Citation: Jinhua Zeng, Xiulian Qiu, Shaopei Shi. Image processing effects on the deep face recognition system[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1187-1200. doi: 10.3934/mbe.2021064
[1] | Matthieu Canaud, Lyudmila Mihaylova, Jacques Sau, Nour-Eddin El Faouzi . Probability hypothesis density filtering for real-time traffic state estimation and prediction. Networks and Heterogeneous Media, 2013, 8(3): 825-842. doi: 10.3934/nhm.2013.8.825 |
[2] | Ye Sun, Daniel B. Work . Error bounds for Kalman filters on traffic networks. Networks and Heterogeneous Media, 2018, 13(2): 261-295. doi: 10.3934/nhm.2018012 |
[3] | Olli-Pekka Tossavainen, Daniel B. Work . Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8(3): 803-824. doi: 10.3934/nhm.2013.8.803 |
[4] | Michael Herty, Lorenzo Pareschi, Mohammed Seaïd . Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2(3): 481-496. doi: 10.3934/nhm.2007.2.481 |
[5] | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040 |
[6] | Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783 |
[7] | Jan Lorenz, Stefano Battiston . Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks and Heterogeneous Media, 2008, 3(2): 185-200. doi: 10.3934/nhm.2008.3.185 |
[8] | Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni . A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525 |
[9] | Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030 |
[10] | Paola Goatin, Sheila Scialanga . Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11(1): 107-121. doi: 10.3934/nhm.2016.11.107 |
Biomedical and health information processing and analysis is playing an increasingly important role in life sciences and medicine. Relevant technologies are developing rapidly and help to assess surgical risks, process electronic medical records (EMR) or medical images, and provide precision medicine. This special issue aims to present some research about the application of medical data mining, and bioinformatics in processing or analyzing biomedical and health information.
There are 7 full length articles in this special issue. All articles are focused on medical data mining and bioinformatics.
Wan et al. [1] proposed a ELMo-ET-CRF model to extract medical named entities from Chinese EMR. The model used a Chinese medical domain-specific pretrained ELMo model as embedding layer, an encoder from transformer (ET) as encoding layer, conditional random field (CRF) as decoding layer, respectively. The model achieved competitive performance to the current state-of-the-art method on CCKS 2019 datasets.
Che et al. [2] integrated temporal convolutional network (TCN) and CRF for biomedical named entity recognition. The model significantly reduced training time while achieved comparable performance to the state-of-the-art methods on GENIA and CoNLL-2003 datasets.
Based on a pre-trained language model, Zhang et al. [3] presented a novel encoder-decoder structure for Chinese clinical event detection. The structure integrated contextual representations and character embeddings to improve semantic understanding. The experiments demonstrated the novel structure achieved the best precision, recall and F1-score.
Cheng et al. [4] optimized the U-Net for retinal blood vessel segmentation by adding dense blocks. This optimization improved the sensitivity of small blood vessels and outperformed state-of-the-art methods on two public datasets DRIVE and CHASE_DB1.
Liu et al. [5] proposed four methods, namely SESOP, STSSO, SESOP-MFIR and STSSO-MFIR, for the surgical outcome monitoring. The methods were optimized by standardizing variables, replacing statistics, and upgrading the control limits from asymptotic to time-varying. The experiments showed that the methods could effectively monitor surgical outcomes and early shifts.
Zhang et al. [6] proposed an anomaly detection method based on local density. By integrating with homomorphic encryption, the method could effectively and efficiently perform anomaly detection in the case of multi-party participation without leaking the private data of participants.
Hou et al. [7] developed a knowledge representation model named precision medicine ontology (PMO) to represent the relationships among 11 fields related to precision medicine, such as diseases, phenotypes, genes, mutations, drugs, etc., in 93 semantic relationships. Compared with the existing work, PMO covered mutations, genes and gene products more extensively, and had richer term set including 4.53 million terms.
In conclusion, this special issue provides 7 outstanding full-length research articles, mainly about the application of medical data mining, and bioinformatics in processing or analyzing biomedical and health information. We sincerely express our gratitude to all researchers who accepted our invitation and contributed to this special issue. In addition, we also thank MBE for editing assistance.
The work is supported by Natural Science Foundation of China (No. 61772146 and No. 61672450) and Guangzhou Science Technology and Innovation Commission (No. 201803010063).
The authors declare that they have no conflict of interest.
[1] |
U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, C. Busch, Face recognition systems under morphing attacks: A survey, IEEE Access, 7 (2019), 23012–23026. doi: 10.1109/ACCESS.2019.2899367
![]() |
[2] |
A. Fydanaki, Z. Geradts, Evaluating OpenFace: an open-source automatic facial comparison algorithm for forensics, Forensic Sci. Res., 3 (2018), 202–209. doi: 10.1080/20961790.2018.1523703
![]() |
[3] | M. P. Evison, R. W. V. Bruegge, The magna database: A database of three-dimensional facial images for research in human identification and recognition, Forensic Sci. Commun., 10 (2008), 1–11. |
[4] | J. Zeng, S. Shi, Q. Lu, Y. Li, X. Qiu, Face recognition techniques for forensic identification of human images, Int. J. Digital Content Technol. Its Appl., 11 (2017), 34–43. |
[5] |
J. Han, B. Bhanu, Individual recognition using gait energy image, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006), 316–322. doi: 10.1109/TPAMI.2006.38
![]() |
[6] | S. Bharadwaj, H. Bhatt, M. Vatsa, R. Singh, A. Noore, Quality assessment based denoising to improve face recognition performance, CVPR 2011 WORKSHOPS, Colorado Springs, CO, 2011,140–145. |
[7] | A. A. Dawood, M. F. Saleh, Review of different techniques for image denoising, Int. J. Innovative Res. Comput. Commun. Eng., 6 (2018), 2498–2505. |
[8] |
L. Fan, F. Zhang, H. Fan, C. Zhang, Brief review of image denoising techniques, Visual Comput. Ind. Biomed. Art, 2 (2019), 7. doi: 10.1186/s42492-019-0016-7
![]() |
[9] |
P. Janani, J. Premaladha, K. S. Ravichandran, Image enhancement techniques: A study, Indian J. Sci. Technol., 8 (2015), 125–145. doi: 10.17485/ijst/2015/v8iS6/71216
![]() |
[10] | G. Deng, L. W. Cahill, An adaptive Gaussian filtering for noise reduction and edge detection, Nuclear Science Symposium and Medical Imaging Conference, 3 (1993), 1615–1619. |
[11] | X. Jia, S. Liu, X. Feng,, L. Zhang, FOCNet: A fractional optimal control network for image denoising, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. Available from: https://ieeexplore.ieee.org/document/8954104. |
[12] | C. Tian, Y. Xu, L. Fei, K. Yan, Deep learning for image denoising: a survey, International Conference on Genetic and Evolutionary Computing, 384 (2019), 563–572. |
[13] |
C. Knaus, M. Zwicker, Progressive image denoising, IEEE Trans. Image Process., 23 (2014), 3114–3125. doi: 10.1109/TIP.2014.2326771
![]() |
[14] | S. Cha, T. Moon, Fully convolutional pixel adaptive image denoiser, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, 4160–4169. |
[15] | J. Xu, L. Zhang, D. Zhang, A trilateral weighted sparse coding scheme for real-world image denoising, The European Conference on Computer Vision (ECCV), 2018, 20–36. |
[16] | R. Wang, X. Xiao, B. Guo, Q. Qin, R. Chen, An effective image denoising method for UAV images via improved generative adversarial networks, Sensors, 18 (2018), 1985. |
[17] |
M. Diwakar, M. Kumar, A review on CT image noise and its denoising, Biomed. Signal Process. Control, 42 (2018), 73–88. doi: 10.1016/j.bspc.2018.01.010
![]() |
[18] | J. Benesty, J. D. Chen, Y. T. Huang, Study of the widely linear wiener filter for noise reduction, IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, Texas, USA, 2010,205–208. |
[19] |
S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern. Anal. Mach. Intell., 11 (1989), 674–693. doi: 10.1109/34.192463
![]() |
[20] | W. Zhang, R. Li, K. He, J. Zhou, Approach to image denoising and enhancement based on 3DDCT, J. Univ. Electron. Sci. Technol. China, 40 (2011), 742–746. |
[21] | T. Yan, M. Qu, C. Zhou, Image denoising with BEMD and edge-preserving self-snake model, International Conference on Intelligent Computing, 8588 (2014), 435–442. |
[22] |
K. Nguyen, C. Fookes, S. Sridharan, M. Tistarelli, M. Nixon, Super-resolution for biometrics: A comprehensive survey, Pattern Recognit., 78 (2018), 23–42. doi: 10.1016/j.patcog.2018.01.002
![]() |
[23] | J. Jiang, J. Ma, C. Chen, X. Jiang, Z. Wang, Noise robust face image super-resolution through smooth sparse representation, IEEE Trans. Cybernetics, 47 (2016), 3991–4002. |
[24] | R. Tkachenko, P. Tkachenko, I. Izonin, Y. Tsymbal, Learning-based image scaling using neural-like structure of geometric transformation paradigm, in Advances in Soft Computing and Machine Learning in Image Processing, (2018), 537–565. |
[25] | I. Izonin, R. Tkachenko, D. Peleshko, T. Rak, D. Batyuk, Learning-based image super-resolution using weight coefficients of synaptic connections, 2015 Xth International Scientific and Technical Conference "Computer Sciences and Information Technologies" (CSIT), 2015, 25–29. |
[26] | Y. Rashkevych, D. Peleshko, O. Vynokurova, I. Izonin, N. Lotoshynska, Single-frame image super-resolution based on singular square matrix operator, 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering, 2017,944–948. |
[27] | M. Emambakhsh, J. Gao, A.N. Evans, An evaluation of denoising algorithms for 3D face recognition, 5th International Conference on Imaging for Crime Detection and Prevention, London, 2013. |
[28] | L. Zhang, L. Zhang, L. Li, Illumination quality assessment for face images: A benchmark and a convolutional neural networks based model, in International Conference on Neural Information Processing, Springer, Cham, 2017,583–593. |
[29] |
N. Zhuang, Q. Zhang, C. Pan, B. Ni, Y. Xu, X. Yang, W. Zhang, Recognition oriented facial image quality assessment via deep convolutional neural network, Neurocomputing, 358 (2019), 109–118. doi: 10.1016/j.neucom.2019.04.057
![]() |
[30] |
J. Yu, K. Sun, F. Gao, S. Zhu, Face biometric quality assessment via light CNN, Pattern Recog. Lett., 107 (2018), 25–32. doi: 10.1016/j.patrec.2017.07.015
![]() |
[31] | V. V. Starovoitov, D. I. Samal, D. V. Briliuk, Image enhancement for face recognition, International Conference on Iconics, St. Petersburg, Russia, 2003. |
[32] |
T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002), 971–987. doi: 10.1109/TPAMI.2002.1017623
![]() |
[33] |
S. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., 9 (2000), 1532–1546. doi: 10.1109/83.862633
![]() |
[34] | D. Andrews, C. Mallows, Scale mixtures of normal distributions, J. Royal Stat. Soc., 36 (1974), 99–102. |
[35] | A. Martinez, R. Benevento, The AR face database, CVC Technical Report #24, 1998. |
[36] |
P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, et al., Overview of the face recognition grand challenge, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 1(2005), 947–954. doi: 10.1109/CVPR.2005.268
![]() |
[37] | S. Mittal, S. Agarwal, M. J. Nigam, Real time multiple face recognition: A deep learning approach, Proceedings of the 2018 International Conference on Digital Medicine and Image Processing, 2018, 70–76. |
[38] | I. Masi, Y. Wu, T. Hassner, P. Natarajan, Deep face recognition: A survey, 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2018. Available from: https://ieeexplore.ieee.org/document/8614364. |
[39] |
G. Gilboa, N. Sochen, Y. Y. Zeevi, Image enhancement and denoising by complex diffusion process, IEEE Trans. Patt. Anal. Mach. Intell., 26 (2004), 1020–1036. doi: 10.1109/TPAMI.2004.47
![]() |
[40] |
P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629–639. doi: 10.1109/34.56205
![]() |
1. | Soobia Saeed, Habibollah Haron, NZ Jhanjhi, Mehmood Naqvi, Hesham A. Alhumyani, Mehedi Masud, Improve correlation matrix of Discrete Fourier Transformation technique for finding the missing values of MRI images, 2022, 19, 1551-0018, 9039, 10.3934/mbe.2022420 |