r-project.org/package=beeswarm.
    [17] H. A. Kassambara, Ggpubr: "ggplot2" based punlication ready plots, R package version, 1.0.7., 2018. Available from: https://cran.r-project.org/install.packages ("ggpubr").
    [18] G. C. Yu, L. G. Wang, Y. Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, Omics: J. Integr. Biol., 16 (2012), 284-287. doi: 10.1089/omi.2011.0118
    [19] B. Nota, Gogadget: An R package for interpretation and visualization of GO enrichment results, Mol. Inf., 36 (2017), 5-6.
    [20] M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res., 45 (2017), D353-D361. doi: 10.1093/nar/gkw1092
    [21] S. D. Hsu, F. M. Lin, W. Y. Wu, C. Liang, W. C. Huang, W. L. Chan, et al., miRTarBase: a database curates experimentally validated microRNA-target interactions, Nucleic Acids Res., 39 (2011), D163-D169. doi: 10.1093/nar/gkq1107
    [22] J. R. Ecker, W. A. Bickmore, I. Barroso, J. K. Pritchard, Y. Gilad, E. Segal, Genomics: ENCODE explained, Nature, 489 (2012), 52-55. doi: 10.1038/489052a
    [23] J. Reimand, R. Isserlin, V. Voisin, M. Kucera, C. Tannus-Lopes, A. Rostamianfar, et al., Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and EnrichmentMap, Nat. Protoc., 14 (2019), 482-517. doi: 10.1038/s41596-018-0103-9
    [24] L. Hecker, Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace, Am. J. Physiol. Lung Cell Mol. Physiol., 314 (2018), L642-L653. doi: 10.1152/ajplung.00275.2017
    [25] P. A. Kirkham, P. J. Barnes, Oxidative stress in COPD, Chest, 144 (2013), 266-273. doi: 10.1378/chest.12-2664
    [26] E. A. Zemskov, Q. Lu, W. Ornatowski, C. N. Klinger, A. A. Desai, E. Maltepe, et al., Biomechanical forces and oxidative stress: implications for pulmonary vascular disease, Antioxid. Redox Signaling, 31 (2019), 819-842. doi: 10.1089/ars.2018.7720
    [27] S. Aggarwal, C. M. Gross, S. Sharma, J. R. Fineman, S. M. Black, Reactive oxygen species in pulmonary vascular remodeling, Compr. Physiol., 3 (2013), 1011-1034.
    [28] W. S. Yang, B. R. Stockwell, Ferroptosis: death by lipid peroxidation, Trends Cell Biol., 26 (2016), 165-176. doi: 10.1016/j.tcb.2015.10.014
    [29] L. B. Frankel, A. H. Lund, MicroRNA regulation of autophagy, Carcinogenesis, 33 (2012), 2018-2025. doi: 10.1093/carcin/bgs266
    [30] D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116 (2004), 281-297. doi: 10.1016/S0092-8674(04)00045-5
    [31] M. Y. Luo, L. F. Wu, K. X. Zhang, H. Wang, T. Zhang, L. Gutierrez, et al., miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma, Cell Death Differ., 25 (2018), 1457-1472. doi: 10.1038/s41418-017-0053-8
    [32] X. L. Lai, A. Stigliani, G. Vachon, C. Carles, C. Smaczniak, C. Zubieta, et al., Building transcription factor binding site models to understand gene regulation in plants, Mol. Plant., 12 (2019), 743-763. doi: 10.1016/j.molp.2018.10.010
    [33] J. M. Vaquerizas, S. K. Kummerfeld, S. A. Teichmann, N. M. Luscombe, A census of human transcription factors: function, expression and evolution, Nat. Rev. Genet., 10 (2009), 252-263. doi: 10.1038/nrg2538
  • mbe-18-06-377-supplementary.xls
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5184) PDF downloads(497) Cited by(20)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog