Research article

Numerical evaluation of high-intensity focused ultrasound- induced thermal lesions in atherosclerotic plaques

  • Received: 22 June 2020 Accepted: 22 December 2020 Published: 12 January 2021
  • The aim of this study is to estimate the effects of some acoustic parameters on thermal lesions of atherosclerotic plaques in high-intensity focused ultrasound (HIFU) fields. A fluid-solid thermal coupling model is presented for describing the temperature elevation and thermal ablation of atherosclerotic plaque. A finite element approach is used to solve the coupling equations in cylindrical coordinates. The model considers the effect of the wall thickness of large arteries. The extent of the tissue lesion is determined by the accumulated thermal lesion with Arrhenius integral equation at each location. The results show the lesion size of atherosclerotic plaque is positively correlated to the excited frequency and acoustic output power with heating time. The computational model indicates HIFU may present a novel option for thermal ablation of atherosclerotic plaques with a completely non-invasive treatment paradigm.

    Citation: Weirui Lei, Jiwen Hu, Yatao Liu, Wenyi Liu, Xuekun Chen. Numerical evaluation of high-intensity focused ultrasound- induced thermal lesions in atherosclerotic plaques[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1154-1168. doi: 10.3934/mbe.2021062

    Related Papers:

  • The aim of this study is to estimate the effects of some acoustic parameters on thermal lesions of atherosclerotic plaques in high-intensity focused ultrasound (HIFU) fields. A fluid-solid thermal coupling model is presented for describing the temperature elevation and thermal ablation of atherosclerotic plaque. A finite element approach is used to solve the coupling equations in cylindrical coordinates. The model considers the effect of the wall thickness of large arteries. The extent of the tissue lesion is determined by the accumulated thermal lesion with Arrhenius integral equation at each location. The results show the lesion size of atherosclerotic plaque is positively correlated to the excited frequency and acoustic output power with heating time. The computational model indicates HIFU may present a novel option for thermal ablation of atherosclerotic plaques with a completely non-invasive treatment paradigm.



    加载中


    [1] O. Kafi, N. E. Khatib, J. Tiago, A. Sequeira, Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery, Math. Biosci. Eng., 14 (2017), 179-193. doi: 10.3934/mbe.2017012
    [2] M. J. Tavafi, Complexity of diabetic nephropathy pathogenesis and design of investigations, Renal. Inj. Prev., 2 (2013), 59-62.
    [3] Y. Zhang, A. Koradia, D.Kamato, A. Popat, P. J. Little, H. T. Ta, Treatment of atherosclerotic plaque: perspectives on theranostics, J. Pharm. Pharmacol., 71 (2019), 1029-1043. doi: 10.1111/jphp.13092
    [4] S. K. Patel, J. M. Janjic, Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases, Theranostics, 5 (2015), 150-172. doi: 10.7150/thno.9476
    [5] F. Kong, A. J. Garcia, A. P. Mould, M. J. Humphries, C. Zhu, Demonstration of catch bonds between an integrin and its ligand, J. Cell. Biol., 185 (2009), 1275-1284. doi: 10.1083/jcb.200810002
    [6] E. Y. Parshina, A. L. Yusipovich, A. A. Platonova, R. Grygorczyk, G. V. Maksimov, S. N. Orlov, Thermal inactivation of volume-sensitive K+, Cl− cotransport and plasma membrane relief changes in human erythrocytes, Pfugers Arch. Eur. J. Physiol., 465 (2013), 977-983.
    [7] F. Despa, D. P. Orgill, J. Neuwalder, R. C. Lee, The relative thermal stability of tissue macromolecules and cellular structure in burn injury, Burns, 31 (2005), 568-577. doi: 10.1016/j.burns.2005.01.015
    [8] K. T. Schomacker, A. Torri, D. R. Sandison, R. L. Sheridan, N. S. Nishioka, Biodistribution of indocyanine green in a porcine burn model: light and fluorescence microscopy, J. Traum. Acute. Care Surg., 43 (1997), 813-819. doi: 10.1097/00005373-199711000-00013
    [9] C. Iancu, Photothermal therapy of human cancers (PTT) using gold nanoparticles, Biotechnol. Mol. Biol. Nanomed., 1 (2013), 53-60.
    [10] C. R. Hill, G. R. ter Haar, Review article: High intensity focused ultrasound--potential for cancer treatment, Brit. J. Radiol., 68 (1995), 1296-1303.
    [11] Z. Izadifar, P. Babyn, D. Chapman, Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge, Ultrasound Med. Biol., 43 (2017), 1085-1104. doi: 10.1016/j.ultrasmedbio.2017.01.023
    [12] M. A. Ansari, M. Erfanzadeh, E. Mohajerani, Mechanisms of Laser-Tissue Interaction: Ⅱ. Tissue Thermal Properties, J. Lasers Med. Sci., 2013, 4 (3), 99-106.
    [13] T. Stylianopoulos, A. Aksan, V. H. Barocas, A Structural, Kinetic Model of Soft Tissue Thermomechanics, Biophys. J., 94 (2008), 717-725.
    [14] C. M. Shanahan, Inflammation ushers in calcification, Circ., 116 (2007), 2782-2785.
    [15] E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo, Circ., 116 (2007), 2841-2850. doi: 10.1161/CIRCULATIONAHA.107.732867
    [16] I. A. Shehata, Treatment with high intensity focused ultrasound: secrets revealed, Eur. J. Radiol., 81 (2012), 534-541. doi: 10.1016/j.ejrad.2011.01.047
    [17] X. Gao, W. J. Zou, B. L. Jiang, D. Xu, Y. Luo, J. Xiong, et al., Experimental Study of Retention on the Combination of Bifidobacterium with High-Intensity Focused Ultrasound (HIFU) Synergistic Substance in Tumor Tissues, Sci. Rep., 9 (2019), 6423-6431.
    [18] R. A. Byrne, G. W. Stone, J. Ormiston, A. Kastrati, Coronary balloon angioplasty, stents, and scaffolds, Lancet, 390 (2017), 781-792.
    [19] N. Ramkumar, P. Martinez-Camblor, J. A. Columbo, N. H. Osborne, P. P. Goodney, A. J. O'Malley, Adverse Events After Atherectomy: Analyzing Long-Term Outcomes of Endovascular Lower Extremity Revascularization Techniques, J. Am. Heart Assoc., 8 (2019), e012081.
    [20] A. Rodríguez-Hernández, S. A. Josephson, M. T. Lawton, Bypass surgery for the prevention of ischemic stroke: current indications and techniques, Neurocirugia, 23 (2012), 5-14. doi: 10.1016/j.neucir.2011.11.001
    [21] M. Gaudino, D. J. Angiolillo, A. D. Franco, D. Capodanno, F. Bakaeen, M. E. Farkouh, et al., Stroke After Coronary Artery Bypass Grafting and Percutaneous Coronary Intervention: Incidence, Pathogenesis, and Outcomes, J. Am. Heart. Assoc., 8 (2019), e013032.
    [22] V. S. Dogra, M. Zhang, S. Bhatt, High-Intensity Focused Ultrasound (HIFU) Therapy Applications, Ultrasound Clin., 4 (2009), 307-321. doi: 10.1016/j.cult.2009.10.005
    [23] A. Eranki, N. Farr, A. Partanen, K. V. Sharma, C. T. Rossi, A. Z. Rosenberg, et al., Mechanical Fractionation of Tissues using Microsecond-Long HIFU Pulses on a Clinical MR-HIFU System, Int. J. Hyperthermia, 34 (2018), 1213-1224.
    [24] J. Hu, S. Qian, Y. Ding, Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer, Ultrasonics, 50 (2010), 628-633. doi: 10.1016/j.ultras.2010.01.006
    [25] J. Hu, Y. Ding, S. Qian, X. Tang, Simulations of adaptive temperature control with self-focused hyperthermia system for tumor treatment, Ultrasonics, 53 (2013), 171-177. doi: 10.1016/j.ultras.2012.05.005
    [26] R. J. Siegel, M. C. Fishbein, J. Forrester, K. Moore, E. DeCastro, L. Daykhovsky, T. A. DonMichael, Ultrasonic plaque ablation-A new method for recanalization of partially or totally occluded arteries, Circulation, 78 (1988), 1443-1448. doi: 10.1161/01.CIR.78.6.1443
    [27] C. Damianou, C. Christofi, N. Mylonas, Removing atherosclerotic plaque created using high cholesterol diet in rabbit using ultrasound, J. Ther. Ultrasound, 3 (2015), 303-311.
    [28] W. Casscells, W. K. Vaughn, H. Mcallister, J. T. Willerson, B. Hathorn, M. David, et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis, Lancet, 347 (1996), 1447-1449. doi: 10.1016/S0140-6736(96)91684-0
    [29] I. A. Shehata, J. R. Ballaer, A. J. Casper, D. Liu, T. Mitchell, E. S. Ebbini, Feasibility of targeting atheromatous plaques by high intensity focused ultrasound using dual-mode ultrasound array systems: an early experience, JVIR Suppl., 23 (2012), S58.
    [30] M. K. Almekkaway, I. A. Shehata, E. S. Ebbini, Anatomical-based model for simulation of HIFU-induced lesions in atherosclerotic plaques, Int. J. Hyperthermia, 31 (2015), 433-442. doi: 10.3109/02656736.2015.1018966
    [31] J. A. Pearce, Comparative analysis of mathematical models of cell death and thermal damage processes, Int. J. Hyperthermia, 29 (2013), 262-280. doi: 10.3109/02656736.2013.786140
    [32] T. Richter, Fluid-structure Interactions, Models, Analysis and Finite Elements, volume 118 of Lecture notes in computational science and engineering. Springer, 2017.
    [33] H. H. Pennes, Analysis of tissue and arterial blood temperature in the resting human forearm, J. Appl. Phys., 1 (1948), 93-122.
    [34] P. Vernotte, Les paradoxes de la theorie continue de léquation de la chaleur, Compt. Rendus, 246 (1958), 3154-3155.
    [35] S. A. Sapareto, W. C. Dewey, Thermal dose determination in cancer therapy, Int. J. Radiat. Oncol. Biol. Phys., 10 (1984), 787-800. doi: 10.1016/0360-3016(84)90379-1
    [36] X. Liu, X. Chen, L. X. Xu, New thermal wave aspects on bum evaluation of skin subjected to instantaneous heating, IEEE Trans. Biomed. Eng., 46 (1999), 420-428. doi: 10.1109/10.752939
    [37] E. Y. K. Ng, L. T. Chua, Comparison of one- and two-dimensional programmes for predicting the state of tissue damage, Burns., 28 (2002), 27-34. doi: 10.1016/S0305-4179(01)00066-3
    [38] R. Agah, J. A. Pearce, A. J. Welch, M. Motamedi, Rate process model for arterial tissue thermal damage: Implications on vessel photocoagulation, Lasers Surg. Med., 15 (1994), 176-184. doi: 10.1002/lsm.1900150205
    [39] I. A. Chang, U. D. Nguyen, Thermal modeling of lesion growth with radio frequency ablation devices, Biomed. Eng. Online, 3 (2004), 1-19. doi: 10.1186/1475-925X-3-1
    [40] M. Bukac, S. Canic, R. Glowinski, J. Tambaca, A. Quaini, Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement, J. Comput. Phys., 235 (2013), 515-541. doi: 10.1016/j.jcp.2012.08.033
    [41] S. Canic, B. Muha, M. Bukac, Stability of the Kinematically Coupled Beta-Scheme for fluid-structure interaction problems in hemodynamics, Int. J. Numer. Anal. Mod., 12 (2015), 54-80.
    [42] M. Bukac, S. Canic, J. Tambaca, Y. Wang, Fluid-structure interaction between pulsatile blood ow and a curved stented coronary artery on a beating heart: a four stent computational study, Comput. Method Appl. M., 350 (2019), 679-700. doi: 10.1016/j.cma.2019.03.034
    [43] Y. Wang, A. Quaini, S. Canic, A Higher-Order Discontinuous Galerkin/Arbitrary Lagrangian Eulerian Approach to Solving Fluid-Structure Interaction Problems with Incompressible, J. Sci. Comput., 76 (2018), 481-520. doi: 10.1007/s10915-017-0629-y
    [44] P. Gupta, A. Srivastava, Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound, Int. J. Hyperthermia, 35 (2018), 419-434. doi: 10.1080/02656736.2018.1506166
    [45] J. A. Pearce, Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose, SPIE: Energy-based Treatment of Tissue and Assessment V 7181: 718104-718101-718104-718115., Thomas P. Ryan, Editor(s).
    [46] X. K. Chen, K. Q. Chen, Thermal transport of carbon nanomaterials, J. Phys. Condens. Matter, 32 (2020), 153002.
    [47] P. Gupta, A. Srivastava, Non-Fourier transient thermal analysis of biological tissue phantoms subjected to high intensity focused ultrasound, Int. J. Heat Mass Transfer, 136 (2019), 1052-1063. doi: 10.1016/j.ijheatmasstransfer.2019.03.014
    [48] S. Kumar, A. Srivastava, Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer equation, Appl. Math. Model., 52 (2017), 378-403. doi: 10.1016/j.apm.2017.05.041
    [49] S. Patidar, S. Kumar, A. Srivastava, et al., Dual phase lag model-based thermal analysis of tissue phantoms using lattice Boltzmann method, Int. J. Therm. Sci., 103 (2016), 41-56.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1250) PDF downloads(166) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog