Research article Special Issues

Dynamics of a toxin-mediated aquatic population model with delayed toxic responses

  • Received: 30 June 2020 Accepted: 20 August 2020 Published: 04 September 2020
  • Traditional mathematical models for studying the effects of environmental toxins on population dynamics usually assume that the toxic effects are immediate. However, the effects of toxins on the reproduction and mortality of aquatic populations can be delayed in reality. In this paper, we propose a new mathematical model with delayed toxic responses for aquatic populations in polluted aquatic environments. The delayed model is analyzed in terms of steady states, stability, and bifurcation. The results show that the delayed effect on the reproduction of aquatic populations does not affect the stability of the interior equilibrium, but the delayed effect on the mortality of aquatic populations can destabilize the interior equilibrium. Numerical results corroborate the theoretical ones are presented.

    Citation: Yueping Dong, Jianlu Ren, Qihua Huang. Dynamics of a toxin-mediated aquatic population model with delayed toxic responses[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5907-5924. doi: 10.3934/mbe.2020315

    Related Papers:

    [1] Guy Bouchitté, Ben Schweizer . Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings. Networks and Heterogeneous Media, 2013, 8(4): 857-878. doi: 10.3934/nhm.2013.8.857
    [2] Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan . Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12(4): 525-550. doi: 10.3934/nhm.2017022
    [3] Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012
    [4] Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić . Homogenization approach to filtration through a fibrous medium. Networks and Heterogeneous Media, 2007, 2(3): 529-550. doi: 10.3934/nhm.2007.2.529
    [5] Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026
    [6] Mengjun Yu, Kun Li . A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations. Networks and Heterogeneous Media, 2024, 19(3): 1309-1335. doi: 10.3934/nhm.2024056
    [7] Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89
    [8] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
    [9] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537
    [10] Hirofumi Notsu, Masato Kimura . Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9(4): 617-634. doi: 10.3934/nhm.2014.9.617
  • Traditional mathematical models for studying the effects of environmental toxins on population dynamics usually assume that the toxic effects are immediate. However, the effects of toxins on the reproduction and mortality of aquatic populations can be delayed in reality. In this paper, we propose a new mathematical model with delayed toxic responses for aquatic populations in polluted aquatic environments. The delayed model is analyzed in terms of steady states, stability, and bifurcation. The results show that the delayed effect on the reproduction of aquatic populations does not affect the stability of the interior equilibrium, but the delayed effect on the mortality of aquatic populations can destabilize the interior equilibrium. Numerical results corroborate the theoretical ones are presented.




    [1] C. H. Walker, R. Sibly, S. Hopkin, D. B. Peakall, Principles of Ecotoxicology, CRC Press, Boca Raton, 2012.
    [2] The Canadian Council of Ministers of the Environment, Canadian water quality guidelines for the protection of aquatic life: Guidance on the site-specific application of water quality guidelines in Canada: procedures for deriving numerical water quality objectives, 2003, http://ceqgrcqe.ccme.ca/download/en/221.
    [3] US national archives and records administration, code of federal regulations, title 40-protection of environment, Appendix A to part 423-126 priority pollutants.
    [4] S. M. Bartell, R. A. Pastorok, H. R. Akcakaya, H. Regan, S. Ferson, C. Mackay, Realism and relevance of ecological models used in chemical risk assessment, Hum. Ecol. Risk Assess., 9 (2003), 907-938.
    [5] R. A. Pastorok, S. M. Bartell, S. Ferson, L. R. Ginzburg, Ecological Modeling in Risk Assessment: Chemical Effects on Populations, Ecosystems, and Landscapes, CRC Press, Boca Raton, 2001.
    [6] T. G. Hallam, C. E. Clark, R. R. Lassiter, Effects of toxicants on populations: Aqualitative approach I. Equilibrium environmental exposure, Ecol. Model., 18 (1983), 291-304.
    [7] T. G. Hallam, C. E. Clark, G. S. Jordan, Effects of toxicants on populations: A qualitative approach II. First order kinetics, J. Math. Biol., 18 (1983), 25-37.
    [8] T. G. Hallam, J. T. De Luna, Effects of toxicants on populations: A qualitative approach III. Environmental and food chain pathways, J. Theor. Biol., 109 (1984), 411-429.
    [9] J. T. De Luna, T. G. Hallam, Effects of toxicants on populations: A qualitative approach IV. Resource-consumer-toxicant models, Ecol. Model., 109 (1987), 249-273.
    [10] Q. Huang, L. Parshotam, H. Wang, C. Bampfylde, M. A. Lewis, A model for the impact of contaminaants on fish population dynamics, J. Theor. Biol., 334 (2013), 71-79.
    [11] Q. Huang, G. Seo, C. Shan, Bifurcations and global dynamics in a toxin-dependent aquatic population model, Math. Biosci., 296 (2018), 26-35.
    [12] N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University Press, Cambridge, 1989.
    [13] Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, 1993.
    [14] J. M. Cushing, Integro-differential Equations and Delay Models in Population Dynamics, Springer Science & Business Media, 2013.
    [15] S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predatorprey systems with discrete delays, Quart. Appl. Math, 59 (2001), 159-173.
    [16] J. Chattopadhayay, R. R. Sarkar, S. Mandal, Toxin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling, J. Theor. Biol., 215 (2002), 333-344.
    [17] J. Chattopadhayay, R. R. Sarkar, A. El Abdllaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Math. Appl. Med. Biol., 19 (2002), 137-161.
    [18] Y. Dong, G. Huang, R. Miyazaki, Y. Takeuchi, Dynamics in a tumor immune system with time delays, Appl. Math. Comput., 252 (2015), 99-113.
    [19] Z. Jiang, L. Wang, Global Hopf bifurcation for a predator-prey system with three delays, Int. J. Bifur. Chaos, 27 (2017), 1750108.
    [20] Y. Dong, Y. Takeuchi, S. Nakaoka, A mathematical model of multiple delayed feedback control system of the gut microbiota-Antibiotics injection controlled by measured metagenomic data, Nonlinear Anal. Real World Appl., 43 (2018), 1-17.
    [21] Y. Dong, M. Sen, M. Banerjee, Y. Takeuchi, S. Nakaoka, Delayed feedback induced complex dynamics in an Escherichia coli and Tetrahymena system, Nonlinear Dyn., 94 (2018), 1447-1466.
    [22] R. K. Upadhyay, S. Mishra, Y. Dong, Y. Takeuchi, Exploring the dynamics of a tritrophic food chain model with multiple gestation periods, Math. Biosci. Eng., 16 (2019), 4660-4691.
    [23] Z. Jiang, L. Wang, Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coeffcient, Math. Biosci. Eng., 16 (2019), 3807-3829.
    [24] P. Panja, S. K. Mondal, D. K. Jana, Effects of toxicants on Phytoplankton-Zooplankton-Fish dynamics and harvesting, Chaos Soliton. Fract., 104 (2017), 389-399.
    [25] S. K. Sahani, How delay can affect the survival of species in polluted environment, in "Soft Computing for Problem Solving" (eds. J. C. Bansal, K. N. Das, A. Nagar, K. Deep, A. K. Ojha), Springer, Singapore, (2019), 913-923.
    [26] V. Vasconcelos, J. Azevedo, M. Silva, V. Ramos, Effects of marine toxins on the reproduction and early stages development of aquatic organisms, Mar. Drugs, 8 (2010), 59-79.
    [27] L. Casarini, A. Franchini, D. Malagoli, E. Ottaviani, Evaluation of the effects of the marine toxin okadaic acid by using FETAX assay, Toxicol. Lett., 169 (2007), 145-151.
    [28] M. A. Beketov, M. Liess, Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods, Environ. Toxicol. Chem., 27 (2008), 461-470.
    [29] A. C. Gutleb, J. Appelman, M. C. Bronkhorst, J. H. J. van den Berg, A. Spenkelink, A. Brouwer et al., Delayed effects of pre- and early-life time exposure to polychlorinated biphenyls on tadpoles of two amphibian species (Xenopus lae6is and Rana temporaria), Environ. Toxicol. Pharmacol., 8 (1999), 1-14.
    [30] Q. Huang, H. Wang, M. A. Lewis, The impact of environmental toxins on predator-prey dynamics, J. Theor. Biol., 378 (2015), 12-30.
    [31] C. Shan, Q. Huang, Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment, J. Math. Biol., 78 (2019), 739-766.
  • This article has been cited by:

    1. Daniel Peterseim, Barbara Verfürth, Computational high frequency scattering from high-contrast heterogeneous media, 2020, 89, 0025-5718, 2649, 10.1090/mcom/3529
    2. Mario Ohlberger, Barbara Verfürth, Localized Orthogonal Decomposition for two-scale Helmholtz-typeproblems, 2017, 2, 2473-6988, 458, 10.3934/Math.2017.2.458
    3. Klaas Hendrik Poelstra, Ben Schweizer, Maik Urban, The geometric average of curl-free fields in periodic geometries, 2021, 41, 2196-6753, 179, 10.1515/anly-2020-0053
    4. Junshan Lin, Hai Zhang, Scattering by a Periodic Array of Subwavelength Slits II: Surface Bound States, Total Transmission, and Field Enhancement in Homogenization Regimes, 2018, 16, 1540-3459, 954, 10.1137/17M1133786
    5. Patrizia Donato, Agnes Lamacz, Ben Schweizer, Sound absorption by perforated walls along boundaries, 2022, 101, 0003-6811, 4397, 10.1080/00036811.2020.1855329
    6. Agnes Lamacz, Ben Schweizer, Effective acoustic properties of a meta-material consisting of small Helmholtz resonators, 2017, 10, 1937-1179, 815, 10.3934/dcdss.2017041
    7. Mario Ohlberger, Barbara Verfurth, A New Heterogeneous Multiscale Method for the Helmholtz Equation with High Contrast, 2018, 16, 1540-3459, 385, 10.1137/16M1108820
    8. B. Schweizer, M. Urban, Effective Maxwell’s equations in general periodic microstructures, 2018, 97, 0003-6811, 2210, 10.1080/00036811.2017.1359563
    9. B. Schweizer, The low-frequency spectrum of small Helmholtz resonators, 2015, 471, 1364-5021, 20140339, 10.1098/rspa.2014.0339
    10. Hari Shankar Mahato, Upscaling of Helmholtz Equation Originating in Transmission through Metallic Gratings in Metamaterials, 2016, 2016, 2356-6140, 1, 10.1155/2016/7436136
    11. A. Lamacz, B. Schweizer, A Negative Index Meta-Material for Maxwell's Equations, 2016, 48, 0036-1410, 4155, 10.1137/16M1064246
    12. Ben Schweizer, Resonance Meets Homogenization, 2017, 119, 0012-0456, 31, 10.1365/s13291-016-0153-2
    13. Robert Lipton, Ben Schweizer, Effective Maxwell’s Equations for Perfectly Conducting Split Ring Resonators, 2018, 229, 0003-9527, 1197, 10.1007/s00205-018-1237-1
    14. Barbara Verfürth, Numerical Multiscale Methods for Waves in High-Contrast Media, 2024, 126, 0012-0456, 37, 10.1365/s13291-023-00273-z
    15. A. Kirsch, B. Schweizer, Time-Harmonic Maxwell’s Equations in Periodic Waveguides, 2025, 249, 0003-9527, 10.1007/s00205-025-02099-8
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4452) PDF downloads(80) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog