Research article Special Issues

Identification of driver genes with aberrantly alternative splicing events in pediatric patients with retinoblastoma

  • Received: 13 September 2020 Accepted: 28 October 2020 Published: 01 December 2020
  • Retinoblastoma (RB) is one of the most common cancer in children. However, the specific mechanism about RB tumorigenesis has not been fully understood. In this study, to comprehensively characterize the splicing alterations in the tumorigenesis of RB, we analyzed the differential alternative splicing events in RB. Specifically, the isoforms of RB1 were downregulated in the RB samples, and a large proportion of differentially expressed genes had multiple differentially expressed transcripts (64%). We identified 1453 genes with differential alternative splicing, among which, SE accounted for the majority, followed by MXE, RI, A3SS, and A5SS. Furthermore, the biological function related to the normal function of eyes, and E2F family TFs were significantly enriched by the genes with differential alternative splicing. Among the genes associated with visual sense, ABCA4 was found to have two mutually exclusive exons, resulting in two isoforms with different functionalities. Notably, DAZAP1 was identified as one of the critical splicing factors in RB, which was potentially involved in E2F and RB pathways. Functionally, differential binding sites in DAZAP1 protein were significantly observed between RB and normal samples. Based on the comprehensive analysis of the differential alternative splicing events and splicing factors, we identified some driver genes with differential alternative splicing and critical splicing factors involved in RB, which would greatly improve our understanding of the alternative splicing process in the tumorigenesis of RB.

    Citation: Zhenlei Yang, Jie Wang, Ruixi Zhu. Identification of driver genes with aberrantly alternative splicing events in pediatric patients with retinoblastoma[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 328-338. doi: 10.3934/mbe.2021017

    Related Papers:

    [1] Jin Zhong, Yue Xia, Lijuan Chen, Fengde Chen . Dynamical analysis of a predator-prey system with fear-induced dispersal between patches. Mathematical Biosciences and Engineering, 2025, 22(5): 1159-1184. doi: 10.3934/mbe.2025042
    [2] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
    [3] Suvranil Chowdhury, Sujit Halder, Kaushik Kayal, Joydev Chattopadhyay . Cooperation-conflict dynamics and ecological resilience under environmental disturbances. Mathematical Biosciences and Engineering, 2025, 22(8): 2120-2151. doi: 10.3934/mbe.2025078
    [4] Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay . Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences and Engineering, 2014, 11(4): 877-918. doi: 10.3934/mbe.2014.11.877
    [5] Robert Stephen Cantrell, Chris Cosner, William F. Fagan . Edge-linked dynamics and the scale-dependence of competitive. Mathematical Biosciences and Engineering, 2005, 2(4): 833-868. doi: 10.3934/mbe.2005.2.833
    [6] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [7] Fu-Yuan Tsai, Feng-BinWang . Mathematical analysis of a chemostat system modeling the competition for light and inorganic carbon with internal storage. Mathematical Biosciences and Engineering, 2019, 16(1): 205-221. doi: 10.3934/mbe.2019011
    [8] Yang Kuang, Kaifa Wang . Coexistence and extinction in a data-based ratio-dependent model of an insect community. Mathematical Biosciences and Engineering, 2020, 17(4): 3274-3293. doi: 10.3934/mbe.2020187
    [9] Yuanfu Shao . Bifurcations of a delayed predator-prey system with fear, refuge for prey and additional food for predator. Mathematical Biosciences and Engineering, 2023, 20(4): 7429-7452. doi: 10.3934/mbe.2023322
    [10] Chang-Yuan Cheng, Kuang-Hui Lin, Chih-Wen Shih . Coexistence and extinction for two competing species in patchy environments. Mathematical Biosciences and Engineering, 2019, 16(2): 909-946. doi: 10.3934/mbe.2019043
  • Retinoblastoma (RB) is one of the most common cancer in children. However, the specific mechanism about RB tumorigenesis has not been fully understood. In this study, to comprehensively characterize the splicing alterations in the tumorigenesis of RB, we analyzed the differential alternative splicing events in RB. Specifically, the isoforms of RB1 were downregulated in the RB samples, and a large proportion of differentially expressed genes had multiple differentially expressed transcripts (64%). We identified 1453 genes with differential alternative splicing, among which, SE accounted for the majority, followed by MXE, RI, A3SS, and A5SS. Furthermore, the biological function related to the normal function of eyes, and E2F family TFs were significantly enriched by the genes with differential alternative splicing. Among the genes associated with visual sense, ABCA4 was found to have two mutually exclusive exons, resulting in two isoforms with different functionalities. Notably, DAZAP1 was identified as one of the critical splicing factors in RB, which was potentially involved in E2F and RB pathways. Functionally, differential binding sites in DAZAP1 protein were significantly observed between RB and normal samples. Based on the comprehensive analysis of the differential alternative splicing events and splicing factors, we identified some driver genes with differential alternative splicing and critical splicing factors involved in RB, which would greatly improve our understanding of the alternative splicing process in the tumorigenesis of RB.




    [1] J. Reinhard, N. Wagner, M. M. Kramer, M. Jarocki, S. C. Joachim, H. B. Dick, et al., Expression Changes and Impact of the Extracellular Matrix on Etoposide Resistant Human Retinoblastoma Cell Lines, Int. J. Mol. Sci., 21 (2020), 4322. doi: 10.3390/ijms21124322
    [2] I. Aerts, L. Lumbroso-Le Rouic, M. Gauthier-Villars, H. Brisse, F. Doz, [Retinoblastoma update], Arch Pediatr., 23 (2015), 112-116.
    [3] F. Salviat, M. Gauthier-Villars, M. Carton, N. Cassoux, L. Lumbroso-Le Rouic, C. Dehainault, et al., Association Between Genotype and Phenotype in Consecutive Unrelated Individuals With Retinoblastoma, JAMA Ophthalmol., 138 (2020), 843-850. doi: 10.1001/jamaophthalmol.2020.2100
    [4] P. R. Mendoza, H. E. Grossniklaus, The Biology of Retinoblastoma, in Progress in Molecular Biology and Translational Science, 2015,503-516.
    [5] D. Lohmann, Retinoblastoma, Adv. Exp. Med. Biol., 685 (2010), 220-227. doi: 10.1007/978-1-4419-6448-9_21
    [6] M. Mehyar, M. Mosallam, A. Tbakhi, A. Saab, I. Sultan, R. Deebajah, et al., Impact of RB1 gene mutation type in retinoblastoma patients on clinical presentation and management outcome, Hematol. Oncol. Stem Cell Ther., 13 (2020), 152-159. doi: 10.1016/j.hemonc.2020.02.006
    [7] T. T. Kivela, T. Hadjistilianou, Neonatal Retinoblastoma, Asia. Pac. J. Oncol. Nurs., 4 (2017), 197-204. doi: 10.4103/apjon.apjon_18_17
    [8] P. Indovina, F. Pentimalli, N. Casini, I. Vocca, A. Giordano, RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy, Oncotarget, 6 (2015), 17873-17890. doi: 10.18632/oncotarget.4286
    [9] L. Zheng, W. H. Lee, Retinoblastoma tumor suppressor and genome stability, Adv. Cancer Res., 85 (2002), 13-50. doi: 10.1016/S0065-230X(02)85002-3
    [10] D. E. Rushlow, B. M. Mol, J. Y. Kennett, S. Yee, S. Pajovic, B. L. Theriault, et al., Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies, Lancet Oncol., 14 (2013), 327-334. doi: 10.1016/S1470-2045(13)70045-7
    [11] C. Rodriguez-Martin, F. Cidre, A. Fernandez-Teijeiro, G. Gomez-Mariano, L. de la Vega, P. Ramos, et al., Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene, J. Hum.Genet., 61 (2016), 463-466. doi: 10.1038/jhg.2015.173
    [12] S. C. W. Lee, O. Abdel-Wahab, Therapeutic targeting of splicing in cancer, Nat. Med., 22 (2016), 976-986. doi: 10.1038/nm.4165
    [13] F. Supek, B. Minana, J. Valcarcel, T. Gabaldon, B. Lehner, Synonymous mutations frequently act as driver mutations in human cancers, Cell, 156 (2014), 1324-1335. doi: 10.1016/j.cell.2014.01.051
    [14] H. Jung, D. Lee, J. Lee, D. Park, Y. J. Kim, W. Y. Park, et al., Intron retention is a widespread mechanism of tumor-suppressor inactivation, Nat. Genet., 47 (2015), 1242-1248. doi: 10.1038/ng.3414
    [15] V. Spina, D. Rossi, Overview of non-coding mutations in chronic lymphocytic leukemia, Mol. Oncol., 13 (2019), 99-106. doi: 10.1002/1878-0261.12416
    [16] R. Karni, E. de Stanchina, S. W. Lowe, R. Sinha, D. Mu, A. R. Krainer, The gene encoding the splicing factor SF2/ASF is a proto-oncogene, Nat. Struct. Mol. Biol., 14 (2007), 185-193. doi: 10.1038/nsmb1209
    [17] M. Cohen-Eliav, R. Golan-Gerstl, Z. Siegfried, C. L. Andersen, K. Thorsen, T. F. Orntoft, et al., The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers, J. Pathol., 229 (2013), 630-639. doi: 10.1002/path.4129
    [18] R. Jia, C. Li, J. P. McCoy, C. X. Deng, Z. M. Zheng, SRp20 is a proto-oncogene critical for cell proliferation and tumor induction and maintenance, Int. J. Biol. Sci., 6 (2010), 806-826.
    [19] E. G. Bechara, E. Sebestyen, I. Bernardis, E. Eyras, J. Valcarcel, RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation, Mol. Cell, 52 (2013), 720-733.
    [20] S. Rajasekaran, L. D. Nagarajha Selvan, K. Dotts, R. Kumar, P. Rishi, V. Khetan, et al., Non-coding and Coding Transcriptional Profiles Are Significantly Altered in Pediatric Retinoblastoma Tumors, Front. Oncol., 9 (2019), 221. doi: 10.3389/fonc.2019.00221
    [21] Y. Liao, G. K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, 30 (2014), 923-930. doi: 10.1093/bioinformatics/btt656
    [22] S. Shen, J. W. Park, Z. X. Lu, L. Lin, M. D. Henry, Y. N. Wu, et al., rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data, Proc. Nat. Acad. Sci. U. S. A., 111 (2014), E5593-5601. doi: 10.1073/pnas.1419161111
    [23] M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15 (2014), 550. doi: 10.1186/s13059-014-0550-8
    [24] C. Gu, X. Shi, Z. Huang, J. Chen, J. Yang, J. Shi, et al., A comprehensive study of construction and analysis of competitive endogenous RNA networks in lung adenocarcinoma, Biochim. Biophys. Acta Proteins Proteomics, 1868 (2020), 140444. doi: 10.1016/j.bbapap.2020.140444
    [25] X. Shi, T. Huang, J. Wang, Y. Liang, C. Gu, Y. Xu, et al., Next-generation sequencing identifies novel genes with rare variants in total anomalous pulmonary venous connection, EBioMedicine, 38 (2018), 217-227. doi: 10.1016/j.ebiom.2018.11.008
    [26] G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS, 16 (2012), 284-287. doi: 10.1089/omi.2011.0118
    [27] V. Imperatore, A. M. Pinto, E. Gelli, E. Trevisson, V. Morbidoni, E. Frullanti, et al., Parent-of-origin effect of hypomorphic pathogenic variants and somatic mosaicism impact on phenotypic expression of retinoblastoma, Eur. J. Hum. Genet., 26 (2018), 1026-1037. doi: 10.1038/s41431-017-0054-6
    [28] C. J. Dommering, B. M. Mol, A. C. Moll, M. Burton, J. Cloos, J. C. Dorsman, et al., RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients, J. Med. Genet., 51 (2014), 366-374. doi: 10.1136/jmedgenet-2014-102264
    [29] J. Alonso, P. Garcia-Miguel, J. Abelairas, M. Mendiola, E. Sarret, M. T. Vendrell, et al., Spectrum of germline RB1 gene mutations in Spanish retinoblastoma patients: Phenotypic and molecular epidemiological implications, Hum. Mutat., 17 (2001), 412-422. doi: 10.1002/humu.1117
    [30] R. Condorelli, L. Spring, J. O'Shaughnessy, L. Lacroix, C. Bailleux, V. Scott, et al., Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer, Ann. Oncol., 29 (2018), 640-645. doi: 10.1093/annonc/mdx784
    [31] F. Sanchez-Sanchez, M. Kruetzfeldt, C. Najera, S. Mittnacht, A novel constitutional mutation affecting splicing of retinoblastoma tumor suppressor gene intron 23 causes partial loss of pRB activity, Hum. Mutat., 25 (2005), 223.
    [32] H. Dimaras, T. W. Corson, Retinoblastoma, the visible CNS tumor: A review, J. Neurosci. Res., 97 (2019), 29-44. doi: 10.1002/jnr.24213
    [33] H. Sun, Y. Wang, M. Chinnam, X. Zhang, S. W. Hayward, B. A. Foster, et al., E2f binding-deficient Rb1 protein suppresses prostate tumor progression in vivo, Proc. Nat. Acad. Sci. U. S. A., 108 (2011), 704-709. doi: 10.1073/pnas.1015027108
    [34] F. P. M. Cremers, W. Lee, R. W. J. Collin, R. Allikmets, Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations, Prog. Retinal Eye Res., 2020, 100861, forthcoming.
    [35] C. P. Pang, D. S. Lam, Differential occurrence of mutations causative of eye diseases in the Chinese population, Hum. Mutat., 19 (2002), 189-208. doi: 10.1002/humu.10053
    [36] T. Chen, W. Zheng, J. Chen, S. Lin, Z. Zou, X. Li, Z. Tan, Systematic analysis of survival-associated alternative splicing signatures in clear cell renal cell carcinoma, J. Cell. Biochem., 121 (2020), 4074-4084. doi: 10.1002/jcb.29590
    [37] M. Yu, W. Hong, S. Ruan, R. Guan, L. Tu, B. Huang, et al., Genome-Wide Profiling of Prognostic Alternative Splicing Pattern in Pancreatic Cancer, Front. Oncol., 9 (2019), 773. doi: 10.3389/fonc.2019.00773
    [38] V. Prima, S. P. Hunger, Cooperative transformation by MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins generated by the variant t(1;19) in acute lymphoblastic leukemia, Leukemia, 21 (2007), 2470-2475. doi: 10.1038/sj.leu.2404962
    [39] R. Choudhury, S. G. Roy, Y. S. Tsai, A. Tripathy, L. M. Graves, Z. Wang, The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration, Nat. Commun., 5 (2014), 3078. doi: 10.1038/ncomms4078
  • This article has been cited by:

    1. D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel, R. Vermiglio, Pseudospectral Discretization of Nonlinear Delay Equations: New Prospects for Numerical Bifurcation Analysis, 2016, 15, 1536-0040, 1, 10.1137/15M1040931
    2. Deborah Lacitignola, Handling Hysteresis in a Referral Marketing Campaign with Self-Information. Hints from Epidemics, 2021, 9, 2227-7390, 680, 10.3390/math9060680
    3. A. M. Elaiw, A. D. Al Agha, A reaction–diffusion model for oncolytic M1 virotherapy with distributed delays, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00188-z
    4. Janejira Tranthi, Thongchai Botmart, Wajaree Weera, Piyapong Niamsup, A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays, 2019, 7, 2227-7390, 737, 10.3390/math7080737
    5. Daniel Câmara De Souza, Morgan Craig, Tyler Cassidy, Jun Li, Fahima Nekka, Jacques Bélair, Antony R. Humphries, Transit and lifespan in neutrophil production: implications for drug intervention, 2018, 45, 1567-567X, 59, 10.1007/s10928-017-9560-y
    6. Dimitri Breda, Giulia Menegon, Monica Nonino, Delay equations and characteristic roots: stability and more from a single curve, 2018, 14173875, 1, 10.14232/ejqtde.2018.1.89
    7. Luca Gori, Luca Guerrini, Mauro Sodini, Time delays, population, and economic development, 2018, 28, 1054-1500, 055909, 10.1063/1.5024397
    8. DEPENDENCE OF STABILITY OF NICHOLSON'S BLOWFLIES EQUATION WITH MATURATION STAGE ON PARAMETERS, 2017, 7, 2156-907X, 670, 10.11948/2017042
    9. Deborah Lacitignola, Giuseppe Saccomandi, Managing awareness can avoid hysteresis in disease spread: an application to coronavirus Covid-19, 2021, 144, 09600779, 110739, 10.1016/j.chaos.2021.110739
    10. Mats Gyllenberg, Francesca Scarabel, Rossana Vermiglio, Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization, 2018, 333, 00963003, 490, 10.1016/j.amc.2018.03.104
    11. Fuad ALHAJ OMAR, PERFORMANCE COMPARISON OF PID CONTROLLER AND FUZZY LOGIC CONTROLLER FOR WATER LEVEL CONTROL WITH APPLYING TIME DELAY, 2021, 2147-9364, 858, 10.36306/konjes.976918
    12. 维 沈, Dynamic Analysis of Population Models with Time-Delay Coefficients, 2022, 11, 2324-7991, 3164, 10.12677/AAM.2022.115335
    13. Hao Shen, Yongli Song, Hao Wang, Bifurcations in a diffusive resource-consumer model with distributed memory, 2023, 347, 00220396, 170, 10.1016/j.jde.2022.11.044
    14. Libor Pekar, Qingbin Gao, Spectrum Analysis of LTI Continuous-Time Systems With Constant Delays: A Literature Overview of Some Recent Results, 2018, 6, 2169-3536, 35457, 10.1109/ACCESS.2018.2851453
    15. Lőrinc Márton, Control of Multi-Agent Systems with Distributed Delay, 2023, 56, 24058963, 8542, 10.1016/j.ifacol.2023.10.014
    16. Noemi Zeraick Monteiro, Rodrigo Weber dos Santos, Sandro Rodrigues Mazorche, Bridging the gap between models based on ordinary, delayed, and fractional differentials equations through integral kernels, 2024, 121, 0027-8424, 10.1073/pnas.2322424121
    17. Michael Malisoff, Frederic Mazenc, Local Halanay's inequality with application to feedback stabilization, 2024, 0, 2156-8472, 0, 10.3934/mcrf.2024026
    18. Mingzhu Qu, Hideaki Matsunaga, Exact stability criteria for linear differential equations with discrete and distributed delays, 2024, 0022247X, 128663, 10.1016/j.jmaa.2024.128663
    19. Francesca Scarabel, Rossana Vermiglio, Equations with Infinite Delay: Pseudospectral Discretization for Numerical Stability and Bifurcation in an Abstract Framework, 2024, 62, 0036-1429, 1736, 10.1137/23M1581133
    20. Sabrina H. Streipert, Gail S.K. Wolkowicz, Derivation and dynamics of discrete population models with distributed delay in reproduction, 2024, 00255564, 109279, 10.1016/j.mbs.2024.109279
    21. Yonghui Xia, Jianglong Xiao, Jianshe Yu, A diffusive plant-sulphide model: spatio-temporal dynamics contrast between discrete and distributed delay, 2024, 0956-7925, 1, 10.1017/S095679252400069X
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4564) PDF downloads(202) Cited by(2)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog