Cardiac mitochondria are intracellular organelles that play an important role in energy metabolism and cellular calcium regulation. In particular, they influence the excitation-contraction cycle of the heart cell. A large number of mathematical models have been proposed to better understand the mitochondrial dynamics, but they generally show a high level of complexity, and their parameters are very hard to fit to experimental data.
We derived a model based on historical free energy-transduction principles, and results from the literature. We proposed simple expressions that allow to reduce the number of parameters to a minimum with respect to the mitochondrial behavior of interest for us. The resulting model has thirty-two parameters, which are reduced to twenty-three after a global sensitivity analysis of its expressions based on Sobol indices.
We calibrated our model to experimental data that consists of measurements of mitochondrial respiration rates controlled by external ADP additions. A sensitivity analysis of the respiration rates showed that only seven parameters can be identified using these observations. We calibrated them using a genetic algorithm, with five experimental data sets. At last, we used the calibration results to verify the ability of the model to accurately predict the values of a sixth dataset.
Results show that our model is able to reproduce both respiration rates of mitochondria and transitions between those states, with very low variability of the parameters between each experiment. The same methodology may apply to recover all the parameters of the model, if corresponding experimental data were available.
Citation: Bachar Tarraf, Emmanuel Suraniti, Camille Colin, Stéphane Arbault, Philippe Diolez, Michael Leguèbe, Yves Coudière. A simple model of cardiac mitochondrial respiration with experimental validation[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5758-5789. doi: 10.3934/mbe.2021291
[1] | Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003 |
[2] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[3] | Jianxia He, Qingyan Li . On the global well-posedness and exponential stability of 3D heat conducting incompressible Navier-Stokes equations with temperature-dependent coefficients and vacuum. Electronic Research Archive, 2024, 32(9): 5451-5477. doi: 10.3934/era.2024253 |
[4] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[5] |
Guochun Wu, Han Wang, Yinghui Zhang .
Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in |
[6] | Jie Qi, Weike Wang . Global solutions to the Cauchy problem of BNSP equations in some classes of large data. Electronic Research Archive, 2024, 32(9): 5496-5541. doi: 10.3934/era.2024255 |
[7] | Hui Yang, Futao Ma, Wenjie Gao, Yuzhu Han . Blow-up properties of solutions to a class of p-Kirchhoff evolution equations. Electronic Research Archive, 2022, 30(7): 2663-2680. doi: 10.3934/era.2022136 |
[8] | Yang Cao, Qiuting Zhao . Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064 |
[9] | José Luis Díaz Palencia, Saeed Ur Rahman, Saman Hanif . Regularity criteria for a two dimensional Erying-Powell fluid flowing in a MHD porous medium. Electronic Research Archive, 2022, 30(11): 3949-3976. doi: 10.3934/era.2022201 |
[10] | Zhonghua Qiao, Xuguang Yang . A multiple-relaxation-time lattice Boltzmann method with Beam-Warming scheme for a coupled chemotaxis-fluid model. Electronic Research Archive, 2020, 28(3): 1207-1225. doi: 10.3934/era.2020066 |
Cardiac mitochondria are intracellular organelles that play an important role in energy metabolism and cellular calcium regulation. In particular, they influence the excitation-contraction cycle of the heart cell. A large number of mathematical models have been proposed to better understand the mitochondrial dynamics, but they generally show a high level of complexity, and their parameters are very hard to fit to experimental data.
We derived a model based on historical free energy-transduction principles, and results from the literature. We proposed simple expressions that allow to reduce the number of parameters to a minimum with respect to the mitochondrial behavior of interest for us. The resulting model has thirty-two parameters, which are reduced to twenty-three after a global sensitivity analysis of its expressions based on Sobol indices.
We calibrated our model to experimental data that consists of measurements of mitochondrial respiration rates controlled by external ADP additions. A sensitivity analysis of the respiration rates showed that only seven parameters can be identified using these observations. We calibrated them using a genetic algorithm, with five experimental data sets. At last, we used the calibration results to verify the ability of the model to accurately predict the values of a sixth dataset.
Results show that our model is able to reproduce both respiration rates of mitochondria and transitions between those states, with very low variability of the parameters between each experiment. The same methodology may apply to recover all the parameters of the model, if corresponding experimental data were available.
We consider the compressible isentropic Navier-Stokes equations with degenerate viscosities in
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)+∇P=divT, | (1) |
where
P=Aργ,γ>1, | (2) |
where
T=μ(ρ)(∇u+(∇u)⊤)+λ(ρ)divuI3, | (3) |
where
μ(ρ)=αρ,λ(ρ)=βρ, | (4) |
where the constants
α>0,2α+3β≥0. |
Here, the initial data are given by
(ρ,u)|t=0=(ρ0,u0)(x),x∈R3, | (5) |
and the far field behavior is given by
(ρ,u)→(0,0)as |x|→∞,t≥0. | (6) |
The aim of this paper is to prove a blow-up criterion for the regular solution to the Cauchy problem (1) with (5)-(6).
Throughout the paper, we adopt the following simplified notations for the standard homogeneous and inhomogeneous Sobolev space:
Dk,r={f∈L1loc(R3):|f|Dk,r=|∇kf|Lr<+∞},Dk=Dk,2(k≥2),D1={f∈L6(R3):|f|D1=|∇f|L2<∞},‖f‖X∩Y=‖f‖X+‖f‖Y,‖f‖s=‖f‖Hs(R3),|f|p=‖f‖Lp(R3),|f|Dk=‖f‖Dk(R3). |
A detailed study of homogeneous Sobolev space can be found in [5].
The compressible isentropic Navier-Stokes system is a well-known mathematical model, which has attracted great attention from the researchers, and some significant processes have been made in the well-posedness for this system.
When
−divT0+∇P(ρ0)=√ρ0g |
for some
When
μ(ρ)=αρδ1,λ(ρ)=βρδ2, | (7) |
where
δ1=1,δ2=0 or 1,α>0,α+β≥0, | (8) |
and (6), where the vacuum cannot appear in any local point. They [12] also prove the same existence result in
(ρ,u)→(ˉρ,0)as|x|→∞, | (9) |
with initial vacuum appearing in some open set or the far field, the constant
1<δ1=δ2≤min(3,γ+12),α>0,α+β≥0. | (10) |
We also refer readers to [3], [6], [10], [13], [18], [26] and references therein for other interesting progress for this compressible degenerate system, corresponding radiation hydrodynamic equations and magnetohydrodynamic equations.
It should be noted that one should not always expect the global existence of solutions with better regularities or general initial data because of Xin's results [23] and Rozanova's results [20]. It was proved that there is no global smooth solutions to (1), if the initial density has nontrivial compact support (
For constant viscosity, Beale-Kato-Majda [1] first proved that the maximum norm of the vorticity controls the blow-up of the smooth solutions to
limT→T∗∫T0|curlu|∞dt=∞, | (11) |
where
limT→T∗∫T0|D(u)|∞dt=∞, | (12) |
where the deformation tensor
When the viscosities depend on density in the form of (4), S. Zhu [25] introduced the regular solutions, which can be defined as
Definition 1.1. [25] Let
(A)(ρ,u) in [0,T]×R3 satisfies the Cauchy problem (1)with (5)−(6)in the sense of distributions;(B)ρ≥0,ργ−12∈C([0,T];H2), (ργ−12)t∈C([0,T];H1);(C)∇logρ∈C([0,T];D1), (∇logρ)t∈C([0,T];L2);(D)u∈C([0,T];H2)∩L2([0,T];D3), ut∈C([0,T];L2)∩L2([0,T];D1). |
The local existence of the regular solutions has been obtained by Zhu [25].
Theorem 1.2. [25] Let
ργ−120≥0,(ργ−120,u0)∈H2,∇logρ0∈D1, | (13) |
then there exist a small time
ρ∈C([0,T∗];H2),ρt∈C([0,T∗];H1). |
Based on Theorem 1.2, we establish the blow-up criterion for the regular solution in terms of
Theorem 1.3. Let
limT↦¯T(sup0≤t≤T|∇logρ|6+∫T0|D(u)|∞ dt)=+∞, | (14) |
and
limsupT↦¯T∫T0‖D(u)‖L∞∩D1,6 dt=+∞. | (15) |
The rest of the paper can be organized as follows. In Section 2, we will give the proof for the criterion (14). Section 3 is an appendix which will present some important lemmas which are frequently used in our proof, and also give the detail derivation for the desired system used in our following proof.
In this section, we give the proof for Theorem 1.3. We use a contradiction argument to prove
limT↦¯T(sup0≤t≤T|∇logρ|6+∫T0|D(u)|∞dt)=C0<+∞ | (16) |
for some constant
Notice that, one can also prove (15) by contradiction argument. Assume that
limsupT↦¯T∫T0‖D(u)‖L∞∩D1,6 dt=C′0<+∞ | (17) |
for some constant
limT↦¯Tsup0≤t≤T|∇logρ|6≤CC′0, |
which implies that under assumption (17), we have (16). Thus, if we prove that (14) holds, then (15) holds immediately.
In the rest part of this section, based on the assumption (16), we will prove that
From the definition of the regular solution, we know for
ϕ=ργ−12,ψ=2γ−1∇logϕ, | (18) |
{ϕt+u⋅∇ϕ+γ−12ϕdivu=0,ψt+∇(u⋅ψ)+∇divu=0,ut+u⋅∇u+2θϕ∇ϕ+Lu=ψ⋅Q(u), | (19) |
where
Lu=−div(α(∇u+(∇u)⊤)+βdivuI3), | (20) |
and terms
Q(u)=α(∇u+(∇u)⊤)+βdivuI3,θ=Aγγ−1. | (21) |
See our appendix for the detailed process of the reformulation.
For
ψt+3∑l=1Al∂lψ+Bψ+∇divu=0. | (22) |
Here
ψ=2γ−1∇ϕϕ=2γ−1∇ργ−12ργ−12=∇ρρ=∇logρ, | (23) |
combing this with
Under (16) and (19), we first show that the density
Lemma 2.1. Let
‖ρ‖L∞([0,T]×R3)+‖ϕ‖L∞([0,T];Lq)≤C,0≤T<¯T, |
where
Proof. First, it is obvious that
ϕ(t,x)=ϕ0(W(0,t,x))exp(−γ−12∫t0divu(s,W(s,t,x))ds), | (24) |
where
{ddtW(t,s,x)=u(t,W(t,s,x)),0≤t≤T,W(s,s,x)=x, 0≤s≤T, x∈R3. |
Then it is clear that
‖ϕ‖L∞([0,T]×R3)≤|ϕ0|∞exp(CC0)≤C. | (25) |
Similarly,
‖ρ‖L∞([0,T]×R3)≤C. | (26) |
Next, multiplying
ddt|ϕ|22≤C|divu|∞|ϕ|22, | (27) |
from (16), (27) and the Gronwall's inequality, we immediately obtain
‖ϕ‖L∞([0,T];L2)≤C. | (28) |
Combing (25)-(28) together, one has
‖ϕ‖L∞([0,T];Lq)≤C,q∈[2,+∞]. |
We complete the proof of this lemma.
Before go further, notice that
|∇ϕ|6=|ϕ∇logϕ|6=2γ−1|ϕ∇logρ|6≤C|ϕ|∞|∇logρ|6≤C, | (29) |
where we have used
Lemma 2.2. Let
sup0≤t≤T|u(t)|22+∫T0|∇u(t)|22dt≤C,0≤T<¯T, |
where
Proof. Multiplying
ddt|u|22+2∫R3(α|∇u|2+(α+β)(divu)2)dx=∫R32(−u⋅∇u⋅u−θ∇ϕ2⋅u+ψ⋅Q(u)⋅u)dx≡:L1+L2+L3. | (30) |
The right-hand side terms can be estimated as follows.
L1=−∫R32u⋅∇u⋅udx≤C|divu|∞|u|22,L2=2∫R3θϕ2divudx≤C|ϕ|22|divu|∞≤C|divu|∞,L3=∫R32ψ⋅Q(u)⋅udx≤C|ψ|6|∇u|2|u|3≤C|∇u|2|u|122|∇u|122≤α2|∇u|22+C|u|2|∇u|2≤α|∇u|22+C|u|22, | (31) |
where we have used (16), (23) and the facts
|u|3≤C|u|122|∇u|122. | (32) |
Thus (30) and (31) yield
ddt|u|22+α|∇u|22≤C(|divu|∞+1)|u|22+C|divu|∞. | (33) |
By the Gronwall's inequality, (16) and (33), we have
|u(t)|22+∫t0|∇u(s)|22ds≤C,0≤t≤T. | (34) |
This completes the proof of this lemma.
The next lemma provides the key estimates on
Lemma 2.3. Let
sup0≤t≤T(|∇u(t)|22+|∇ϕ(t)|22)+∫T0(|∇2u|22+|ut|22)dt≤C,0≤T<¯T, |
where
Proof. Multiplying
12ddt∫R3(α|∇u|2+(α+β)|divu|2)dx+∫R3(−Lu−θ∇ϕ2)2 dx=−α∫R3(u⋅∇u)⋅∇×curlu dx+∫R3(2α+β)(u⋅∇u)⋅∇divu dx+θ∫R3(ψ⋅Q(u))⋅∇ϕ2dx−θ∫R3(u⋅∇u)⋅∇ϕ2 dx+∫R3(ψ⋅Q(u))⋅Lu dx−θ∫R3ut⋅∇ϕ2 dx≡:9∑i=4Li, | (35) |
where we have used the fact that
−△u+∇divu=curl(curlu)=∇×curlu. |
First, from the standard elliptic estimate shown in Lemma 3.3, we have
|∇2u|22−C|θ∇ϕ2|22≤C|div(α(∇u+(∇u)⊤)+βdivuI3)|22−C|θ∇ϕ2|22≤C|div(α(∇u+(∇u)⊤)+βdivuI3)−θ∇ϕ2|22=C∫R3(−Lu−θ∇ϕ2)2dx. | (36) |
Second, we estimate the right-hand side of (35) term by term. According to
{u×curlu=12∇(|u|2)−u⋅∇u,∇×(a×b)=(b⋅∇)a−(a⋅∇)b+(divb)a−(diva)b, |
Hölder's inequality, Young's inequality, (16), (23), (29), Lemma 2.2, Lemma 3.1 and
|L4|=α|∫R3(u⋅∇)u⋅∇×curlu dx|=α|∫R3(curlu⋅∇×((u⋅∇)u))dx|=α|∫R3(curlu⋅∇×(u×curlu))dx|=α|∫R3(12|curlu|2divu−curlu⋅D(u)⋅curlu)dx|≤C|∇u|∞|∇u|22,|L5|=|∫R3(2α+β)(u⋅∇)u⋅∇divu dx|≤|∫R3(2α+β)(−∇u:∇u⊤divu+12(divu)3)dx|+C|∇ϕ|6|u|3|∇u|2|divu|∞≤C(|∇u|22|divu|∞+|u|122|∇u|122|∇u|2|divu|∞)≤C(|∇u|22+|u|2|∇u|2)|divu|∞≤C|divu|∞(|∇u|22+1),L6=θ∫R3(ψ⋅Q(u))⋅∇ϕ2 dx≤C|ψ|6|∇u|3|∇ϕ2|2≤C|∇u|122|∇2u|122|∇ϕ|2|ϕ|∞≤C|∇ϕ|22+C(ϵ)|∇u|22+ϵ|∇2u|22,|L7|=θ|∫R3(u⋅∇u)⋅∇ϕ2dx|=θ|−∫R3∇u:(∇u)⊤ϕ2dx−∫R3ϕ2u⋅∇(divu)dx| | (37) |
=θ|−∫R3∇u:(∇u)⊤ϕ2dx+∫R3(divu)2ϕ2dx+∫R2u⋅∇ϕ2divu dx|≤C(|∇u|22|ϕ2|∞+|u|2|∇ϕ|2|ϕ|∞|divu|∞)≤C(|∇u|22+|divu|∞|∇ϕ|2)≤C(|∇u|22+|divu|∞+|divu|∞|∇ϕ|22),L8=∫R3(ψ⋅Q(u))⋅Lu dx≤C|ψ|6|∇u|3|∇2u|2≤C|∇2u|322|∇u|122≤C(ϵ)|∇u|22+ϵ|∇2u|22,L9=−θ∫R3ut⋅∇ϕ2dx=θ∫R3ϕ2divut dx=θddt∫R3ϕ2divu dx−θ∫R3(ϕ2)tdivu dx=θddt∫R3ϕ2divu dx−θ∫R32ϕϕtdivu dx=θddt∫R3ϕ2divu dx+θ∫R3u⋅∇ϕ2divu dx+θ(γ−1)∫R3ϕ2(divu)2dx≤θddt∫R3ϕ2divu dx+C(|u|2|∇ϕ|2|ϕ|∞|divu|∞+|∇u|22|ϕ2|∞)≤θddt∫R3ϕ2divu dx+C(|∇ϕ|2|divu|∞+|∇u|22)≤θddt∫R3ϕ2divu dx+C(|∇u|22+|divu|∞+|divu|∞|∇ϕ|22), | (38) |
where
12ddt∫R3(α|∇u|2+(α+β)|divu|2−2θϕ2divu)dx+C|∇2u|22≤C((|∇u|22+|∇ϕ|22)(|divu|∞+1)+|divu|∞). | (39) |
Third, applying
(|∇ϕ|2)t+div(|∇ϕ|2u)+(γ−2)|∇ϕ|2divu=−2(∇ϕ)⊤⋅∇u⋅(∇ϕ)−(γ−1)ϕ∇ϕ⋅∇divu=−2(∇ϕ)⊤⋅D(u)⋅(∇ϕ)−(γ−1)ϕ∇ϕ⋅∇divu. | (40) |
Integrating (40) over
ddt|∇ϕ|22≤C(ϵ)(|D(u)|∞+1)|∇ϕ|22+ϵ|∇2u|22. | (41) |
Adding (41) to (39), from the Gronwall's inequality and (16), we immediately obtain
α|∇u(t)|22−2θ∫R3ϕ2divu dx+C|∇ϕ(t)|22+∫t0|∇2u(s)|22ds≤C, |
that is
α|∇u(t)|22+C|∇ϕ(t)|22+∫t0|∇2u(s)|22ds≤C+2θ∫R3ϕ2divu dx≤C(1+|∇u|2|ϕ|2|ϕ|∞)≤C+α4|∇u(t)|22, |
which implies
|∇u(t)|22+|∇ϕ(t)|22+∫t0|∇2u(s)|22ds≤C,0≤t≤T. |
Finally, due to
∫t0|ut|22ds≤C∫t0(|∇2u|22+|∇u|23|u|26+|ϕ|2∞|∇ϕ|22+|∇u|23|ψ|26)ds≤C. |
Thus we complete the proof of this lemma.
Next, we proceed to improve the regularity of
Lemma 2.4. Let
sup0≤t≤T(|ut(t)|22+|u(t)|D2)+∫T0|∇ut|22dt≤C,0≤T<¯T, | (42) |
where
Proof. From the standard elliptic estimate shown in Lemma 3.3 and
Lu=−ut−u⋅∇u−2θϕ∇ϕ+ψ⋅Q(u), | (43) |
one has
|u|D2≤C(|ut|2+|u⋅∇u|2+|ϕ∇ϕ|2+|ψ⋅Q(u)|2)≤C(|ut|2+|u|6|∇u|3+|ϕ|3|∇ϕ|6+|ψ|6|∇u|3)≤C(1+|ut|2+|u|6|∇u|122|∇2u|122+|∇u|122|∇2u|122)≤C(1+|ut|2+|∇2u|122)≤C(1+|ut|2)+12|u|D2, | (44) |
where we have used Sobolev inequalities, (16), (23), (29) and Lemmas 2.1-2.3. Then we immediately obtain that
|u|D2≤C(1+|ut|2). | (45) |
Next, differentiating
utt+Lut=−(u⋅∇u)t−2θ(ϕ∇ϕ)t+(ψ⋅Q(u))t. | (46) |
Multiplying (46) by
12ddt|ut|22+α|∇ut|22≤12ddt|ut|22+∫R3(α|∇ut|2+(α+β)|divut|2)dx=∫R3(−(u⋅∇u)t⋅ut+(ψ⋅Q(u))t⋅ut−2θ(ϕ∇ϕ)t⋅ut)dx≡:12∑i=10Li. | (47) |
Similarly, based on (16), (23),
L10=−∫R3(u⋅∇u)t⋅ut dx=−∫R3((ut⋅∇u)⋅ut+(u⋅∇ut)⋅ut)dx=−∫R3(ut⋅D(u)⋅ut−12(ut)2divu)dx≤C|D(u)|∞|ut|22,L11=∫R3(ψ⋅Q(u))t⋅ut dx=∫R3ψ⋅Q(u)t⋅ut dx+∫R3ψt⋅Q(u)⋅ut dx=∫R3ψ⋅Q(u)t⋅ut dx−∫R3∇divu⋅Q(u)⋅ut dx+∫R3u⋅ψdiv(Q(u)⋅ut)dx≤C(|ψ|6|∇ut|2|ut|3+|∇2u|2|Q(u)|∞|ut|2+|ψ|6|u|6|∇2u|2|ut|6+|ψ|6|u|6|Q(u)|6|∇ut|2)≤C(|∇ut|2|ut|122|∇ut|122+|∇2u|2|Q(u)|∞|ut|2+|∇u|6|∇ut|2+|∇2u|2|∇ut|2)≤α8|∇ut|22+C(1+|D(u)|∞)(|ut|22+|u|2D2),L12=−∫R32θ(ϕ∇ϕ)t⋅ut dx=θ∫R3(ϕ2)tdivutdx=2θ∫R3ϕϕtdivutdx=−2θ∫R3ϕ(u⋅∇ϕ+γ−12ϕdivu)divutdx=−θ∫R3(u⋅∇ϕ2+(γ−1)ϕ2divu)divutdx | (48) |
=−θ(γ−1)2∫R3ϕ2(divu)2tdx−θ∫R3u⋅∇ϕ2divutdx=−θ(γ−1)2ddt∫R3ϕ2(divu)2dx+θ(γ−1)∫R3uϕϕt(divu)2dx−θ∫R3u⋅∇ϕ2divutdx=−θ(γ−1)2ddt∫R3ϕ2(divu)2dx−θ(γ−1)∫R3uϕ(u⋅∇ϕ)(divu)2dx−θ(γ−1)22∫R3uϕ2(divu)3dx−θ∫R3u⋅∇ϕ2divutdx=−θ(γ−1)2ddt∫R3ϕ2(divu)2dx+θ(γ−1)2∫R3uϕ2∇(divu)2dx+θ(γ−1)(3−γ)2∫R3ϕ2(divu)3dx−θ∫R3u⋅∇ϕ2divutdx≤−θ(γ−1)2ddt∫R3ϕ2(divu)2dx+C(|u|∞|ϕ|2∞|∇u|2|∇2u|2+|ϕ|2∞|D(u)|∞|∇u|22+|ϕ|∞|∇ϕ|2|u|∞|∇ut|2)≤−θ(γ−1)2ddt∫R3ϕ2(divu)2dx+C(|u|∞||∇2u|2+|D(u)|∞+|u|∞|∇ut|2) | (49) |
≤−θ(γ−1)2ddt∫R3ϕ2(divu)2dx+α4|∇ut|22+C(1+|D(u)|∞+|u|2D2), | (50) |
where we also used Hölder's inequality, Young's inequality and
|u|∞≤C|u|W1,3≤C(|u|122|∇u|122+|∇u|12|∇2u|12). | (51) |
It is clear from (47)-(50) and (45) that
ddt(|ut|22+|ϕdivu|22)+|∇ut|22≤C(1+|∇2u|2+|D(u)|∞)|ut|22. | (52) |
Integrating (52) over
|ut(t)|22+|ϕdivu(t)|22+∫tτ|∇ut(s)|22ds≤|ut(τ)|22+|ϕdivu(τ)|22+C∫tτ((1+|∇2u|2+|D(u)|∞)|ut|22)(s)ds. | (53) |
From the momentum equations
|ut(τ)|2≤C(|u⋅∇u|2+|ϕ∇ϕ|2+|Lu|2+|ψ⋅Q(u)|2)(τ)≤C(|u|∞|∇u|2+|ϕ|∞|∇ϕ|2+|u|D2+|ψ|6|∇u|3)(τ), | (54) |
which, together with the definition of regular solution, gives
limsupτ→0|ut(τ)|2≤C(|u0|∞|∇u0|2+|ϕ0|∞|∇ϕ0|2+|u0|D2+|ψ0|6|∇u0|3)≤C0. | (55) |
Letting
|ut(t)|22+|u(t)|2D2+∫t0|∇ut(s)|22ds≤C,0≤t≤T. | (56) |
This completes the proof of this lemma.
The following lemma gives bounds of
Lemma 2.5. Let
sup0≤t≤T(‖ϕ(t)‖W1,6+|ϕt(t)|6)+∫T0|u(t)|2D2,6dt≤C,0≤T<¯T, | (57) |
where
Proof. First, taking
sup0≤t≤T‖ϕ(t)‖W1,6≤C,0≤T<¯T. |
Second, one has
|ϕt|6=|u⋅∇ϕ+γ−12ϕdivu|6≤C(|∇ϕ|6|u|∞+|ϕ|∞|divu|6)≤C, | (58) |
where we have used Lemmas 2.3-2.4 and
Third, according to
Lu=−ut−u⋅∇u−2θϕ∇ϕ+ψ⋅Q(u), | (59) |
and the standard elliptic estimate shown in Lemma 3.3, one has
|∇2u|6≤C(|ut|6+|u⋅∇u|6+|ϕ∇ϕ|6+|ψ⋅Q(u)|6)≤C(|∇ut|2+|u|∞|∇u|6+|ϕ|∞|∇ϕ|6+|ψ|6|Q(u)|∞)≤C(1+|∇ut|2+|D(u)|142|∇D(u)|346)≤C(1+|∇ut|2+|∇2u|346)≤C(1+|∇ut|2)+12|∇2u|6, | (60) |
where we have used (16), (23), (29), Lemmas 2.1-2.4 and
|divu|∞≤C|D(u)|∞,|D(u)|∞≤C|D(u)|142|∇D(u)|346. | (61) |
Thus, (60) implies that
|∇2u|6≤C(1+|∇ut|2). | (62) |
Combing (62) with Lemma 2.4, one has
∫t0|u(s)|2D2,6ds≤C∫t0(1+|∇ut(s)|22)ds≤C,0≤t≤T. | (63) |
The proof of this lemma is completed.
