Research article Special Issues

Entire product capability analysis chart with asymmetric tolerances index Spa

  • Received: 05 August 2020 Accepted: 26 October 2020 Published: 03 November 2020
  • This study proposes the Spa-product capability analysis chart (Spa-PCAC), which can widely represent multiple process capabilities with asymmetric tolerances of Smaller-the-Better, Larger-the-Better, and Nominal-the-Best characteristics. Process capability index Spa is generated based on index Spk, which uses asymmetric tolerances to reasonably measure process capabilities. The interval estimates of the indices are derived to reliably assess process capabilities. The Six-Sigma-based quality-level and its connection with the process yield are introduced in the capability zone of Spa-PCAC to check if the process capabilities can meet the requirements. One example of an entire product is given for application.

    Citation: Chun-Min Yu, Kun-Tzu Yu, Kuen-Suan Chen. Entire product capability analysis chart with asymmetric tolerances index Spa[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7605-7620. doi: 10.3934/mbe.2020387

    Related Papers:

  • This study proposes the Spa-product capability analysis chart (Spa-PCAC), which can widely represent multiple process capabilities with asymmetric tolerances of Smaller-the-Better, Larger-the-Better, and Nominal-the-Best characteristics. Process capability index Spa is generated based on index Spk, which uses asymmetric tolerances to reasonably measure process capabilities. The interval estimates of the indices are derived to reliably assess process capabilities. The Six-Sigma-based quality-level and its connection with the process yield are introduced in the capability zone of Spa-PCAC to check if the process capabilities can meet the requirements. One example of an entire product is given for application.


    加载中


    [1] K. P. Lin, C. M. Yu, K. S. Chen, Production data analysis system using novel process capability indices-based circular economy, Ind. Manage. Data Syst., 119 (2019), 1655-1668. doi: 10.1108/IMDS-03-2019-0166
    [2] K. S. Chen, C. M. Yu, T. H. Hsu, S. R. Cai, K. C. Chiou, A model for evaluating the performance of the bearing manufacturing process, Appl. Sci., 9 (2019), 3105. doi: 10.3390/app9153105
    [3] K. S. Chen, H. T. Chen, T. C. Chang, The construction and application of Six Sigma quality indices, Int. J. Prod. Res., 55 (2017), 2365-2384.
    [4] K. S. Chen, K. T. Yu, S. H. Sheu, Process capability monitoring chart with an application in the silicon-filler manufacturing process, Int. J. Prod. Econ., 103 (2006), 565-571. doi: 10.1016/j.ijpe.2005.11.004
    [5] M. H. Shu, K. S. Chen, Estimating process capability indices based on subsamples for asymmetric tolerancess, Commun. Stat. Theory Methods, 34 (2005), 485-505. doi: 10.1081/STA-200045863
    [6] J. Xu, C. Peng, Parametric bootstrap process capability index control charts for both mean and dispersion, Commun. Stat. Simul. Comput., 48 (2019), 2936-2954. doi: 10.1080/03610918.2018.1471505
    [7] S. C. Singhal, A new chart for analyzing multi-process performance, Qual. Eng., 2 (1990), 379-390. doi: 10.1080/08982119008962734
    [8] S. C. Singhal, Multi-process performance analysis chat (MPPAC) with capability zones, Qual. Eng., 4 (1991), 75-81.
    [9] W. L. Pearn, K. S. Chen, Multi-process performance analysis: a case study, Qual. Eng., 10 (1997), 1-8. doi: 10.1080/08982119708919102
    [10] K. S. Chen, K. T. Yu, S. H. Sheu, Process capability monitoring chart with an application in the silicon-filler manufacturing process, Int. J. Prod. Econ., 103 (2006), 565-571. doi: 10.1016/j.ijpe.2005.11.004
    [11] K. S. Chen, M. L. Huang, R. K. Li, Process capability analysis for an entire product, Int. J. Prod. Res., 39 (2001), 4077-4087. doi: 10.1080/00207540110073082
    [12] M. L. Huang, K. S. Chen, Y. H. Hung, Integrated process capability analysis with an application in backlight module, Microelectron. Reliab., 42 (2002), 2009-2014. doi: 10.1016/S0026-2714(02)00126-9
    [13] K. S. Chen, W. L. Pearn, P. C. Lin, Capability measures for processes with multiple characteristics, Quality Reliab. Eng. Int., 19 (2003), 101-110. doi: 10.1002/qre.513
    [14] W. L. Pearn, M. H. Shu, B. M. Hsu, Monitoring manufacturing quality for multiple Li-BPIC processes based on capability index Cpmk, Int. J. Prod. Res., 43 (2005), 2493-2512. doi: 10.1080/00207540500045741
    [15] W. L. Pearn, C. W. Wu, Production quality and yield assurance for processes with multiple independent characteristics, Eur. J. Oper. Res., 173 (2006), 637-647. doi: 10.1016/j.ejor.2005.02.050
    [16] H. T. Chen, K. S. Chen, Advanced multi-process performance analysis chart for an entire product with joint confidence regions, Int. J. Prod. Res., 45 (2007), 2141-2159. doi: 10.1080/00207540600677658
    [17] K. S. Chen, M. L. Huang, Y. H. Hung, Process capability analysis chart with the application of Cpm, Int. J. Prod. Res., 46 (2008), 4483-4499. doi: 10.1080/00207540600806422
    [18] T. C. Chang, K. J. Wang, K. S. Chen, Capability performance analysis for processes with multiple characteristics using accuracy and precision, Proc. Inst. Mech. Eng., Part B, 228 (2014), 766-776. doi: 10.1177/0954405413508118
    [19] H. T. Chen, K. S. Chen, Assessing the assembly quality of a T-bar ceiling suspension by using an advanced multi-process performance analysis chart with asymmetric tolerance, Eur. J. Ind. Eng., 10 (2016), 264-283. doi: 10.1504/EJIE.2016.075857
    [20] V. E. Kane, Process capability indices, J. Qual. Technol., 18 (1986), 41-52.
    [21] R. A. Boyles, Process capability with asymmetric tolerances, Commun. Stat. Simul. Comput., 23 (1994), 615-643. doi: 10.1080/03610919408813190
    [22] W. L. Pearn, M. H. Shu, Measuring manufacturing capability based on lower confidence bounds of Cpmk applied to current transmitter process, Int. J. Adv. Manuf. Technol., 23 (2004), 116-125. doi: 10.1007/s00170-003-1693-z
    [23] K. Linderman, R. G. Schroeder, S. Zaheer, A. S. Choo, Six-Sigma: A goal-theoretic perspective, J. Oper. Manage., 21 (2003), 193-203. doi: 10.1016/S0272-6963(02)00087-6
    [24] K. S. Chen, L. Y. Ouyang, C. H. Hsu, C. C. Wu, The communion bridge to Six-Sigma and process capability indices, Qual. Quant., 43 (2009), 463-469. doi: 10.1007/s11135-007-9123-1
    [25] Y. C. Hsu, W. L. Pearn, P. C. Wu, Capability adjustment for gamma processes with mean shift consideration in implementing Six-Sigma program, Eur. J. Oper. Res., 191 (2008), 517-529.
    [26] S. W. Cheng, Practical implementation of the process capability indices, Qual. Eng., 7 (1994), 239-259. doi: 10.1080/08982119408918781
    [27] K. S. Chen, Fuzzy testing decision-making model for intelligent manufacturing process with Taguchi capability index, J. Intell. Fuzzy Syst., 38 (2020), 2129-2139. doi: 10.3233/JIFS-190865
    [28] K. S. Chen, Two-tailed Buckley fuzzy testing for operating performance index, J. Comput. Appl. Math., 361 (2019), 55-63. doi: 10.1016/j.cam.2019.04.019
    [29] K. S. Chen, T. C. Chang, Fuzzy testing model for the lifetime performance of products under consideration with exponential distribution, Ann. Oper. Res., 2020 (2020), 1-12.
    [30] K. S. Chen, C. H. Wang, K. H. Tan, Developing a fuzzy green supplier selection model using Six Sigma quality indices. Int. J. Prod. Econ., 212 (2019), 1-7.
    [31] K. S. Chen, C. M. Yu, Fuzzy test model for performance evaluation matrix of service operating systems, Comput. Ind. Eng., 140 (2020), 106240. doi: 10.1016/j.cie.2019.106240
    [32] D. C. Montgomery, Introduction to Statistical Quality Control, 7th ed., Wiley, New York, 2012.
    [33] K. T. Yu, S. H. Sheu, K. S. Chen, The evaluation of process capability for a machining center, Int. J. Adv. Manuf. Technol., 33 (2007), 505-510. doi: 10.1007/s00170-006-0481-y
    [34] K. S. Chen, H. T. Chen, T. C. Chang, The construction and application of Six Sigma quality indices, Int. J. Prod. Res., 55(2017), 2365-2384. doi: 10.1080/00207543.2016.1246763
    [35] K. S. Chen, K. J. Wang, T. C. Chang, A novel approach to deriving the lower confidence limit of indices Cpu, Cpl, and Cpk in assessing process capability, Int. J. Prod. Res., 55 (2017), 4963-4981.
    [36] Y. M. Chou, D. B. Owen, Lower confidence limits on process capability indices, J. Qual. Technol., 22 (1990), 223-229. doi: 10.1080/00224065.1990.11979242
    [37] W. L. Pearn, K. S. Chen, One-sided capability indices Cpu and Cpl: decision making with sample information, Int. J. Qual. Reliab. Manage., 19 (2002), 221-245. doi: 10.1108/02656710210421544
    [38] A. V. Feigenbaum, Quality control: principles, practice and administration; an industrial management tool for improving product quality and design and for reducing operating costs and losses, McGraw-Hill industrial organization and management series, New York, McGraw-Hill, 1945.
    [39] A. V. Feigenbaum, Total Quality Control, McGraw-Hill, New York, 1961.
    [40] G. Taguchi, S. Konishi, Taguchi Methods, Orthogonal Arrays and Linear Graphs: Tools for Quality, American Supplier Institute, 1987.
    [41] R. A. Boyles, The Taguchi capability index, J. Qual. Technol., 23 (1991), 17-26.
    [42] K. S. Chen, T. C. Chang, Construction and fuzzy hypothesis testing of Taguchi Six Sigma quality index, Int. J. Prod. Res., 58 (2020), 3110-3125.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(577) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog