Citation: Nicola Vassena. Good and bad children in metabolic networks[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7621-7644. doi: 10.3934/mbe.2020388
[1] | Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709 |
[2] | Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028 |
[3] | Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025 |
[4] | François Murat, Ali Sili . A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15(1): 125-142. doi: 10.3934/nhm.2020006 |
[5] | Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012 |
[6] | María Anguiano, Renata Bunoiu . Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15(1): 87-110. doi: 10.3934/nhm.2020004 |
[7] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[8] | Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651 |
[9] | Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić . Homogenization approach to filtration through a fibrous medium. Networks and Heterogeneous Media, 2007, 2(3): 529-550. doi: 10.3934/nhm.2007.2.529 |
[10] | Mustapha El Jarroudi, Youness Filali, Aadil Lahrouz, Mustapha Er-Riani, Adel Settati . Asymptotic analysis of an elastic material reinforced with thin fractal strips. Networks and Heterogeneous Media, 2022, 17(1): 47-72. doi: 10.3934/nhm.2021023 |
[1] | F. Horn, R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal., 47 (1972), 81-116. |
[2] | M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), 2229-2268. |
[3] |
M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Ration. Mech. Anal., 132 (1995), 311-370. doi: 10.1007/BF00375614
![]() |
[4] |
D. Gale, H. Nikaido, The Jacobian matrix and global univalence of mappings, Math. Ann., 159 (1965), 81-93. doi: 10.1007/BF01360282
![]() |
[5] |
G. Craciun, M. Feinberg, Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph, SIAM J. Appl. Math., 66 (2006), 1321-1338. doi: 10.1137/050634177
![]() |
[6] | M. Banaji, P. Donnell, S. Baigent, P matrix properties, injectivity, and stability in chemical reaction systems, SIAM J. Appl. Math., 67 (2007), 1523-1547. |
[7] |
M. Banaji, G. Craciun, Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems, Adv. Appl. Math., 44 (2010), 168-184. doi: 10.1016/j.aam.2009.07.003
![]() |
[8] |
G. Shinar, M. Feinberg, Concordant chemical reaction networks, Math. Biosci., 240 (2012), 92-113. doi: 10.1016/j.mbs.2012.05.004
![]() |
[9] |
G. Shinar, M. Feinberg, Concordant chemical reaction networks and the species-reaction graph, Math. Biosci., 241 (2013), 1-23. doi: 10.1016/j.mbs.2012.08.002
![]() |
[10] | R. Thomas, On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations, Numerical methods in the study of critical phenomena, Springer Series in Synergetics, vol 9. (1981) 180-193. |
[11] |
C. Soulé, Graphic requirements for multistationarity, ComPlexUs, 1 (2003), 123-133. doi: 10.1159/000076100
![]() |
[12] |
M. Kaufman, C. Soulé, R. Thomas, A new necessary condition on interaction graphs for multi-stationarity, J. Theor. Biol., 248 (2007), 675-685. doi: 10.1016/j.jtbi.2007.06.016
![]() |
[13] |
C. Wiuf, E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistation-arity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), 1685-1721. doi: 10.1137/120873388
![]() |
[14] | E. Feliu, N. Kaihnsa, T. de Wolff, O. Yürük, The kinetic space of multistationarity in dual phosphorylation, J. Dyn. Differ. Equ., (2020). |
[15] | M. Mincheva, M. R. Roussel, Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models, J. Math. Biol., 55 (2007), 61-86. |
[16] | A. Ivanova, B. Tarnopolskii, One approach to the determination of a number of qualitative features in the behavior of kinetic systems, and realization of this approach in a computer (critical conditions, autooscillations), Kinet. Catal., 20 (1979), 1271-1277. |
[17] | A. Volpert, A. Ivanova, Mathematical models in chemical kinetics, Math. Model. (Russian), 57 (1987), 102. |
[18] | A. Ivanova, Conditions for uniqueness of the stationary states of kinetic systems, connected with the structure of their reaction-mechanism. 1., Kinet. Catal., 20 (1979), 833-837. |
[19] |
B. Brehm, B. Fiedler, Sensitivity of chemical reaction networks: a structural approach. 3. Regular multimolecular systems, Math. Methods Appl. Sci., 41 (2018), 1344-1376. doi: 10.1002/mma.4668
![]() |
[20] | M. Feinberg, Foundations of Chemical Reaction Network Theory, Springer, 2019. |
[21] | B. Fiedler, Global Hopf bifurcation in networks with fast feedback cycles, Discrete Contin. Dyn. Syst. Ser S, 0. |
[22] | N. Vassena, Sensitivity of Metabolic Networks, PhD thesis, Freie Universität Berlin, 2020. |
[23] | B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, Molecular biology of the cell. W.W. Norton & Co, 1983. |
[24] | H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scott, A. Bretscher, et al., Molecular cell biology, Macmillan, 2008. |
[25] |
N. Ishii, K. Nakahigashi, T. Baba, M. Robert, T. Soga, A. Kanai, et al., Multiple high-throughput analyses monitor the response of e. coli to perturbations, Science, 316 (2007), 593-597. doi: 10.1126/science.1132067
![]() |
[26] |
K. Nakahigashi, Y. Toya, N. Ishii, T. Soga, M. Hasegawa, H. Watanabe, et al., Systematic phenome analysis of escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism, Mol. Syst. Biol., 5 (2009), 306. doi: 10.1038/msb.2009.65
![]() |
[27] | F. G. Vital-Lopez, C. D. Maranas, A. Armaou, Bifurcation analysis of the metabolism of E. coli at optimal enzyme levels, in 2006 American Control Conference, IEEE, 2006, 6-pp. |
[28] |
C. Chassagnole, N. Noisommit-Rizzi, J. W. Schmid, K. Mauch, M. Reuss, Dynamic modeling of the central carbon metabolism of Escherichia coli, Biotechnol. Bioeng., 79 (2002), 53-73. doi: 10.1002/bit.10288
![]() |
[29] |
T. Okada, J. C. Tsai, D. A. Mochizuki, Structural bifurcation analysis in chemical reaction networks, Phys. Rev. E, 98 (2018), 012417. doi: 10.1103/PhysRevE.98.012417
![]() |
1. | Renata Bunoiu, Claudia Timofte, Upscaling of a double porosity problem with jumps in thin porous media, 2022, 101, 0003-6811, 3497, 10.1080/00036811.2020.1854232 | |
2. | M. Amar, D. Andreucci, R. Gianni, C. Timofte, Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace–Beltrami operator, 2020, 59, 0944-2669, 10.1007/s00526-020-01749-x | |
3. | Ekeoma Rowland Ijioma, Hirofumi Izuhara, Masayasu Mimura, Traveling Waves in a Reaction-Diffusion System Describing Smoldering Combustion, 2017, 77, 0036-1399, 614, 10.1137/16M1089915 | |
4. | Ekeoma R. Ijioma, Hirofumi Izuhara, Masayasu Mimura, Toshiyuki Ogawa, Homogenization and fingering instability of a microgravity smoldering combustion problem with radiative heat transfer, 2015, 162, 00102180, 4046, 10.1016/j.combustflame.2015.07.044 | |
5. | M. Amar, D. Andreucci, C. Timofte, Asymptotic analysis for non-local problems in composites with different imperfect contact conditions, 2022, 0003-6811, 1, 10.1080/00036811.2022.2120867 | |
6. | A. Chakib, A. Hadri, A. Nachaoui, M. Nachaoui, Homogenization of parabolic problem with nonlinear transmission condition, 2017, 37, 14681218, 433, 10.1016/j.nonrwa.2017.03.004 | |
7. | Iuliu Sorin Pop, Jeroen Bogers, Kundan Kumar, Analysis and Upscaling of a Reactive Transport Model in Fractured Porous Media with Nonlinear Transmission Condition, 2017, 45, 2305-221X, 77, 10.1007/s10013-016-0198-7 | |
8. | Emilio N. M. Cirillo, Ida de Bonis, Adrian Muntean, Omar Richardson, Upscaling the interplay between diffusion and polynomial drifts through a composite thin strip with periodic microstructure, 2020, 55, 0025-6455, 2159, 10.1007/s11012-020-01253-8 | |
9. | Vishnu Raveendran, Emilio Cirillo, Ida de Bonis, Adrian Muntean, Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer, 2021, 80, 0033-569X, 157, 10.1090/qam/1607 | |
10. | Renata Bunoiu, Karim Karim, Claudia Timofte, T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains, 2021, 2021, 1072-6691, 59, 10.58997/ejde.2021.59 | |
11. | Renata Bunoiu, Claudia Timofte, Upscaling of a diffusion problem with flux jump in high contrast composites, 2024, 103, 0003-6811, 2269, 10.1080/00036811.2023.2291810 | |
12. | Matteo Colangeli, Manh Hong Duong, Adrian Muntean, Model reduction of Brownian oscillators: quantification of errors and long-time behavior, 2023, 56, 1751-8113, 345003, 10.1088/1751-8121/ace948 |