Lemma 2.5 implies that
∫t0|∇u(⋅,s)|∞ds≤C, | (64) |
for any
Lemma 2.6. Let
sup0≤t≤T(|ϕ(t)|2D2+|ψ(t)|2D1+‖ϕt(t)‖21+|ψt(t)|22)+∫T0(|u(t)|2D3+|ϕtt(t)|22)dt≤C,0≤T<¯T, |
where
Proof. From
|u|D3≤C(|ut|D1+|u⋅∇u|D1+|ϕ∇ϕ|D1+|ψ⋅Q(u)|D1)≤C(|ut|D1+|u|∞|∇2u|2+|∇u|6|∇u|3+|ψ|6|∇2u|3+|∇ϕ|6|∇ϕ|3+|ϕ|∞|∇2ϕ|2+|∇ψ|2|D(u)|∞)≤C(1+|ut|D1+|ϕ|D2+|u|12D3+|ψ|D1|D(u)|∞)≤C(1+|ut|D1+|ϕ|D2+|ψ|D1|D(u)|∞)+12|u|D3, | (65) |
where we have used Young's inequality, Lemma 2.5, (16), (23), (29) and (61). Thus (65) offers that
|u|D3≤C(1+|ut|D1+|ϕ|D2+|D(u)|∞|ψ|D1). | (66) |
Next, applying
(∂iψ)t+3∑l=1Al∂l∂iψ+B∂iψ+∂i∇divu=(−∂i(Bψ)+B∂iψ)+3∑l=1(−∂i(Al)∂lψ). | (67) |
Multiplying (67) by
ddt|∇ψ|22≤C∫R3(|divA||∇ψ|2+|∇3u||∇ψ|+|∇ψ|2|∇u|+|∂i(Bψ)−B∂iψ||∇ψ|)dx≤C(|divA|∞|∇ψ|22+|∇3u|2|∇ψ|2+|∇ψ|22|∇u|∞+|∂i(Bψ)−B∂iψ|2|∇ψ|2), | (68) |
where
|∂i(Bψ)−B∂iψ|2=|Dζ(Bψ)−BDζψ|2≤C|∇2u|3|ψ|6≤C|∇2u|122|∇3u|122≤C|∇3u|122. | (69) |
Thus
ddt|∇ψ|22≤C(|∇u|∞|∇ψ|22+|∇3u|2|∇ψ|2+|∇3u|122|∇ψ|2). | (70) |
Combining (70) with (66) and Lemma 3.1, we have
ddt|ψ|2D1≤C(1+|∇u|∞)|ψ|2D1+C(1+|∇3u|2)|ψ|D1≤C(1+|∇u|∞)|ψ|2D1+C(1+|ϕ|2D2+|∇ut|22). | (71) |
On the other hand, let
0=(∇G)t+∇(∇u⋅G)+∇(∇G⋅u)+γ−12∇(Gdivu+ϕ∇divu), | (72) |
similarly to the previous step, we multiply (72) by
ddt|G|2D1≤C∫R3(|∇2u||G|+|∇u||∇G|+|∇ϕ||∇2u|+|ϕ||∇3u|)|∇G|dx≤C(|G|6|∇2u|3+|∇u|∞|∇G|2+|ϕ|∞|∇3u|2)|∇G|2≤C(|∇2u|122|∇3u|122+|∇u|∞|G|D1+|u|D3)|G|D1≤C(|u|12D3+|u|D3)|G|D1+C|∇u|∞|G|2D1≤C(1+|u|D3)|G|D1+C|∇u|∞|G|2D1≤C(1+|ut|D1+|ϕ|D2+|D(u)|∞|∇ψ|2)|G|D1+C|∇u|∞|G|2D1≤C(1+|ut|D1+|∇u|∞|ψ|D1)|G|D1+C(1+|∇u|∞)|G|2D1≤C(1+|∇u|∞)(|G|2D1+|ψ|2D1)+C(1+|∇ut|22), | (73) |
where we have used the Young's inequality, (29) and (66). This estimate, together with (71), gives that
ddt(|G|2D1+|ψ|2D1)≤C(1+|∇u|∞)(|G|2D1+|ψ|2D1)+C(1+|∇ut|22). | (74) |
Then the Gronwall's inequality, (42), (64) and (74) imply
|ϕ(t)|2D2+|ψ(t)|2D1≤C,0≤t≤T. | (75) |
Combing (75) with (66) and Lemma 2.4, one has
∫t0|u(s)|2D3ds≤C∫t0(1+|∇ut(s)|22)ds≤C,0≤t≤T. | (76) |
Finally, using the following relations
ψt=−∇(u⋅ψ)−∇divu, ϕt=−u⋅∇ϕ−γ−12ϕdivu,ϕtt=−ut⋅∇ϕ−u⋅∇ϕt−γ−12ϕtdivu−γ−12ϕdivut, | (77) |
according to Hölder's inequality, (16), (29), Lemmas 2.1-2.5, one has
|ψt|2≤C(|∇u⋅ψ|2+|u⋅∇ψ|2+|∇divu|2)≤C(|∇u|3|ψ|6+|u|∞|∇ψ|2+|∇2u|2)≤C,|ϕt|2≤C(|u⋅∇ϕ|2+|ϕdivu|2)≤C(|u|∞|∇ϕ|2+|ϕ|∞|∇u|2)≤C,|∇ϕt|2≤C(|∇(u⋅∇ϕ)|2+|∇(ϕdivu)|2)≤C(|∇u⋅∇ϕ|2+|∇2ϕ⋅u|2+|∇ϕdivu|2+|ϕ∇divu|2)≤C(|∇u|3|∇ϕ|6+|u|∞|∇2ϕ|2+|∇ϕ|6|∇u|3+|ϕ|∞|∇2u|2)≤C,|ϕtt|2≤C(|ut⋅∇ϕ|2+|u⋅∇ϕt|2+|ϕtdivu|2+|ϕdivut|2)≤C(|ut|6|∇ϕ|3+|u|∞|∇ϕt|2+|ϕt|6|∇u|3+|ϕ|∞|∇ut|2)≤C(1+|∇ut|2). | (78) |
Thus
sup0≤t≤T(‖ϕt(t)‖21+|ψt(t)|22)≤C, |
and according to (42), one has
∫T0|ϕtt(t)|22dt≤∫T0(1+|∇ut(t)|22)dt≤C. |
The proof of this lemma is completed.
Now we know from Lemmas 2.1-2.6 that, if the regular solution
(ργ−12,∇logρ,u)|t=¯T=limt→¯T(ργ−12,∇logρ,u) |
satisfies the conditions imposed on the initial data
In this subsection, we present some important lemmas which are frequently used in our previous proof. The first one is the well-known Gagliardo-Nirenberg inequality, which can be found in [9].
Lemma 3.1. [9] Let
|h|q≤C|∇h|cp|h|1−cr, | (79) |
where
c=(1r−1q)(1r−1p+13)−1,0≤c≤1. | (80) |
If
Some common versions of this inequality can be written as
|f|3≤C|f|122|∇f|122,|f|6≤C|∇f|2,|f|∞≤C|f|142|∇f|346, | (81) |
which have be used frequently in our previous proof.
The second one can be found in Majda [17], and we omit its proof.
Lemma 3.2. [17] Let positive constants
1r=1a+1b |
and
|Ds(fg)−fDsg|r≤Cs(|∇f|a|Ds−1g|b+|Dsf|b|g|a), | (82) |
|Ds(fg)−fDsg|r≤Cs(|∇f|a|Ds−1g|b+|Dsf|a|g|b), | (83) |
where
The third one is on the regularity estimates for Lam
{−αΔu−(α+β)∇divu=f,u→0as |x|→+∞, | (84) |
one has
Lemma 3.3. [21] If
\begin{equation} |u|_{D^{k+2,q}} \leq C |f|_{D^{k,q}}, \end{equation} | (85) |
where k is an integer and the constant
\begin{equation} -\Delta u = f,\quad u\to 0\quad \mathit{\text{as}} \ |x|\rightarrow +\infty, \end{equation} | (86) |
then (85) holds and if
\begin{equation} |u|_{D^{1,q}} \leq C |g|_{L^q}. \end{equation} | (87) |
The proof can be obtained via the classical estimates from harmonic analysis, which can be found in [21] or [22]. We omit it here.
Now we show that, via introducing new variables
\begin{equation} \phi = \rho^{\frac{\gamma-1}{2}}, \; \psi = \nabla \log \rho = \frac{2}{\gamma-1}\nabla \phi/\phi, \end{equation} | (88) |
the system (1) can be rewritten as
\begin{equation} \begin{cases} \phi_t+\frac{\gamma-1}{2}\phi\text{div} u+u\cdot\nabla\phi = 0,\\[10pt] \psi_t+\nabla(u\cdot\psi)+\nabla\text{div} u = 0,\\[10pt] u_t+u\cdot\nabla u+2\theta\phi\nabla\phi+Lu = \psi\cdot Q(u). \end{cases} \end{equation} | (89) |
Proof. First, from the momentum equation, one has
\begin{equation*} \begin{split} \rho u_t+\rho u\cdot\nabla u+\nabla P-\rho\text{div}\big(\alpha(\nabla u+&\nabla u^{\top}) +\beta\text{div} u \mathbb{I}_3\big)\\ = &\nabla\rho\cdot [\alpha(\nabla u+\nabla u^{\top})+\beta\text{div} u\mathbb{I}_3], \end{split} \end{equation*} |
where
\begin{equation*} \begin{split} u_t+u\cdot\nabla u+A\gamma\rho^{\gamma-2}\nabla\rho-\text{div}\big(\alpha(\nabla u&+\nabla u^{\top}) +\beta\text{div} u \mathbb{I}_3\big)\\ = &\frac{\nabla\rho}{\rho}\cdot [\alpha(\nabla u+\nabla u^{\top})+\beta\text{div} u\mathbb{I}_3]. \end{split} \end{equation*} |
Denote
\begin{align*} Lu& = -\text{div}\big(\alpha(\nabla u+\nabla u^{\top})+\beta\text{div} u \mathbb{I}_3\big),\\ Q(u)& = \alpha(\nabla u+\nabla u^{\top})+\beta\text{div} u\mathbb{I}_3, \quad \theta = \frac{A\gamma}{\gamma-1}, \end{align*} |
we have
\begin{equation} u_t+u\cdot\nabla u+2\theta\phi\nabla\phi+Lu = \psi \cdot Q(u). \end{equation} | (90) |
Second, for
\begin{equation} \begin{split} \psi_t & = (\nabla\log\rho)_t = \nabla(\log\rho)_t = \nabla\Big(\frac{\rho_t}{\rho}\Big) = \nabla\Big(\frac{-\text{div}(\rho u)}{\rho}\Big)\\ & = \nabla\big(\frac{-\nabla\rho\cdot u-\rho\text{div} u}{\rho}\big) = -\nabla(\nabla\log\rho\cdot u+\text{div} u)\\ & = -\nabla\text{div} u-u\cdot\nabla(\nabla\log\rho)-\nabla\log\rho\cdot\nabla u^{\top}\\ & = -\nabla\text{div} u-u\cdot\nabla\psi-\psi\cdot\nabla u^{\top}\\ & = -\nabla\text{div} u-\nabla(u\cdot\psi). \end{split} \end{equation} | (91) |
Third, for
\begin{equation} \begin{split} \phi_t & = (\rho^{\frac{\gamma-1}{2}})_t = \frac{\gamma-1}{2}\rho^{\frac{\gamma-3}{2}}\rho_t\\ & = \frac{\gamma-1}{2}\rho^{\frac{\gamma-1}{2}}\frac{\rho_t}{\rho} = \frac{\gamma-1}{2}\rho^{\frac{\gamma-1}{2}}\frac{-\text{div}(\rho u)}{\rho}\\ & = \frac{\gamma-1}{2}\phi\frac{-\rho\text{div} u-\nabla\rho\cdot u}{\rho}\\ & = -\frac{\gamma-1}{2}\phi\text{div} u-u\cdot\nabla \phi. \end{split} \end{equation} | (92) |
Combing (90)-(92) together, we complete the proof of the transformation.
The author sincerely appreciates Dr. Shengguo Zhu for his very helpful suggestions and discussions on the problem solved in this paper. The research of Y. Cao was supported in part by China Scholarship Council 201806230126 and National Natural Science Foundation of China under Grants 11571232.
Conflict of Interest: The authors declare that they have no conflict of interest.
[1] | P. Diolez, V. Deschodt-Arsac, G. Raffard, C. Simon, P. D. Santos, E. Thiaudière, et al., Modular regulation analysis of heart contraction: application to in situ demonstration of a direct mitochondrial activation by calcium in beating heart, Am. J. Physiol.-Reg., I., 293 (2007), R13–R19. |
[2] | M. Luo, M. E. Anderson, Mechanisms of altered Ca2+ handling in heart failure, Circ. Res., 113 (2013), 690–708. |
[3] | A. Takeuchi, S. Matsuoka, Integration of mitochondrial energetics in heart with mathematical modelling, J. Physiol.-London, 598 (2020), 1443–1457. |
[4] |
G. Magnus, J. Keizer, Minimal model of \beta-cell mitochondrial Ca^{2+} handling, Am. J. Physiol.-Cell Ph., 273 (1997), C717–C733. doi: 10.1152/ajpcell.1997.273.2.C717
![]() |
[5] |
R. Bertram, M. G. Pedersen, D. S. Luciani, A. Sherman, A simplified model for mitochondrial ATP production, J. Theor. Biol., 243 (2006), 575–586. doi: 10.1016/j.jtbi.2006.07.019
![]() |
[6] | C. C. Mitchell, D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, B. Math. Biol., 65 (2003), 767–793. |
[7] | K. H. ten Tusscher, A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, Am. J. Physiol. Heart C., 291 (2006), H1088–1100. |
[8] | T. L. Hill, Free energy transduction in biology: the steady-state kinetic and thermodynamic formalism, Academic Press, 1977. |
[9] |
D. Pietrobon, S. R. Caplan, Flow-force relationships for a six-state proton pump model: intrinsic uncoupling, kinetic equivalence of input and output forces, and domain of approximate linearity, Biochemistry-US, 24 (1985), 5764–5776. doi: 10.1021/bi00342a012
![]() |
[10] | M.-H. T. Nguyen, M. S. Jafri, Mitochondrial calcium signaling and energy metabolism, Ann. N.Y. Acad. Sci., 1047 (2005), 127–137. |
[11] | M.-H. T. Nguyen, S. J. Dudycha, M. S. Jafri, Effect of Ca2+ on cardiac mitochondrial energy production is modulated by Na+ and H+ dynamics, Am. J. Physiol.-Cell Ph., 292 (2007), C2004–C2020. |
[12] |
S. Cortassa, M. A. Aon, E. Marbân, R. L. Winslow, B. O'Rourke, An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics, Biophys. J., 84 (2003), 2734–2755. doi: 10.1016/S0006-3495(03)75079-6
![]() |
[13] | S. Cortassa, B. O'Rourke, R. L. Winslow, M. A. Aon, Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function, Biophys. J., 96 (2009), 2466–2478. |
[14] |
L. D. Gauthier, J. L. Greenstein, S. Cortassa, B. O'Rourke, R. L. Winslow, A computational model of reactive oxygen species and redox balance in cardiac mitochondria, Biophys. J., 105 (2013), 1045–1056. doi: 10.1016/j.bpj.2013.07.006
![]() |
[15] | G. Magnus, J. Keizer, Model of \beta-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables, Am. J. Physiol.-Cell Ph., 274 (1998), C1158–C1173. |
[16] | M. D. Brand, The stoichiometry of the exchange catalysed by the mitochondrial calcium/sodium antiporter, Biochem. J., 229 (1985), 161–166. |
[17] | T. Matsuda, K. Takuma, A. Baba, Na+-Ca2+ exchanger: physiology and pharmacology, Jpn. J. Pharmacol., 74 (1997), 1–20. |
[18] | T. E. Gunter, D. R. Pfeiffer, Mechanisms by which mitochondria transport calcium, Am. J. Physiol.-Cell Ph., 258 (1990), C755–C786. |
[19] |
D. E. Wingrove, T. Gunter, Kinetics of mitochondrial calcium transport. I. Characteristics of the sodium-independent calcium efflux mechanism of liver mitochondria, J. Biol. Chem., 261 (1986), 15159–15165. doi: 10.1016/S0021-9258(18)66846-2
![]() |
[20] | G. C. Brown, The leaks and slips of bioenergetic membranes, FASEB J., 6 (1992), 2961–2965. |
[21] | M. D. Brand, L.-F. Chien, P. Diolez, Experimental discrimination between proton leak and redox slip during mitochondrial electron transport, Biochem. J., 297 (Pt 1) (1994), 27–29. |
[22] | G. Krishnamoorthy, P. C. Hinkle, Non-ohmic proton conductance of mitochondria and liposomes, Biochemistry-US, 23 (1984), 1640–1645. |
[23] | C. Colin, Développement de nouvelles méthodes de microscopie et d'électrochimie pour des analyses multi-paramétriques de mitochondries individuelles cardiaques (in French), Theses, Université de Bordeaux, 2020, Available from: https://tel.archives-ouvertes.fr/tel-03116368. |
[24] | Carlos M. Palmeira, António J. Moreno (eds.), Mitochondrial Bioenergetics, vol. 1782 of Methods in Molecular Biology, Humana Press, 2008. |
[25] |
B. Chance, W. G.R., Respiratory enzymes in oxidative phosphorylation: III. The steady state, J. Biol. Chem., 217 (1955), 409–427. doi: 10.1016/S0021-9258(19)57191-5
![]() |
[26] | A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, et al., Global sensitivity analysis: the primer, John Wiley & Sons, 2008. |
[27] |
J. Herman, W. Usher, SALib: An open-source Python library for Sensitivity Analysis, J. Open Source Softw., 2 (2017), 97. doi: 10.21105/joss.00097
![]() |
[28] |
F. Wu, F. Yang, K. Vinnakota, D. Beard, Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology, J. Biol. Chem., 282 (2007), 24525–24537. doi: 10.1074/jbc.M701024200
![]() |
![]() |
![]() |
1. | Xiaoqiang Dai, Wenke Li, Non-global solution for visco-elastic dynamical system with nonlinear source term in control problem, 2021, 29, 2688-1594, 4087, 10.3934/era.2021073 |