Loading [Contrib]/a11y/accessibility-menu.js

Longitudinal displacement in viscoelastic arteries:A novel fluid-structure interaction computational model, and experimental validation

  • Received: 01 July 2012 Accepted: 29 June 2018 Published: 01 January 2013
  • MSC : Primary: 35Q30, 74F10; Secondary: 92C50.

  • Recent in vivo studies, utilizing ultrasound contour and speckle tracking methods, have identified significant longitudinal displacementsof the intima-media complex, and viscoelastic arterial wall properties over a cardiac cycle. Existing computational models that use thin structure approximations of arterial walls have so far been limited to models that capture only radial wall displacements.The purpose of this work is to present a simple fluid-struture interaction (FSI) model and a stable, partitioned numerical scheme, which capture both longitudinal and radial displacements,as well as viscoelastic arterial wall properties.To test the computational model,longitudinal displacement of the common carotid artery and of the stenosed coronary arteries were compared with experimental datafound in literature, showingexcellent agreement. We found that, unlike radial displacement, longitudinal displacement in stenotic lesionsis highly dependent on the stenotic geometry.We also showed that longitudinal displacement in atherosclerotic arteries is smaller than in healthy arteries,which is in line with the recent in vivo measurements that associate plaque burden with reduced total longitudinal wall displacement.
        This work presents a first step in understanding the role of longitudinal displacement in physiology and pathophysiology of arterial wall mechanicsusing computer simulations.

    Citation: Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries:A novel fluid-structure interaction computational model, and experimental validation[J]. Mathematical Biosciences and Engineering, 2013, 10(2): 295-318. doi: 10.3934/mbe.2013.10.295

    Related Papers:

    [1] Aftab Ahmed, Javed I. Siddique . The effect of magnetic field on flow induced-deformation in absorbing porous tissues. Mathematical Biosciences and Engineering, 2019, 16(2): 603-618. doi: 10.3934/mbe.2019029
    [2] Maurizio Verri, Giovanna Guidoboni, Lorena Bociu, Riccardo Sacco . The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics. Mathematical Biosciences and Engineering, 2018, 15(4): 933-959. doi: 10.3934/mbe.2018042
    [3] Lorena Bociu, Giovanna Guidoboni, Riccardo Sacco, Maurizio Verri . On the role of compressibility in poroviscoelastic models. Mathematical Biosciences and Engineering, 2019, 16(5): 6167-6208. doi: 10.3934/mbe.2019308
    [4] Fan He, Minru Li, Xinyu Wang, Lu Hua, Tingting Guo . Numerical investigation of quantitative pulmonary pressure ratio in different degrees of stenosis. Mathematical Biosciences and Engineering, 2024, 21(2): 1806-1818. doi: 10.3934/mbe.2024078
    [5] Meiyuan Du, Chi Zhang, Sheng Xie, Fang Pu, Da Zhang, Deyu Li . Investigation on aortic hemodynamics based on physics-informed neural network. Mathematical Biosciences and Engineering, 2023, 20(7): 11545-11567. doi: 10.3934/mbe.2023512
    [6] Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli . Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences and Engineering, 2005, 2(3): 445-460. doi: 10.3934/mbe.2005.2.445
    [7] Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira . Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences and Engineering, 2017, 14(1): 179-193. doi: 10.3934/mbe.2017012
    [8] H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Carola Kruse, Simon Shaw, John Whiteman, Mark P. Brewin, Stephen E. Greenwald, Malcolm J. Birch . Model validation for a noninvasive arterial stenosis detection problem. Mathematical Biosciences and Engineering, 2014, 11(3): 427-448. doi: 10.3934/mbe.2014.11.427
    [9] Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis . A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences and Engineering, 2012, 9(1): 175-198. doi: 10.3934/mbe.2012.9.175
    [10] Juan Palomares-Ruiz, Efrén Ruelas, Flavio Muñoz, José Castro, Angel Rodríguez . A fractional approach to 3D artery simulation under a regular pulse load. Mathematical Biosciences and Engineering, 2020, 17(3): 2516-2529. doi: 10.3934/mbe.2020138
  • Recent in vivo studies, utilizing ultrasound contour and speckle tracking methods, have identified significant longitudinal displacementsof the intima-media complex, and viscoelastic arterial wall properties over a cardiac cycle. Existing computational models that use thin structure approximations of arterial walls have so far been limited to models that capture only radial wall displacements.The purpose of this work is to present a simple fluid-struture interaction (FSI) model and a stable, partitioned numerical scheme, which capture both longitudinal and radial displacements,as well as viscoelastic arterial wall properties.To test the computational model,longitudinal displacement of the common carotid artery and of the stenosed coronary arteries were compared with experimental datafound in literature, showingexcellent agreement. We found that, unlike radial displacement, longitudinal displacement in stenotic lesionsis highly dependent on the stenotic geometry.We also showed that longitudinal displacement in atherosclerotic arteries is smaller than in healthy arteries,which is in line with the recent in vivo measurements that associate plaque burden with reduced total longitudinal wall displacement.
        This work presents a first step in understanding the role of longitudinal displacement in physiology and pathophysiology of arterial wall mechanicsusing computer simulations.


    [1] Clin. Physiol. Funct. Imaging, 29 (2009), 353-359.
    [2] Circulation Research, 76 (1995), 468-478.
    [3] Hypertension, 26 (1995), 48-54.
    [4] J. Comput. Phys., 227 (2008), 7027-7051.
    [5] SIAM J. Sci. Comput., 30 (2008), 1778-1805.
    [6] J. Cardiovasc. Pharmacol., 7 (1985), S99-S104.
    [7] Journal of Computational Physics. DOI: http://dx.doi.org/10.1016/j.bbr.2011.03.031 (2012).
    [8] Jones & Bartlett Learning, 2010.
    [9] Hypertension, 35 (2000), 1049-1054.
    [10] SIAM J. Appl. Math., 67 (2006), 164-193.
    [11] Submitted, (2012).
    [12] North-Holland, Amsterdam, 2000.
    [13] Am. J. Physiol. Heart Circ. Physiol., 291 (2006), H394-H402.
    [14] Oxford University Press, USA, 2007.
    [15] University of Lyon-INSA, Lyon, France, 2011.
    [16] Journal of Biomechanics, 32 (1999), 1081-1090.
    [17] J. Tehran Heart Cent, 4 (2009), 91-96.
    [18] Circulation, 86 (1992), 232-246.
    [19] North-Holland, Amsterdam, 1983.
    [20] Ann. Biomed. Eng., 36 (2008), 1-13.
    [21] Springer-Verlag Italia, Milano, 2009.
    [22] Second Edition. Springer-Verlag, New York, 1984.
    [23] in "Handbook of Numerical Analysis" (Eds. P.G.Ciarlet and J.-L.Lions), 9 North-Holland, Amsterdam, (2003).
    [24] J. Comput. Phys., 228 (2009), 6916-6937.
    [25] J. Am. Coll. Cardiol., 35 (2000), 164-168.
    [26] Comput. Methods Appl. Mech. Eng., 29 (1981), 329-349.
    [27] Springer-Verlag, New York, 2004.
    [28] Springer-Verlag, New York, 2002.
    [29] Circulation, 80 (1989), 625-635.
    [30] Circulation, 112 (2005), 1486-1493.
    [31] Stroke, 37 (2006), 1103-1105.
    [32] Radiology, 212 (1999), 493-498.
    [33] J. Biomech., 35 (2002), 225-236.
    [34] J. Am. Coll. Cardiol., 13 (1989), 706-715.
    [35] International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 604-625.
    [36] J. Am. Coll. Cardiol., 39 (2002), 1630-1635.
    [37] Am. J. Physiol. Heart Circ. Physiol., 285 (2003), H384-H391.
    [38] Ultrasound Med. Biol., 32 (2006), 1493-1498.
    [39] Hodder Arnold London, UK, 2005.
    [40] Clin. Physiol. Funct. Imaging, 23 (2003), 247-251.
    [41] Int. J. Morphol., 24 (2006), 413-416.
    [42] AJR. Am. J. Roentgenol., 181 (2003), 1695-1704.
    [43] Cardiovascular Research, 39 (1998), 515-522.
    [44] Atherosclerosis, 217 (2011), 120-124.
    [45] Clin. Physiol. Funct. Imaging, 31 (2011), 32-38.
    [46] Grazer Math. Ber., 348 (2005), 91-112.
    [47] Atherosclerosis, 176 (2004), 157-164.
    [48] Physiol. Meas., 29 (2008), 157-179.
    [49] Vascular Medicine, 2012.
    [50] Ann. Biomed. Eng., 39 (2011), 897-910.
  • This article has been cited by:

    1. Zhongjie Wang, Nigel B. Wood, Xiao Yun Xu, A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow, 2015, 31, 20407939, e02709, 10.1002/cnm.2709
    2. Rana Zakerzadeh, Martina Bukac, Paolo Zunino, Computational analysis of energy distribution of coupled blood flow and arterial deformation, 2016, 8, 0975-0770, 70, 10.1007/s12572-015-0142-1
    3. Åsa Rydén Ahlgren, Stig Steen, Simon Segstedt, Tobias Erlöv, Kjell Lindström, Trygve Sjöberg, Hans W. Persson, Stefano Ricci, Piero Tortoli, Magnus Cinthio, Profound Increase in Longitudinal Displacements of the Porcine Carotid Artery Wall Can Take Place Independently of Wall Shear Stress: A Continuation Report, 2015, 41, 03015629, 1342, 10.1016/j.ultrasmedbio.2015.01.005
    4. Heikki Yli-Ollila, Tomi Laitinen, Matti Weckström, Tiina M. Laitinen, New indices of arterial stiffness measured from longitudinal motion of common carotid artery in relation to reference methods, a pilot study, 2016, 36, 14750961, 376, 10.1111/cpf.12240
    5. M. Bukač, S. Čanić, R. Glowinski, B. Muha, A. Quaini, A modular, operator-splitting scheme for fluid-structure interaction problems with thick structures, 2014, 74, 02712091, 577, 10.1002/fld.3863
    6. Heikki Yli-Ollila, Mika P. Tarvainen, Tomi P. Laitinen, Tiina M. Laitinen, Principal Component Analysis of the Longitudinal Carotid Wall Motion in Association with Vascular Stiffness: A Pilot Study, 2016, 42, 03015629, 2873, 10.1016/j.ultrasmedbio.2016.07.020
    7. Agnès Drochon, Sinusoïdal flow of blood in a cylindrical deformable vessel exposed to an external magnetic field, 2016, 73, 1286-0042, 31101, 10.1051/epjap/2016150530
    8. Sibusiso Mabuza, Dmitri Kuzmin, Sunčica Čanić, Martina Bukač, A conservative, positivity preserving scheme for reactive solute transport problems in moving domains, 2014, 276, 00219991, 563, 10.1016/j.jcp.2014.07.049
    9. Ryosuke Taniguchi, Akihiro Hosaka, Takuya Miyahara, Katsuyuki Hoshina, Hiroyuki Okamoto, Kunihiro Shigematsu, Tetsuro Miyata, Ryuji Sugiura, A. Toshimitsu Yokobori, Jr, and Toshiaki Watanabe, Viscoelastic Deterioration of the Carotid Artery Vascular Wall is a Possible Predictor of Coronary Artery Disease, 2015, 22, 1340-3478, 415, 10.5551/jat.24513
    10. Martina Bukač, Sunčica Čanić, Boris Muha, A Nonlinear Fluid-Structure Interaction Problem in Compliant Arteries Treated with Vascular Stents, 2016, 73, 0095-4616, 433, 10.1007/s00245-016-9343-7
    11. A. Yenduri, R. Ghoshal, R.K. Jaiman, A new partitioned staggered scheme for flexible multibody interactions with strong inertial effects, 2017, 315, 00457825, 316, 10.1016/j.cma.2016.10.044
    12. Martina Bukač, Sunčica Čanić, Boris Muha, Roland Glowinski, 2016, Chapter 22, 978-3-319-41587-1, 731, 10.1007/978-3-319-41589-5_22
    13. Zhili Hao, 2020, Understanding the Role of Longitudinal Arterial Wall Motion in Blood Circulation from the Perspective of a Piano String*, 978-1-7281-1990-8, 2703, 10.1109/EMBC44109.2020.9176194
    14. Talha Lone, Angelica Alday, Rana Zakerzadeh, Numerical analysis of stenoses severity and aortic wall mechanics in patients with supravalvular aortic stenosis, 2021, 135, 00104825, 104573, 10.1016/j.compbiomed.2021.104573
    15. Zhili Hao, Radial and Axial Displacement of the Initially-Tensioned Orthotropic Arterial Wall Under the Influence of Harmonics and Wave Reflection, 2022, 5, 2572-7958, 10.1115/1.4054883
    16. Sandra Sjöstrand, Alice Widerström, Ingrid Svensson, Patrick Segers, Tobias Erlöv, Åsa Rydén Ahlgren, Magnus Cinthio, The impact of geometry, intramural friction, and pressure on the antegrade longitudinal motion of the arterial wall: A phantom and finite element study, 2023, 11, 2051-817X, 10.14814/phy2.15746
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2963) PDF downloads(535) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog