Trajectory planning is one of the key technologies for autonomous driving. A* algorithm is a classical trajectory planning algorithm that has good results in the field of robot path planning. However, there are still some practical problems to be solved when the algorithm is applied to vehicles, such as the algorithm fails to consider the vehicle contours, the planned path is not smooth, and it lacks speed planning. In order to solve these problems, this paper proposes a path processing method and a path tracking method for the A* algorithm. First, the method of configuring safe redundancy space is given considering the vehicle contour, then, the path is generated based on A* algorithm and smoothed using Bessel curve, and the speed is planned based on the curvature of the path. The trajectory tracking algorithm in this paper is based on an expert system and pure tracking theory. In terms of speed tracking, an expert system for the acceleration characteristics of the vehicle is constructed and used as a priori information for speed control, and good results are obtained. In terms of path tracking, the required steering wheel angle is calculated based on pure tracking theory, and the influence factor of speed on steering is obtained from test data, based on which the steering wheel angle is corrected and the accuracy of path tracking is improved. In addition, this paper proposes a target point selection method for the pure tracking algorithm to improve the stability of vehicle directional control. Finally, a simulation analysis of the proposed method is performed. The results show that the method can improve the applicability of the A* algorithm in automated vehicle planning.
Citation: Xiaoyong Xiong, Haitao Min, Yuanbin Yu, Pengyu Wang. Application improvement of A* algorithm in intelligent vehicle trajectory planning[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 1-21. doi: 10.3934/mbe.2021001
[1] | Mohammad Sajid, Sahabuddin Sarwardi, Ahmed S. Almohaimeed, Sajjad Hossain . Complex dynamics and Bogdanov-Takens bifurcations in a retarded van der Pol-Duffing oscillator with positional delayed feedback. Mathematical Biosciences and Engineering, 2023, 20(2): 2874-2889. doi: 10.3934/mbe.2023135 |
[2] | Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034 |
[3] | Hongqiuxue Wu, Zhong Li, Mengxin He . Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting. Mathematical Biosciences and Engineering, 2023, 20(10): 18592-18629. doi: 10.3934/mbe.2023825 |
[4] | Kunlun Huang, Xintian Jia, Cuiping Li . Analysis of modified Holling-Tanner model with strong Allee effect. Mathematical Biosciences and Engineering, 2023, 20(8): 15524-15543. doi: 10.3934/mbe.2023693 |
[5] | Yingzi Liu, Zhong Li, Mengxin He . Bifurcation analysis in a Holling-Tanner predator-prey model with strong Allee effect. Mathematical Biosciences and Engineering, 2023, 20(5): 8632-8665. doi: 10.3934/mbe.2023379 |
[6] | Xiaoli Wang, Junping Shi, Guohong Zhang . Bifurcation analysis of a wild and sterile mosquito model. Mathematical Biosciences and Engineering, 2019, 16(5): 3215-3234. doi: 10.3934/mbe.2019160 |
[7] | Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486 |
[8] | Juan Li, Yongzhong Song, Hui Wan, Huaiping Zhu . Dynamical analysis of a toxin-producing phytoplankton-zooplankton model with refuge. Mathematical Biosciences and Engineering, 2017, 14(2): 529-557. doi: 10.3934/mbe.2017032 |
[9] | Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157 |
[10] | Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834 |
Trajectory planning is one of the key technologies for autonomous driving. A* algorithm is a classical trajectory planning algorithm that has good results in the field of robot path planning. However, there are still some practical problems to be solved when the algorithm is applied to vehicles, such as the algorithm fails to consider the vehicle contours, the planned path is not smooth, and it lacks speed planning. In order to solve these problems, this paper proposes a path processing method and a path tracking method for the A* algorithm. First, the method of configuring safe redundancy space is given considering the vehicle contour, then, the path is generated based on A* algorithm and smoothed using Bessel curve, and the speed is planned based on the curvature of the path. The trajectory tracking algorithm in this paper is based on an expert system and pure tracking theory. In terms of speed tracking, an expert system for the acceleration characteristics of the vehicle is constructed and used as a priori information for speed control, and good results are obtained. In terms of path tracking, the required steering wheel angle is calculated based on pure tracking theory, and the influence factor of speed on steering is obtained from test data, based on which the steering wheel angle is corrected and the accuracy of path tracking is improved. In addition, this paper proposes a target point selection method for the pure tracking algorithm to improve the stability of vehicle directional control. Finally, a simulation analysis of the proposed method is performed. The results show that the method can improve the applicability of the A* algorithm in automated vehicle planning.
Many differential equations have been proposed (see [8,11,13], [17]-[19], [21]-[22], [24,27] and references therein) to model the dynamic changes of substrate concentration and product one in enzyme-catalyzed reactions. Among those models, a typical form ([7]) is the following skeletal system
{˙x=v−V1(x,y)−V3(x),˙y=q(V1(x,y)−V2(y)), | (1) |
where
V1(0,y)=0, ∂V1/∂x>0, ∂V1/∂y>0, V2(y)≥0, ∀x,y>0, |
and
The case that
{˙x=1−xmyn−lx,˙y=q(xmyn−y), |
called the multi-molecular reaction model sometimes, where
{˙x=v−γxmyn−βx,˙y=γxmyn−v2yμ2+y, |
where
{˙x=v−V1(x,y)−v3xu3+x,˙y=q(V1(x,y)−v2yu2+y) |
with
{˙x=v−v1xy−v3xu3+x,˙y=q(v1xy−v2yu2+y) | (2) |
with
{˙x=a−xy−bx1+x,˙y=κy(x−c1+y), | (3) |
where we still use
{˙x=(1+y){(1+x)(a−xy)−bx},˙y=κ(1+x)y{(1+y)x−c}, | (4) |
in the first quadrant
In this paper we continue the work of [27] to give conditions for the existence of a cusp and compute the parameter curves for the Bogdanov-Takens bifurcation, which induces the appearance of homoclinic orbits and periodic orbits, indicating the tendency to steady-states or a rise of periodic oscillations for the concentrations of the substrate and product.
It is proved in [27] that system (4) has at most 3 equilibria, i.e.,
p1:=−12{(a−b−c+1)−[(a−b−c+1)2−4(a−c)]1/2},p2:=−12{(a−b−c+1)+[(a−b−c+1)2−4(a−c)]1/2}. | (5) |
Moreover, if
TE0:={(a,b,c,κ)∈R4+|a=bc/(1+c),b≠(c+1)2}:=4⋃i=1T(i)E0,PE0:={(a,b,c,κ)∈R4+|a=bc/(1+c),b=(c+1)2},HE1:={(a,b,c,κ)∈R4+|κ=κ1,bc/(1+c)<a<c,0<b≤1}∪{(a,b,c,κ)∈R4+|κ=κ1,bc/(1+c)<a<c+(b1/2−1)2,1<b<(c+1)2},SNE∗:={(a,b,c,κ)∈R4+|a=a∗, 1<b<(c+1)2,κ≠κ∗}:=4⋃i=1SN(i)E∗,B1:={(a,b,c,κ)∈R4+|a=c},B2:={(a,b,c,κ)∈R4+|a=b}, |
which divide
R1:={(a,b,c,κ)∈R4+|c<a<a∗,1<b<c,c>1, or b<a<a∗,c<b<(c+1)2/4,c>1},R2:={(a,b,c,κ)∈R4+|b<a<c,0<b<c}R3:={(a,b,c,κ)∈R4+|bc/(1+c)<a<b,0<b<c or bc/(1+c)<a<c,c<b<c+1},R4:={(a,b,c,κ)∈R4+|0<a<bc/(1+c),0<b<c+1 or 0<a<c,b>c+1},R5:={(a,b,c,κ)∈R4+|c<a<bc/(1+c),b>c+1},R6:={(a,b,c,κ)∈R4|c<a<b,c<b<(c+1),c>3 or bc/(1+c)<a<b,c+1<b<(c+1)2/4,c>3 or bc/(1+c)<a<a∗,(c+1)2/4<b<(c+1)2,c>3 or c<a<b,c<b<(c+1)2/4,1<c≤3 or c<a<a∗,(c+1)2/4<b<c+1,1<c≤3 or bc/(1+c)<a<c+(b1/2−1)2,(c+1)<b<(c+1)2,c≤3 or c<a<a∗,1<b<c+1,c≤1},R7:={(a,b,c,κ)∈R4+|c+(b1/2−1)2<a<b,(c+1)2/4<b<(c+1)2,c>1 or bc/(1+c)<a<b,b>(c+1)2 or c<a<b,c<b<1,c≤1 or c+(b1/2−1)2<a<b,1<b<(c+1)2,c≤1},R0:=R4+∖{PE0∪SNE∗∪TE0∪(2⋃i=1Bi)∪B∪(7⋃i=1Ri)}, |
where
T(1)E0:={(a,b,c,κ)∈R4+|a=bc/(1+c),0<b<c+1},T(2)E0:={(a,b,c,κ)∈R4+|a=bc/(1+c),c+1<b<(c+1)2},T(3)E0:={(a,b,c,κ)∈R4+|a=bc/(1+c),b>(c+1)2},T(4)E0:={(a,b,c,κ)∈R4+|a=bc/(1+c),b=c+1},SN(1)E∗:={(a,b,c,κ)∈R4+|a=a∗, 1<b<(c+1)2/4,c>1,κ≠κ∗},SN(2)E∗:={(a,b,c,κ)∈R4+|a=a∗, b=(c+1)2/4,c>1,κ≠κ∗},SN(3)E∗:={(a,b,c,κ)∈R4+|a=a∗, (c+1)2/4<b<(c+1)2,c>1,κ≠κ∗},SN(4)E∗:={(a,b,c,κ)∈R4+|a=a∗, 1<b<(c+1)2,c≤1,κ≠κ∗},κ1:=p−21{(p1+1)(c−p1)}−1c{p1(c−p1)+a},κ∗:=(c−b1/2+1)−1(b1/2−1)−2c2. | (6) |
The following lemma is a summary of Theorems 1, 2 and 3 of [27].
Lemma 2.1. (ⅰ) System (4) has a saddle-node
(ⅱ) System (4) has a weak focus
H(2)E1:={(a,b,c,κ)∈HE1:2p1(p1+1)a3+{(p21+p1+1)c2+p1(2p21+p1−2)c−3p31(p1+1)}a2−(c−p1){(p31+3p21+p1+1)c2+2p21(p21+3p1+3)c+3p41(p1+1)}a+p21{(p1+2)c+p21}{c−p1(p1+1)}(c−p1)2=0}. |
(ⅲ) System (4) has a saddle-node
The above Lemma 2.1 does not consider parameters in the set
B:={(a,b,c,κ)∈R4+|a=a∗, 1<b<(c+1)2,κ=κ∗}, | (7) |
where
This paper is devoted to bifurcations in
Lemma 2.2. If
C:={(a,b,c,κ)∈B|c=ς(b):=14b1/2(b1/2−1){b1/2+2+(17b−12b1/2+4)1/2}}, |
then equilibrium
Proof. For simplicity in statements, we use the notation
p:=b1/2−1. | (8) |
For
{˙x=y+c(p2+cp+c)p3x2+1p+1xy−pc2(p+1)y2−c(p2+c)p4x3−p2+2pc+2cp2c(p+1)x2y−2p+1c2(p+1)2xy2−c2p4x4−2p2(p+1)x3y−1c2(p+1)2x2y2,˙y=−c3(p+1)p3x2−c2(p+1)p2(c−p)xy−1c−py2−(p+1)(p2+c)p5(c−p)x3−c(p2+2pc+2c)p3(c−p)x2y−2p+1p(p+1)(c−p)xy2−c4(p+1)p5(c−p)x4−2c2p3(c−p)x3y−1p(p+1)(c−p)x2y2, | (9) |
by translating
{˙u=v,˙v=−c3(p+1)p3u2+c{(2p+2)c2−(p2+3p)c−2p3}p3(c−p)uv+c−2p−1(p+1)(c−p)v2+c3(p2+c)p4(c−p)u3−c{(p+1)(p+3)c2+p(p2−3p−3)c−p3(3p+2)}p4(p+1)(c−p)u2v−(5p2+8p+4)c+2p2(p+1)cp2(p+1)2uv2−1c2(p+1)v3−c2(c2+2p2c−p3)p5(c−p)u4+1p5(p+1)2(c−p){(p+4)(p+1)2c3+p(7p3+7p2−3p−4)c2−p3(8p2+15p+8)c−2p5(p+1)}u3v+(3p3+6p2+6p+2)c2+p(2p+1)(2p2+2p−1)c−p3(p+1)(7p+4)cp3(p+1)3(c−p)u2v2−(3p+4)c2−3p(p+2)c−2p3c3p(p+1)2(c−p)uv3−2c−3pc4(p+1)2(c−p)v4+O(|u,v|5). | (10) |
Since the linear part is nilpotent, by Theorem 8.4 in [14] system (10) is conjugated to the Bogdanov-Takens normal form, i.e., the right-hand side of the second equation is a sum of terms of the form
{˙u=v,˙v=−c3(p+1)p3u2+c{(2p+2)c2−(p2+3p)c−2p3}p3(c−p)uv+O(|u,v|3), | (11) |
where the term of
c2−p2+3p2(p+1)c−p3p+1=0, | (12) |
which comes from the numerator of the coefficient of
c=14(p+1)−1p{p+3+(17p2+22p+9)1/2}, |
which defines the function
In this section we discuss in the case that
Theorem 3.1. If
SN+:={(a,κ)∈U|a=a∗, κ>κ∗,0<c<ς(b)}∪{(a,κ)∈U|a=a∗, κ<κ∗,c>ς(b)},SN−:={(a,κ)∈U|a=a∗, κ<κ∗,0<c<ς(b)}∪{(a,κ)∈U|a=a∗, κ>κ∗,c>ς(b)},H:={(a,κ)∈U|a=a∗−((2b1/2+1)c2−((b1/2−1)2+3(b1/2−1))c −2(b1/2−1)3)−2b1/2(b1/2−1)6(c−b1/2+1)4(κ−κ∗)2+O(|κ−κ∗|3), κ>κ∗,0<c<ς(b)}∪{(a,κ)∈U|a=a∗−((2b1/2+1)c2−((b1/2−1)2+3(b1/2−1))c −2(b1/2−1)3)−2b1/2(b1/2−1)6(c−b1/2+1)4(κ−κ∗)2+O(|κ−κ∗|3), κ<κ∗,c>ς(b)},L:={(a,κ)∈U|a=a∗−49/25((2b1/2+1)c2−((b1/2−1)2+3(b1/2−1))c −2(b1/2−1)3)−2b1/2(b1/2−1)6(c−b1/2+1)4(κ−κ∗)2+O(|κ−κ∗|3), κ>κ∗,0<c<ς(b)}∪{(a,κ)∈U|a=a∗−49/25((2b1/2+1)c2−((b1/2−1)2+3(b1/2−1))c −2(b1/2−1)3)−2b1/2(b1/2−1)6(c−b1/2+1)4(κ−κ∗)2+O(|κ−κ∗|3), κ<κ∗,c>ς(b)}, |
such that system (4) produces a saddle-node bifurcation near
The above bifurcation curve
Proof. Let
ε1:=a−a∗,ε2:=κ−κ∗, | (13) |
and consider
{˙x=c(p+1)pε1+(−c2(p+1)p2+cpε1)x+(−c(p+1)+(p+1)ε1)y−c(c−p)p2x2+(−c(2+3p)p+ε1)xy−p(p+1)y2+O(‖(x,y)‖3),˙y=(c3(p+1)p4+c(p+1)(c−p)p2ε2)x+(c2(p+1)p2+(p+1)(c−p)ε2)y+(c3p4+c(c−p)p2ε2)x2+(c3(2+3p)−c2p(2p+1)(c−p)p3+c(3p+2)−p(2p+1)pε2)xy+(c2(p+1)(c−p)p+p(p+1)ε2)y2+O(‖(x,y)‖3). | (14) |
Introducing new variables
{˙ξ1=η1,˙η1=E00(ε1,ε2)+E10(ε1,ε2)ξ1+E20(ε1,ε2)ξ21+F(ξ1,ε1,ε2)η1+E02(ε1,ε2)η21, | (15) |
where
F(0,0,0)=0, ∂F∂ξ1(0,0,0)=E11(0,0)=(2p+2)(c2−p2+3p2(p+1)c−p3p+1)≠0. |
By the Implicit Function Theorem, there exists a function
ξ2=ξ1−ξ1(ε1,ε2),η2=η1 |
to vanish the term proportional to
{˙ξ2=η2,˙η2=ψ1(ε1,ε2)+ψ2(ε1,ε2)ξ2+E20(ε1,ε2)ξ22+E11(ε1,ε2)ξ2η2+E02(ε1,ε2)η22, | (16) |
where
ψ1(ε1,ε2):=E00(ε1,ε2)+E10(ε1,ε2)ξ1(ε1,ε2)+E20(ε1,ε2)ξ21(ε1,ε2),ψ2(ε1,ε2):=E10(ε1,ε2)+2ξ1(ε1,ε2)E20(ε1,ε2). |
In order to eliminate the
ξ3=ξ2, η3=η2−E02(ε1,ε2)ξ2η2 |
together with the time-rescaling
{˙ξ3=η3,˙η3=ζ1(ε1,ε2)+ζ2(ε1,ε2)ξ3+˜E20(ε1,ε2)ξ23+E11(ε1,ε2)ξ3η3, | (17) |
where
ζ1(ε1,ε2):=ψ1(ε1,ε2), ζ2(ε1,ε2):=ψ2(ε1,ε2)−ψ1(ε1,ε2)E02(ε1,ε2),˜E20(ε1,ε2):=E20(ε1,ε2)−E10(ε1,ε2)E02(ε1,ε2). |
Further, in order to reduce coefficient of
u=˜E20(ε1,ε2)E211(ε1,ε2)ξ3,v=sign(E11(ε1,ε2)˜E20(ε1,ε2))˜E220(ε1,ε2)E311(ε1,ε2), |
where
{˙u=v,˙v=ϕ1(ε1,ε2)+ϕ2(ε1,ε2)u+u2+ϑuv, | (18) |
where
ϕ1(ε1,ε2):=E411(ε1,ε2)˜E320(ε1,ε2)ζ1(ε1,ε2)={(2p+2)c2−(p2+3p)c−2p3}4ε1ϕ11(ε1,ε2)p4(c−p)4ϕ212(ε1,ε2), ϕ2(ε1,ε2):=E211(ε1,ε2)˜E220(ε1,ε2)ζ2(ε1,ε2)=√2{(2p+2)c2−(p2+3p)c−2p3}ϕ21(ε1,ε2)c3/2(c−p)2(p+1)1/2pϕ3/212(ε1,ε2), |
and polynomials
Let
μ1=ϕ1(ε1,ε2),μ2=ϕ2(ε1,ε2), | (19) |
where
|∂ϕ1(ε1,ε2)∂ε1∂ϕ1(ε1,ε2)∂ε2∂ϕ2(ε1,ε2)∂ε1∂ϕ2(ε1,ε2)∂ε2|(ε1,ε2)=(0,0)=−{(2p+2)c2−(p2+3p)c−2p3}5p6c4(c−p)4(p+1)≠0, | (20) |
implying that (19) is a locally invertible transformation of parameters. This transformation makes a local equivalence between system (18) and the versal unfolding system
{˙˜u=˜v,˙˜v=μ1+μ2˜u+˜u2+ϑ˜u˜v, | (21) |
where
SN+:={(μ1,μ2)∈V0 | μ1=0, μ2>0},SN−:={(μ1,μ2)∈V0 | μ1=0, μ2<0},H:={(μ1,μ2)∈V0 | μ1=−μ22, μ2>0},L:={(μ1,μ2)∈V0 | μ1=−4925μ22+o(|μ2|2), μ2>0}, | (22) |
where
In what follows, we present above bifurcation curves in parameters
ε1=ω1(μ1,μ2), ε2=ω2(μ1,μ2) | (23) |
in a small neighborhood of
μ1=ϕ1(ω1(μ1,μ2),ω2(μ1,μ2)), μ2=ϕ2(ω1(μ1,μ2),ω2(μ1,μ2)). | (24) |
Substitute the second order formal Taylor expansions of
ϕ1(ε1,ε2)={(2p+2)c2−(p2+3p)c−2p3}4ε1/{p6c2(c−p)4(p+1)}−{(2p+2)c2−(p2+3p)c−2p3}4(24p2c4+42c4p+21c4−8p3c3−54c3p2−44c3p−36c2p4−12p3c2+27p2c2+8p5c+32cp4+16p6)ε21/{2c4p8(c−p)6(p+1)2}−{(2p+2)c2−(p2+3p)c−2p3}4ε1ε2/{(c4p4(c−p)3(p+1)}+o(|ε1,ε2|2), | (25) |
ϕ2(ε1,ε2)={(2p+2)c2−(p2+3p)c−2p3}ε1/{2c2(p3−2cp+p2+c2p+c2−2cp2)p4}−{(2p+2)c2−(p2+3p)c−2p3}ε2/c2−{(2p+2)c2−(p2+3p)c−2p3}(−243p3c3+832p3c4+513p2c4+455p4c3−594p5c2−1347p3c5−1209p2c5+165p4c4+1138p5c3−324p6c2−424p7c−200p5c4+382p6c3+512p7c2−520cp8−396c5p−48p9+108c6−48p10+384c6p3+414c6p−104cp9+264c2p8+594c6p2−672c5p4+96c6p4−136c5p5−44c4p6−76c3p7)ε21/{4c3(p+1)2(c−p)4p6}−{(2p+2)c2−(p2+3p)c−2p3}(8p2c4+23c4p+12c4+30p3c3+8c3p2−22c3p−58c2p4−85p3c2+6p2c2−8p5c+46cp4+24p6)ε1ε2/{4c4p2(p+1)(c−p)2}+(c−p)p2{(2p+2)c2−(p2+3p)c−2p3}ε22/c4+o(|ε1,ε2|2). | (26) |
Then, comparing the coefficients of terms of the same degree in (24), we obtain the second order approximations
ε1=c2p6(c−p)4(p+1)μ1/{(2p+2)c2−(p2+3p)c−2p3}4+c2p10(c−p)6(p+1)(32p2c4+56c4p+27c4−16p3c3−79c3p2−59c3p−48c2p4−19p3c2+36p2c2+12p5c+50cp4+24p6)μ21/{2{(2p+2)c2−(p2+3p)c−2p3}8}+c2p8(c−p)5(p+1)μ1μ2/{(2p+2)c2−(p2+3p)c−2p3}5+o(|μ1,μ2|2), | (27) |
ε2=c2p2(c−p)2(−8p5−12cp4−18cp3+8c3p2−11p2c2−9c2p+14c3p+6c3)μ1/{2{(2p+2)c2−(p2+3p)c−2p3}4}−c2μ2/{(2p+2)c2−(p2+3p)c−2p3}+c2p6(c−p)4(1314c7p2+630pc7−270p3c4+2068p3c5+612p2c5+677p4c4−1134p5c3+4387p5c4−1056p6c3−1804p7c2−3741c6p3+756c5p4+1160c3p8−2268c6p4+1176c7p3−1272c5p6−352c6p5+384c7p4−320p11+108c7−704cp10+224c2p9−2046c5p5+4258c4p6+832p7c4−1464p8c2−2289c6p2+1544p7c3−450c6p−1344cp9)μ21/{8{(2p+2)c2−(p2+3p)c−2p3}8}+c2p4(c−p)2(40p2c4+61c4p+24c4−78p3c3−158c3p2−68c3p−14c2p4+43p3c2+48p2c2+32p5c+62cp4+24p6)μ1μ2/{4{(2p+2)c2−(p2+3p)c−2p3}5}+c2p2(c−p)μ22/{(2p+2)c2−(p2+3p)c−2p3}2+o(|μ1,μ2|2). | (28) |
Then we are ready to express those bifurcation curves in parameters
For curves
ε2=−c2(2p+2)Ψ(c)μ2+O(|μ2|2), | (29) |
where
SN+:={(ε1,ε2) | ε1=0,ε2>0,0<c<ς(b)}∪{(ε1,ε2) | ε1=0,ε2<0,c>ς(b)},SN−:={(ε1,ε2) | ε1=0,ε2<0,0<c<ς(b)}∪{(ε1,ε2) | ε1=0,ε2>0,c>ς(b)}. |
For curve
∂Υ∂ε1|(ε1,ε2)=(0,0)={(2p+2)Ψ(c)}4/{p6c2(c−p)4(p+1)}≠0. |
By the Implicit Function Theorem, there exists a unique
ε1=ϵ1(ε2)=−p6(c−p)44(p+1)Ψ2(c)ε22+o(|ε2|2). | (30) |
Further, replacing
ε2=−c2(2p+2)Ψ(c)μ2+o(|μ2|). |
Similarly to (29), from (22) we obtain that
H:={(ε1,ε2) | ε1=−p6(c−p)44(p+1)Ψ2(c)ε22+o(|ε2|2), ε2>0,0<c<ς(b)}∪{(ε1,ε2) | ε1=−p6(c−p)44(p+1)Ψ2(c)ε22+o(|ε2|2), ε2<0,c>ς(b)}. |
For curve
ε1=−49p6(c−p)4100(p+1)Ψ2(c)ε22+o(|ε2|2). |
Similarly to (29), from (22) we obtain that
L:={(ε1,ε2) | ε1=−49p6(c−p)4100(p+1)Ψ2(c)ε22+o(|ε2|2), ε2>0,0<c<ς(b)}∪{(ε1,ε2) | ε1=−49p6(c−p)4100(p+1)Ψ2(c)ε22+o(|ε2|2), ε2<0,c>ς(b)}. |
Finally, with the replacement (13) we can rewrite the above bifurcation curves
In this paper we analyzed the dynamics of system (4) near the equilibrium
More concretely, in this case,
a∗=(c+1)24, κ∗=8c2(c+1)(c−1)2. |
Moreover, the four bifurcation curves divide the neighborhood
DI:={(a,κ)∈U| a<(c+1)24, κ≤8c2(c+1)(c−1)2}⋃{(a,κ)∈U| a<(c+1)24−49(c−1)6(c+1)33200(2c2+c+1)2{κ−8c2(c+1)(c−1)2}2+O(|κ−8c2(c+1)(c−1)2|3), κ>8c2(c+1)(c−1)2},DII:={(a,κ)∈U| (c+1)24−49(c−1)6(c+1)33200(2c2+c+1)2{κ−8c2(c+1)(c−1)2}2+O(|κ−8c2(c+1)(c−1)2|3)<a<(c+1)24−(c−1)6(c+1)3128(2c2+c+1)2{κ−8c2(c+1)(c−1)2}2+O(|κ−8c2(c+1)(c−1)2|3), κ>8c2(c+1)(c−1)2},DIII:={(a,κ)∈U| (c+1)24−(c−1)6(c+1)3128(2c2+c+1)2{κ−8c2(c+1)(c−1)2}2+O(|κ−8c2(c+1)(c−1)2|3)<a<(c+1)24, κ>8c2(c+1)(c−1)2},DIV:={(a,κ)∈U| a>(c+1)24}. |
Theorem 3.1 gives dynamical behaviors of system (4) near
p1:=−12{(a−b−c+1)−{(a−b−c+1)2−4(a−c)}1/2},p2:=−12{(a−b−c+1)+{(a−b−c+1)2−4(a−c)}1/2} |
as in [27].
Parameters |
Equilibria | Limit cycles and homoclinic orbits | Region in bifurcation diagram | |||
saddle | unstable focus | saddle | ||||
saddle | unstable focus | saddle | one homoclinic rrbit | |||
saddle | unstable focus | saddle | one limit cycle | |||
saddle | stable focus | saddle | ||||
saddle | stable focus | saddle | ||||
saddle-node | ||||||
cusp | ||||||
saddle-node |
The appearance of limit cycle displays a rise of oscillatory phenomenon in system (4). Choosing parameters
In this paper we only considered parameters in
The functions in system (15) are
E00:={(2p+2)c2−(p2+3p)c−2p3}4ε1/{c2(p+1)p6(c−p)4},E10:=−{(2p+2)c2−(p2+3p)c−2p3}2ε1{(−6c3p−4c3p2−4p3c2+3p2c2+4cp4+4c4p+3c4)−(p2c2−3c3p−3c2p+cp2+2cp3−2p4)ε1−(p3c2−2cp4+p5+4c2p4−5p5c−p3c3+2p6)ε2}/{(p+1)p4c3(c−p)4},E20:={(−2c6(p+1)2(c−p)2)+(9c3p2+4c2p4−13c4p+4p5c2+6p3c3+9c5p−15p2c4−2p4c3+4p2c5−4p3c4+6c5)ε1−(2p7c−6p7c2−6p6c2−2p5c4+6p6c3+2cp8−2p4c4+6p5c3)ε2+(6p5c2−2p4c3−6p6c−6p7c+6p6c2−2p5c3+2p7+2p8)ε1ε2+(6p3c3−4p2c4−2c2p4−10p3c2−9c4p−2cp4+17c3p2−2p5c+13c3p−9p2c2−6c4)ε21}/{2c3p2(c−p)2(p+1)},E01:=−{(2p+2)c2−(p2+3p)c−2p3}{2c3ε1+(cp4−2p3c2+c3p2)ε2+(2p4−6cp3+4p2c2)ε1ε2+(12c2−6cp)ε21}/{p2(c−p)2c3},E11:={(3c3p2−8p2c4−p4c3+2c5+2c2p4+4c5p+2p2c5−5c4p+2p5c2+2p3c3−3p3c4)+(3c2p4+3c3p+p2c2+2p5c+3p2c4+3p3c2+2c4p+2cp4−4p3c3+c3p2)ε1+(5p6c2−2p7c−3p6c+7p5c2+2c2p4−p5c−5p4c3−p3c3+p3c4+p4c4−4p5c3)ε2−(5p6c−4p5c2+p4c3−5c2p4−p3c2+7p5c+p3c3+2cp4−2p7−p5−3p6)ε1ε2+(13cp2−8cp4+9c3p2−38p2c2+5cp3+10p4+10p5+19c3p+10c3−13p3c2−25c2p)ε21}/{c2(p+1)(−p+c)},E02:={(c−2p−1)+(5c3−2c2p)ε1−(3p3c2−2c3p2−cp4)ε2+(p4−cp3)ε1ε2−(2cp−c2)ε21}/{(p+1)2(c−p)2}. |
The functions below system (18) are
ϕ11:=24c6p5+4c8p2−16c7p4+4c8p3−16c5p6+4p7c4+24c6p4−16c7p3−16c5p5+4c4p6+(9p4c4−16p6c3+40c3p7+68p5c4−26p3c5+3c8−6c8p+42c6p3+36c6p4−94c5p4+6c7p2−4c4p6−16c2p8−56c5p5−8c8p2+8c7p3+28c6p2−14c7p)ε1+(4c7p4+40c5p7−4c2p9−4c2p10+20c3p8+20c3p9−20c6p5+40c5p6−20c6p6−40c4p8+4c7p5−40p7c4)ε2−(40p2c5+12p4c3+32c7p2+8p5c3+12c7+92p3c5+8p6c2−32p3c4−12p6c3−28p7c2+4c5p4−88c6p2−56p4c4+36c7p+48p5c4−60c6p3+16cp8−32c6p)ε21+(12cp9−24p7c4−8c7p4−6c7p3−88c5p5−32c2p8+20cp10−24c5p4+6c6p3+2c3p7−24p6c3+36c6p5+72c4p6+96c3p8−76c2p9+36p5c4+40c6p4−44c5p6+6p7c2)ε1ε2+(8p7c−9p2c4−16p5c2+6p3c3−c2p4+11p4c4+6p3c5+10p4c3−16p5c3−18p2c5+12p3c4−9c6p2+4p6c−4p8)ε31+(−34c4p6+2c3p7+4p9−28cp9−16cp8+6p4c4+8p10−2p7c+32c2p8+32p7c2−32p6c3−14p5c3+10p6c2−6c6p4+26c5p5+12p5c4)ε21ε2+(4c3p7−c6p6+44c3p9−41c2p10−c4p6+4cp9+2c5p6−4p11+28c3p8−32c2p9+8c5p7−26c4p8+20p11c−12p7c4−p10−4p12+18cp10−6c2p8)ε1ε22,ϕ12:=(2p5c3−4p3c4+2p4c3+2p3c5+2p2c5−4p4c4)+(9c3p2+4c2p4−13c4p+4p5c2+6p3c3+9c5p−15p2c4−2p4c3+4p2c5−4p3c4+6c5)ε1+(−2p7c+6p7c2+6p6c2+2p5c4−6p6c3−2cp8+2p4c4−6p5c3)ε2+(6p3c3−4p2c4−2c2p4−10p3c2−9c4p−2cp4+17c3p2−2p5c+13c3p−9p2c2−6c4)ε21+(6p5c2−2p4c3−6p6c−6p7c+6p6c2−2p5c3+2p7+2p8)ε1ε2,ϕ21:=(6c10+12c8p5+69c8p4−77c9p3+20c7p6+9c6p4−33c7p3+18c5p6−34c6p5+45c8p2−26c7p4+102c8p3−27c9p−80c9p2+27c7p5+6c5p7+8c4p8−12c5p8−55c6p6−12c6p7+8c4p9+22c10p2−24c9p4+8c10p3+20c10p)ε1+(4p10c4+20p9c6−10p10c5−4p5c9+2p11c4−2c9p4−2p6c9+10p7c8+20p6c8+10c8p5−20p9c5+2c4p9−40p7c7−20c7p8−10c5p8−20c7p6+40c6p8+20c6p7)ε2+(−12c9+12c3p9−47c8p4+10c9p3−86c6p4−19c7p3+102c5p6−220c6p5+60c8p2+159c7p4−40c8p3+61c5p5+2c4p6−16p7c4−18c9p+3c9p2+92c7p5+12c3p8+26c5p7−14c4p8+53c8p+35c6p3−76c7p2−79c6p6)ε21+(2p5c9−34c8p5+2c3p9+19c8p4−10c9p3+151c7p6−17c5p6+39c6p5−45c7p4+26c8p3−2c3p10+3p7c4−6c9p2+23c7p5+77c5p7−26c4p8+145c5p8−85c6p6−227c6p7−31c4p9−2c9p4−103c6p8+83p7c7+51p9c5−2p10c4−4p11c3−27p6c8)ε1ε2+(−4p7c8−2p6c8−30p10c4−60p11c4+40p9c5−2p8c8+12p11c3+24c7p8+12c7p9−60p9c6+12p13c3−30p10c6+40p11c5−30p12c4−4p13c2−2p14c2−2p12c2+24p12c3−30c6p8+80p10c5+12p7c7)ε22+(−30c8+69p3c5−16p4c4−212p5c4+58p6c3+331c5p4−232c6p4+79c7p3+117c5p6−65c6p5−21c8p2−3c7p4+5c8p3+379c5p5−187c4p6+4p7c4−94c3p8+44c2p8+44c2p9+91c7p−53c8p−263c6p3+163c7p2−106c6p2−38c3p7)ε31+(36c2p10−10c8p5−199c3p9−41c8p4+9c7p6+18c2p11−166c6p4+84c7p3+165c5p6−297c6p5−18c8p2+193c7p4−48c8p3−110c3p10+164c5p5−76c4p6+47p7c4+123c7p5−78c3p8+18c2p9−208c5p7+351c4p8−219c5p8−62c6p6+79c6p7+233c4p9+12c3p7)ε21ε2+(−2p14c+c2p10−4c3p9−8c7p6+21c2p11−2p12c−72c3p10−4p13c−4c5p7+6c4p8−102c5p8+c6p6+45c6p7+118c4p9+58p9c6−114p10c5+121p11c4+102c6p8−22p7c7−212p9c5+233p10c4−138p11c3+40p12c2−70p12c3+20p13c2−14c7p8+p7c8+p6c8)ε1ε22(−176p3c4+41p4c3+769p3c5+293p2c5−388p4c4+27p5c3+28p6c2−178p5c4−58p6c3+4p7c2+20cp8+20cp9+603c5p4−192c6p4+75c7p3+127c5p5+34c4p6+72c7−234c6p−24c2p8+210c7p−616c6p3+213c7p2−658c6p2−44c3p7)ε41+(−286p5c4+154p6c3−32p7c2+136c2p10−56cp10−198c3p9−24cp9+262c5p4−32cp11−330c6p4+70c7p3+438c5p6−284c6p5+68c7p4+636c5p5−580c4p6−210p7c4+22c7p5−154c3p8+30c2p8+198c2p9+64c5p7+84c4p8−122c6p3+24c7p2−76c6p6+198c3p7)ε31ε2+(4p12+102c2p10−cp10−158c3p9−c7p6+198c2p11−64p12c−33cp11−c5p6−313c3p10−32p13c+4p7c4+8p13−6c3p8+4c2p9−57c5p7+132c4p8−126c5p8+10c6p6+26c6p7+272c4p9+4p14+16c6p8−p7c7−70p9c5+144p10c4−161p11c3+100p12c2)ε21ε22. |
[1] | Z. Wang, W. Du, J. Wang, J. Zhou, X. Han, Z. Zhang, et al., Research and application of improved adaptive MOMEDA fault diagnosis method, Measurement., 140 (2019), 63-75. |
[2] |
B. Gao, Q. Yang, Z. Peng, W. Xie, H. Jin, S. Meng, A direct random sampling method for the Fourier amplitude sensitivity test of nonuniformly distributed uncertainty inputs and its application in C/C nozzles, Aerosp. Sci. Technol., 100 (2020), 105830-105837. doi: 10.1016/j.ast.2020.105830
![]() |
[3] | H. Chen, H. Chen, Q. Liu, Three dimensional formation path planning of multiple UAVs based on improved artificial potential field method, J. Syst. Simul., 1 (2019), 1-7. |
[4] |
Y. Li, R. Wang, Y. Liu, M. Xu, Satellite range scheduling with the priority constraint: An improved genetic algorithm using a station ID encoding method, Chin. J. Aeronaut., 28 (2015), 789-803. doi: 10.1016/j.cja.2015.04.012
![]() |
[5] |
H. Wang, W. Mao, L. Eriksson, A Three-Dimensional Dijkstra's algorithm for multi-objective ship voyage optimization, Ocean Eng., 186 (2019), 106131-106143. doi: 10.1016/j.oceaneng.2019.106131
![]() |
[6] | B. Fu, L. Chen, Y. Zhou, D. Zheng, Z. Wei, J. Dai, et al., An improved A* algorithm for the industrial robot path planning with high success rate and short length, Rob. Auton. Syst., 106 (2018), 26-37. |
[7] | F. Zhang, W. Bai, Y. Qiao, B. Xing, P. Zhou, UAV indoor path planning based on improved D*algorithm, CAAI Trans. Intell. Syst., 14 (2019), 662-669. |
[8] |
G. D. Goez, R. A. Velasquez, J. S. Botero, UAV route planning optimization using PSO implemented on microcontrollers, IEEE Lat. Am. Trans., 14 (2016), 1705-1710. doi: 10.1109/TLA.2016.7483504
![]() |
[9] | H. Min, X. Xiong, P. Wang, Y. Yu, Autonomous driving path planning algorithm based on improved A* algorithm in unstructured environment, Proc. Inst. Mech. Eng., Part D., 2020 (2020), 0954407020959741. |
[10] | Y. Zhang, Y. Zhao, T. Wei, Improved A* algorithm for obstacle avoidance path planning strategy of the blind, Aero Weaponry., 3 (2017), 86-92. |
[11] | F. Islam, V. Narayanan, M. Likhachev, A*-Connect: Bounded suboptimal bidirectional heuristic search, 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016. Available from: https://ieeexplore.ieee.org/abstract/document/7487437. |
[12] | Z. Zhang, T. Long, Z. Wang, G. Xu, Y. Cao, UAV dynamic path planning using anytime repairing sparse A* algorithm and targets motion estimation, 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), 2018. Available from: https://ieeexplore.ieee.org/abstract/document/9019099. |
[13] |
K. Mi, J. Zheng, Y. Wang, J. Hu, A multi-heuristic A* algorithm based on stagnation detection for path planning of manipulators in cluttered environments, IEEE Access, 7 (2019), 135870-135881. doi: 10.1109/ACCESS.2019.2941537
![]() |
[14] | F. Islam, V. Narayanan, M. Likhachev, Dynamic multi-heuristic A*, 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015. Available from: https://ieeexplore.ieee.org/abstract/document/7139515. |
[15] | Q. Wan, C. Gu, S. Sun, M. Chen, H. Huang, X. Jia, Lifelong multi-agent path finding in a dynamic environment, 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2018. Available from: https://ieeexplore.ieee.org/abstract/document/8581181. |
[16] |
F. A. Raheem, U. I. Hameed, Heuristic D* algorithm based on particle swarm optimization for path planning of two-link robot arm in dynamic environment, Al-Khwarizmi Eng. J., 15 (2019), 108-123. doi: 10.22153/kej.2019.01.004
![]() |
[17] | S. Oh, H. W. Leong, Strict Theta*: shorter motion path planning using taut paths, Proceedings of the Twenty-Sixth International Conference on International Conference on Automated Planning and Scheduling, 2016. Available from: https://dl.acm.org/doi/abs/10.5555/3038594.3038626. |
[18] | B. Cui, M. Wang, Y. Duan, Path planning for a* algorithm based on searching 24 neighborhoods, J. Shenyang Univ. Technol., 40 (2018), 180-184. |
[19] | F. Christ, A. Wischnewski, A. Heilmeier, B. Lohmann, Time-optimal trajectory planning for a race car considering variable tyre-road friction coefficients. Veh. Syst. Dyn., 2019 (2019), 1-25. |
[20] |
Y. Zhang, B. Gao, L. Guo, H. Guo, M. Cui, A novel trajectory planning method for automated vehicles under parameter decision framework, IEEE Access, 7 (2019), 88264-88274. doi: 10.1109/ACCESS.2019.2925417
![]() |
[21] | Z. Wang, J. Zha, J. Wang, Flatness-based model predictive control for autonomous vehicle trajectory tracking, 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019. Available from: https://ieeexplore.ieee.org/abstract/document/8917260. |
[22] | H. Wang, X. Chen, Y. Chen, B. Li, Z. Miao, Trajectory tracking and speed control of cleaning vehicle based on improved pure pursuit algorithm*, 2019 Chinese Control Conference (CCC), 2019. Available from: https://ieeexplore.ieee.org/abstract/document/8865255. |
[23] | A. V. Le, V. Prabakaran, V. Sivanantham, R. E. Mohan, Modified a-star algorithm for efficient coverage path planning in tetris inspired self-reconfigurable robot with integrated laser sensor, Sensors, 18 (2018), 2585-2612. |
[24] |
S. K. Renny, N. Uchiyama, S. Sano, Real-time smooth trajectory generation for nonholonomic mobile robots using Bezier curves, Rob. Comput. Integr. Manuf., 41 (2016), 31-42. doi: 10.1016/j.rcim.2016.02.002
![]() |
[25] | J. Duan, C. Yang, H. Shi, Path tracking based on pure pursuit algorithm for intelligent vehicles, J. Beijing Univ. Technol., 42 (2016), 1301-1306. |
1. | Juan Su, Zhaoxia Wang, Global Dynamics of an Enzyme-Catalyzed Reaction System, 2020, 43, 0126-6705, 1919, 10.1007/s40840-019-00780-2 | |
2. | Juan Su, Bifurcation Analysis of an Enzyme Reaction System with General Power of Autocatalysis, 2019, 29, 0218-1274, 1950079, 10.1142/S0218127419500792 | |
3. | Juan Su, Bing Xu, Local bifurcations of an enzyme-catalyzed reaction system with cubic rate law, 2018, 94, 0924-090X, 521, 10.1007/s11071-018-4375-y |
Parameters |
Equilibria | Limit cycles and homoclinic orbits | Region in bifurcation diagram | |||
saddle | unstable focus | saddle | ||||
saddle | unstable focus | saddle | one homoclinic rrbit | |||
saddle | unstable focus | saddle | one limit cycle | |||
saddle | stable focus | saddle | ||||
saddle | stable focus | saddle | ||||
saddle-node | ||||||
cusp | ||||||
saddle-node |
Parameters |
Equilibria | Limit cycles and homoclinic orbits | Region in bifurcation diagram | |||
saddle | unstable focus | saddle | ||||
saddle | unstable focus | saddle | one homoclinic rrbit | |||
saddle | unstable focus | saddle | one limit cycle | |||
saddle | stable focus | saddle | ||||
saddle | stable focus | saddle | ||||
saddle-node | ||||||
cusp | ||||||
saddle-node |